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References. The book is divided into chapters which have a sequential Roman
enumeration. The chapters are divided into sections with a sequential Arabic enu-
meration, which is independent in each chapter. Some sections are divided into
subsections.

In each chapter the subsections, equations, propositions, theorems, lemmas,
and so on have a double independent enumeration of the form m.n or (m.n) for
the equations, m,n=1,2,. . . where m is the number of the section in which the
designated item appears and n is its sequential number in it. So, Proposition 4.7
and (3.12) (or equation (3.12)) mean respectively Proposition 7 in Section 4 and
equation 12 in Section 3 of the current chapter. A suitable item from a chapter
different from the current one is referred as R.m, or R.m.n or (R.m.n) for equations,
where R=I,II,. . . is the Roman number of the chapter in which the item appears;
e.g., Remark II.5.3 and IV.4 (or Section IV.4) mean respectively Remark 3 in
Section 5 of Chapter II and Section 4 in Chapter IV.

The footnotes are indicated as superscripts in the main text and have inde-
pendent Arabic enumeration in each section. When we refer to a footnote, it is on
the current page if the page on which it appears is not explicitly indicated.

Citations. An Arabic number in square brackets, e.g., [27], directs the reader
to the list of references, i.e., in this example [27] means the 27th item from the
Bibliography list beginning on page 401.

The ends of the proofs are marked by empty square sign, viz. with �.

Indices. The Latin indices refer to an arbitrary linear (vector) space, in particular
to the tangent and cotangent spaces. If in a given problem are presented the
tangent and cotangent spaces to a manifold and other vector space(s), then the
indices referring to the first two spaces are denoted with small Greek letters; for
the rest one(s) the Latin letters will be used.
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stated.
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by) round (resp. square) brackets a symmetrization (resp. antisymmetrization)
with coefficient one over the factorial of their number is assumed. If some indices
in such a group have to be excluded from this operation, they are included in
(surrounded by) vertical bars.

Matrix of linear mapping with respect to a given basis, or bases, or field of, pos-
sibly local, bases: the same symbol but the kernel letter is in boldface. Exception:
the matrix of a derivation (derivative operator) is denoted by boldface capital
Greek letter gamma, i.e., by Γ, possibly with some indices.

Matrix elements. When the elements of a (two-dimensional) matrix are labeled
by superscript and subscript, the superscript is considered as a first index, number-
ing the matrix’s rows, and the subscript as a second one, numbering the matrix’s
columns. In this way the matrix of composition of linear mappings is equal to the
product of the matrices of the mappings in the same order in which they appear
in the composition and this does not depend on the way the matrix’s indices are
situated.

Free arguments. If we want to show explicitly the argument(s) of some mapping
or to single out it (them) as arbitrary while the other arguments, if any, are
considered as fixed ones, we denote it (them) by (centered) dot, i.e., by ·. E.g., if
f : A → C and g : A × B → C, then f( · ) ≡ f , g( · , · ) ≡ g, and g( · , b), b ∈ B,
means g( · , b) : A → C with g( · , b) : a �→ g(a, b) for all a ∈ A.



Preface

The main subject of this book is an up-to-date and in-depth survey of the theory
of normal frames and coordinates in differential geometry. The existing results, as
well as new ones obtained lately by the author, on the theme are presented.

The text is so organized that it can serve equally well as a reference manual,
introduction to and review of the current research on the topic. Correspondingly,
the possible audience ranges from graduate and post-graduate students to scien-
tists working in differential geometry and theoretical/mathematical physics. This
is reflected in the bibliography which consists mainly of standard (text)books and
journal articles.

The present monograph is the first attempt for collecting the known facts
concerting normal frames and coordinates into a single publication. For that rea-
son, the considerations and most of the proofs are given in details.

Conventionally local coordinates or frames, which can be holonomic or not,
are called normal if in them the coefficients of a linear connection vanish on some
subset, usually a submanifold, of a differentiable manifold. Until recently the exis-
tence of normal frames was known (proved) only for symmetric linear connections
on submanifolds of a manifold. Now the problems concerning normal frames for
derivations of the tensor algebra over a differentiable manifold are well investigate;
in particular they completely cover the exploration of normal frames for arbitrary
linear connections on a manifold. These rigorous results are important in connec-
tion with some physical applications. They may be applied for rigorous analysis
of the equivalence principle. This results in two general conclusions: the (strong)
equivalence principle (in its ‘conventional’ formulations) is a provable theorem and
the normal frames are the mathematical realization of the physical concept of ‘in-
ertial’ frames. The normal frames find other important physical application in the
bundle formulation of quantum mechanics. It turns out that in a normal frame
the bundle Heisenberg and Schrödinger pictures of motion coincide.

Applying some freedom of language, we can state the general physical idea:
the normal frames are the most suitable ones for describing free objects and events,
i.e., such that on them do not act any forces. Regardless of the different realizations
of that idea in general relativity and its generalizations, quantum mechanics, gauge
theories etc., there is an underlying mathematical background for the general
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description of such situations: the existence (or non-existence) of normal frames
in vector bundles. This observation fixes to a great extend the mathematical tools
required for the description of some fundamental physical theories.

In the book, formally, may be distinguished three parts: The first one includes
Chapters I–III and deals with a variety of mathematical problems concerning nor-
mal frames and coordinates on differentiable manifolds. The second part consists
of Chapters IV and V and investigates normal frames (and possibly coordinates)
in vector bundles and differentiable bundles, respectively. The last part, involving
the text after Chapter V, contains inquiry material.

The requisite mathematical language required for the description of nor-
mal frames is spread over the initial sections of the chapters. In particular, Sec-
tions I.2– I.4, III.2, IV.9, IV.2, IV.14.1 and V.2–V.5 can be collected into an intro-
ductory chapter under the title “Mathematical preliminaries”1 but this is not done
by pedagogical reasons.2 The normal coordinates and frames, in the case of linear
connections on a manifold, are initially introduced in Chapter I. It contains our
basic preliminary material and a review of the Riemannian coordinates. Chapter II
is devoted to the existence, uniqueness, construction and other related problems
concerning normal frames and coordinates in manifolds endowed with linear con-
nection. It presents, in historical order, a detailed review of the existing literature
as well as generalization of a number of results, e.g., for connections with torsion.
Further, in Chapter III, problems connected with the existence, uniqueness, holo-
nomicity etc. of normal frames for arbitrary derivations of the tensor algebra over
a manifold are investigated. Next (Chapter IV), the same range of problems is
explored for normal frames for linear transports in vector bundles. This material
covers completely the special case of normal frames for linear connections in vec-
tor bundles or on a differentiable manifold. The main aim of Chapter V is the
exploration of normal frames (and coordinates, if any) for general connections on
differentiable fibre bundles which, in particular, can be vector ones.

The general approach of the book is essentially coordinate-dependent or
basis-dependent. This is due to its basic subject: frames, bases or coordinates
with some special properties. However, if possible and suitable, the coordinate-
free notation and methods are not neglected.

The basic mathematical prerequisites vary from chapter to chapter but gener-
ically they include the grounds of vector (linear) spaces, differentiable manifolds,
vector bundles, connection theory, and a firm belief in the existence and uniqueness
theorems of ordinary differential equations. Some of the corresponding concepts
and results are reproduced in our text but the acquaintance with adequate lit-
erature is required. Appropriate references are given in the Introductions to the
chapters and directly in the main text.

1As (practically) any ‘preliminary’ knowledge requires for its understanding some other ‘pre-
liminary’ to it knowledge, in the corresponding sections are cited a number of works containing
this second kind of mathematical ‘luggage’.

2The material is so organized, that the required concepts and results appear in the logical
order in which they are necessary for some particular purpose(s).
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The material is so organized that a successive chapter generalizes the pre-
ceding one(s) and refers to it (them).

� � � � � � � � � � �
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his e-mail address is
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and

http://theo.inrne.bas.bg/∼bozho/
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Chapter I

Manifolds, Normal Frames
and Riemannian Coordinates

The basic differential-
geometric concepts, such as

differentiable manifolds and map-
pings, tensors and tensor fields,

and linear connections, on which
the book rests, are introduced.

Partially the notation and
terminology employed are

fixed. The nor- mal frames and
coordinates are defined
as ones in which the co-

efficients of a linear connec-
tion in them vanish on some set.

Certain their general properties are
mentioned. The Riemannian co-
ordinates, which are normal at

their origin, are described.



2 Chapter I. Manifolds. Riemannian Coordinates

1. Introduction

The goal of this chapter is twofold: it introduces most of the basic preliminary
definitions and results on which our investigation rests (Sections 2, 3, and 4) and
it begins the study of the normal frames and coordinates (Sections 5 and 6).

The main concepts of differential geometry required for the understanding of
the book are: differentiable manifolds and mappings, submanifolds, Riemannian
manifolds, tangent vectors and vector fields, tensors and tensor fields, linear con-
nections. The readers acquainted with them may only look over the corresponding
sections for our notation, omitting the major text to which they may wish to
return later, following the references to it.

In more details, the contents of the chapter is as follows.
The purpose of Section 2 is to fix our terminology and notation concern-

ing differentiable manifolds and some typical to them natural structures. This
is not a summary of the differential geometry, only certain basic concepts and
particular relations between them required for our future aims are presented. At
first the concepts of topological and differentiable manifolds are introduced, then
tangent vectors, cotangent vectors, and tensors and the corresponding fields of
them on a manifold are defined. Also some expressions in local bases (or frames)
and coordinates are given. If the reader is acquainted with all this, he/she can
simply look over this Section for our notation skipping the main text. A reader
interested in deeper understanding of these concepts, as well as in differential
geometry as a whole, should consult with the specialized literature. Here is a
(random) selection of such titles. An elementary introduction to differential ge-
ometry, with ‘physical’ orientation, can be found in [1–6]. The same purpose can
serve the books [7–10] which are more ‘mathematically’ oriented. Our text fol-
lows the excellent (text)books [11,12]. At last, the advanced works [13–16] can be
recommended. A brief synopsis of the mathematics preceding the introduction of
manifolds is given it [9, 14, 16] while [12, 17] contain an expanded presentation of
the ‘preliminary’ to manifolds material. Of course, the reading of all of the above-
mentioned serious books is not necessary for the understanding of what follows.
For this end, the reading of Section 2 is sufficient and the references cited may be
consulted for more detains and proofs of some assertions. The knowledge of the
tensor analysis in coordinate-dependent language is desirable [18,19]. It is almost
sufficient for the most of this and subsequent chapters.

In Section 3, we introduce the concept of linear connection on a manifold.
The approach chosen is, in a sense, middle between elementary books on general
relativity, such as [20, 21], and pure mathematical ones on differential geometry,
like [11,22]. We have tried to follow closely [9,11,12] but the abstracting material
is adapted to the goals of the present book. After a motivation for what the
connections are needed for, we introduce the linear connections via a system of
axioms for the covariant derivative of the algebra of tensor fields over a given
manifold. We employ this method since the theory of vector bundles, which is not
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required for Chapters I–III, will be involve into action only at the beginning of
Chapter IV. In this connection, let us mention that the linear connections can be
defined only on the algebra of vector fields on a manifold (i.e., to the tangent to it
bundle), and then they admit a unique extension on the whole algebra of tensor
fields [11, Chapter 3, Proposition 7.5]. A more advanced and deep treatment of
the theory of linear connections on manifolds and vector bundles can be found
in [10,13,15,22,23]. We also present the notion of a parallel transport (induced by
a linear connection) which will practically step on scene in Chapter IV but here is
a natural place for it to appear. It will be used in Chapters I–III for proving and
formulating some results. Section 3 ends with a brief consideration of the geodesics
and exponential mapping.

The concept of Riemannian metric and Riemannian connection are given in
Section 4. If the reader is interested in essence of Riemannian geometry, he/she is
referred, for example, to [8–12,19, 24–27].

In Section 5, we introduce the main objects of our investigation, the normal
frames and coordinates. We define them as ones in which the coefficients of a
linear connection vanish on a given set. Some considerations on the uniqueness
and (an)holonomicity of the normal frames are presented too.

Section 6 contains a complete description of normal frames at a given point
on (C∞) Riemannian manifolds. This is done on the base of Riemannian coordi-
nates which turn to be normal at their origin. The geodesic coordinates are pointed
as other example of coordinates normal at a point. Some general results, proved
further in Chapter II, concerning the existence of normal frames on submanifolds
are quoted. An expanded presentation of the problem of existence of normal co-
ordinates at a point of a C∞ Riemannian manifold is given in [19,24], where also
a list of original early works on this topic can be found.

In Section 7 are presented a number of examples and exercises of concrete
Riemannian connection and coordinates/frames normal for them on different sets.
At first, the (locally) Euclidean and one-dimensional manifolds are considered.
The (pseudo)spherical coordinates on (pseudo)spheres are (partially) investigated
for sets on which they are normal for the Riemannian connection induced on
them by the metric on them generated by the Euclidean one of the Euclidean
space in which the (pseudo)spheres are embedded. Similar instance on the two-
dimensional torus is presented. The cosmological models of Einstein, de Sitter
and Schwarzschild are considered (in concrete coordinates) from the view-point
of normal frames/coordinates on them. Some peculiarities of the light cone in
Minkowski spacetime are pointed too.

Section 8 deals with certain terminological problems concerning bases and
frames. Some links between these concepts are explicitly formulated and/or de-
rived.

The chapter ends with some general remarks and conclusions in Section 9.
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2. Differentiable manifolds

In this section we introduce the basic concepts of differential geometry on which the
present and next chapters rest. First of all, attention is paid on the differentiable
manifolds and the algebras of tensors and tensor fields on them.

2.1. Basic definitions

As we shall see a little further, the fields of real, R, and complex, C, numbers are
the simplest examples of respectively real and complex (one-dimensional) differen-
tiable manifolds. Correspondingly, their nth-Cartesian powers (direct products),

R
n := R × · · · × R︸ ︷︷ ︸

n-times

, C
n := C × · · · × C︸ ︷︷ ︸

n-times

where n ∈ N, N := {1, 2, . . .} being the set of integers,1 and × is the Cartesian
product sign (of sets),2 are the simplest examples of respectively real and complex
n-dimensional manifolds.

The silent and, perhaps the most important idea in the concept of an n-
dimensional manifold M over a field K is that it is a set which is ‘locally Euclidean’
or which ‘locally looks like Kn’ where, to save writing, K denotes some of the fields
R or C. The intuitive meaning of the last phrase is that M can be divided into (or,
rewording, can be presented as a union of) sets each of which is into a bijective
(one-to-one onto) correspondence with some subset of Kn, in particular, possibly,
with the whole Kn.

Now, following the books [11, 12], the precise definitions are in order.

Definition 2.1. An n-dimensional topological K-manifold is a Hausdorff topological
space such that every its point has a neighborhood homeomorphic to an open
subset of Kn.3

Notice, if we say that U is a neighborhood of a set V ⊆ M , M being a
topological space, we mean that U is an open set in M containing V . Otherwise
by a neighborhood (in M) we understand any open set in M (which set is a
neighborhood of any its point in the just pointed sense).

For K = R (resp. K = C) the manifold is called real (resp. complex). If K is
clear from the context, the n-dimensional K-manifold is referred as an n-manifold.
In this work only the finite-dimensional case will be considered, i.e., n ∈ N, with

1When writing x ∈ X, X being a set, we mean “for all x in X” if the point x is not specified
(fixed, given) and is considered as an argument or a variable.

2For some purposes the sign ⊕ is used instead of ×; the result is called a direct sum or product
in this case.

3For more general purposes, the Hausdorffness can be dropped and/or K can be (locally)
replaced with an arbitrary dimensional vector space(s) [14, pp. 21–22], [10, pp. 2–4]. Some au-
thors [13, p. 32] add the additional requirement for existence of a countable base. These cases
will not be considered in the present book.
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n < ∞. If both n and K are evident from the context, we speak simply of a
topological manifold.

The number n ∈ N of an n-dimensional K-manifold M is called its dimension
and is denoted by dimM . If K = R (resp. K = C), the dimension of M is also
denoted by dimR (resp. dimC). (See p. 7 for the meaning of the symbol dimR M
for a complex manifold M .)

A chart of (for) a topological K-manifold M is an ordered pair (U, ϕ) of an
open subset U ⊆ M , where ⊆ is the contained in or equal sign, domain of the
chart, and homeomorphism ϕ : U → V onto an open subset V ⊆ Kn. Since any
open set V ⊆ Kn is homeomorphic to the whole Kn, we can always put V = Kn.
By Definition 2.1, for every point p ∈ M there exists a chart in whose domain it
is contained. This is the rigorous expression of the phrases that ‘M locally looks
like (a neighborhood of) Kn’ or ‘M is locally Euclidean’.

Example 2.1. The set Kn is an n-manifold and (Kn, idKn) is a (global) chart for
it. Here and henceforth idA denotes the identity mapping of a set A.

Let {ri : i = 1, . . . , n} be the standard Cartesian coordinate functions on
Kn, viz. if c = (c1, . . . , cn) ∈ Kn = K × · · · × K (n-times), then ri(c) := ci is
the ith Cartesian coordinate of c. If (U, ϕ) is a chart of M , then {ϕ1, . . . , ϕn},
ϕi := ri ◦ ϕ : U → K, ◦ being the sign of mapping’s composition, is called local
coordinate system on U (with respect to the chart (U, ϕ)) and we say that U is
(local) coordinate neighborhood; the functions ϕi are called coordinate functions .
As {ri} are fixed, sometimes ϕ is also called (local) coordinate system [10, p. 2].
The reason is that if we define the n-tuple (ϕ1, . . . , ϕn) as a mapping U → Kn by
(ϕ1, . . . , ϕn)(p) := (ϕ1(p), . . . , ϕn(p)), p ∈ U then ϕ ≡ (ϕ1, . . . , ϕn).

The numbers ϕ1(p) = r1(ϕ(p)), . . . , ϕn(p) = rn(ϕ(p)) ∈ K (or the ordered
n-tuple (ϕ1(p), . . . , ϕn(p))) are (is) called local coordinates of p ∈ U with respect
to (U, ϕ). Often ϕi(p) is abbreviated to pi.

If for two charts (U, ϕ) and (U ′, ϕ′) is fulfilled U ∩ U ′ 
= ∅, ∅ being the
empty set and ∩ denotes intersections of sets, in U ∩U ′ are defined two coordinate
systems, {ϕi = ri◦ϕ} and {ϕ′ i = ri◦ϕ′}. Obviously, the connection between them
is ϕ′ i = (ri ◦ϕ′ ◦ϕ−1) ◦ϕ which implies ϕ′ i(p) = (ri ◦ϕ′ ◦ϕ−1)

(
ϕ1(p), . . . , ϕn(p)

)
for p ∈ U ∩ U ′. So, we can write p′ i = p′ i(p1, . . . , pn), the explicit dependence
being just given.

A family {(Uα, ϕα)|α ∈ A} of charts on M is called an atlas if {Uα} is an
open cover of M , M =

⋃
α∈A Uα. Here the sign ∪ mean union of sets. We speak

of an atlas of class (of smoothness) Ck, k ∈ N ∪ {0}, or of a Ck atlas if the
homeomorphisms ϕα are Ck compatible in a sense that if Uα ∩ Uβ 
= ∅ for some
α, β ∈ A, then the mappings ϕβ ◦ ϕ−1

α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) are of class
Ck as mappings, which actually are bijections, between open subsets of Kn. A Ck

mapping between open subsets of Kn is a one having continuous partial derivatives
for all orders r ≤ k, k ∈ {0} ∪ N ∪ {ω}; C0 means continuous, Cω stands for (real
or complex) analytic, and if k ∈ N is arbitrary we speak of C∞ mappings. The
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values k = 3, 2, 1 will be sufficient for the most problems to be considered in this
book.

Obviously, any topological manifold M admits atlases. A chart (U, ϕ) of M
is said to be (Ck) compatible with an atlas {(Uα, ϕα)|α ∈ A} if ϕα ◦ϕ−1 : ϕ(Uα ∩
U) → ϕα(Uα∩U) is a Ck mapping for every α such that Uα∩U 
= ∅. Two atlases
are (Ck) compatible if each chart of one of them is (Ck) compatible with the
other atlas. The compatibility relation between atlases is an equivalence relation.
An equivalence class of atlases on M is called a Ck differentiable structure (on M).
A differentiable structure on M can also be defined as the maximal (complete)
atlas Ck compatible with (and containing) a given atlas {(Uα, ϕα)|α ∈ A}. So,
any atlas, when expanded to a complete atlas, gives rise to a Ck structure.

Definition 2.2. A differentiable manifold of class Ck is a topological manifold with
fixed Ck differentiable structure on it.

Remark 2.1. To be quite precise, the object described in Definition 2.2 is called
differentiable manifold without boundary of class Ck [14, p. 38]. There are a number
of equivalent or similar definitions of a manifold with boundary (see, e.g., [14,
Chapter II, § 4], [16, p. 139], [12, pp. 208–209]), one of them being the following.
Let λ : Kn → R be continuous linear mapping into R. A Euclidean (‘upper’) half
space or plane H+

λ is the closed subset of Kn given by the non-negative values of
λ, H+

λ := {h|h ∈ Kn, λ(h) ≥ 0}. For instance, in the real case, K = R, one usually
takes λ = rn, λ(c1, . . . , cn) = cn for ci ∈ R, which results in H+

λ = Rn
+ := {c|c ∈

Rn, rn(c) ≥ 0}, or λ : c �→ ∑n
1 aici for a fixed non-zero a ∈ Rn. A chart (with

boundary) in a K-topological manifold M is a pair (U, ϕ) of an open subset U ⊆ M
and homeomorphism ϕ : U → V from U on an open subset V of H+

λ . There are
charts (U, ϕ) for which ϕ(U) is open set in H+

λ homeomorphic to Kn and others
for which ϕ(U) is open set in H+

λ but not in Kn. If we make this modification in
all of the above text, i.e., take a chart with boundary for a chart, we obtain the
notions of atlas and differentiable structure with boundary and correspondingly a
manifold with boundary. An example of such a manifold, which is frequently met,
is a real interval J closed from one of both ends with (J, idJ ) as a differentiable
structure. The manifolds without boundary are evident special case of the ones
with boundary. Most of the results concerning manifolds without boundary can
be transferred on manifolds with boundary; general directions on how this can be
done are given in [14, pp. 38–40]. In a general context, a manifold should mean
manifold with boundary. However, in this book we shall deal exclusively with
manifolds without boundary which, for brevity, will be called simply manifolds.

Often a differentiable manifold of class Ck is denoted as Ck-manifold. So, a
B-manifold with B = n, K, Ck means different things depending on the context.
In this book only Ck-manifolds will be employed; they will, for brevity, be referred
simply as manifolds, the class of smoothness, usually C3, or C2, or C1, will be
clear from the context.
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Example 2.2. The sets Rn and Cn are C∞ manifold with (Rn, idRn) and (Cn, idCn),
respectively, as C∞ differentiable structures.

It is well known [10,11,26], every n-dimensional complex manifold has also a
structure of 2n-dimensional real manifold and, consequently, can be considered as
real manifold of dimension 2n. Since the complex and real differentiable structures
on a complex manifold are in bijective correspondence, both points of view, the
real and complex ones, on it are equivalent. The dimension of a complex manifold
M considered as a real manifold is denoted by dimR M . Hence, we have dimR M =
dimM if M is real and dimR M = 2 dimM = 2 dimC M if M is complex.

A subset N of m-dimensional manifold M is called an n-dimensional sub-
manifold of M , n ≤ m, if for every point p ∈ N there exists a chart (U, ϕ) of M
with p in its domain, U � p, and such that

ϕ : N ∩ U → K
n × {a}, ϕ : q �→ (ϕ1(q), . . . , ϕn(q), a1, . . . , am−n)

for some fixed a = (a1, . . . , am−n) ∈ Km−n and all q ∈ N ∩ U . The set of charts
{(Ū , ϕ̄)}, given by Ū := U ∩ N and ϕ̄ : Ū → Kn with ϕ̄(q) := (ϕ1(q), . . . , ϕn(q)),
is an atlas on N of the same class as the original atlas {(U, ϕ)} on M . So, in more
precise terms, a subset N ⊆ M with just described differentiable stricture is an
n-dimensional submanifold of the m-manifold M , m ≥ n.4 One should be aware
of the fact that presently subtle versions of different definitions of a ‘submanifold’
are in current use.

Example 2.3. The open subsets of a manifold M (which will be referred as neigh-
borhoods) and the sets consisting of finite number of its points are respectively
dimM - and zero-dimensional submanifolds of M .

Important examples of submanifolds are generated according to the theorem
in [12, p. 228].

2.2. Differentiable mappings

Let M and N be Ck-manifolds of dimension m and n, respectively, and a mapping
f : M → N be given. If (U, ϕ) and (V, ψ) are charts in the respective complete
atlases on M and N such that f(U) ⊆ V , the mapping f̄ := ψ ◦ f ◦ ϕ−1 from
ϕ(U) ⊆ Km into ψ(V ) ⊆ Kn (locally) represents f in them.

A mapping f is differentiable of class Cr, r ≤ k at p ∈ M if ψ ◦ f ◦ ϕ−1

is a Cr mapping at ϕ(p). Such mappings are also called Cr differentiable or Cr

mappings (at p).5 Obviously, the Cr differentiability at a point is independent of
the particular charts utilized above. If r1, . . . , rm and v1, . . . , vn are the standard

4If N already has a manifold structure, we suppose it to be equivalent to the described sub-
manifold one. Otherwise one should clearly specify with respect to which differentiable structure
N is considered as a manifold.

5For manifolds with boundary (see Remark 2.1) the following modifications must be done [16,
p. 139]. If O is an open subset of H+

λ , the mapping g : O → H+
µ , with λ, µ : Kn → R being C0
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coordinate functions on Km and Kn respectively, in the local coordinate systems
{ϕi := ri◦ϕ, i = 1, . . . , m} and {ψj := vj◦ψ, j = 1, . . . , n} the Cr differentiability
means that the set of n functions

f j := ψj ◦ f ◦ ϕ−1 = vj ◦ ψ ◦ f ◦ ϕ−1 : ϕ(U) → K

are of class Cr at the point ϕ(p) = (p1, . . . , pm) ∈ Km, pi := ϕi(p). Sometimes
this is expressed by the assertion that the set of functions q̄j = f j(q1, . . . , qm),
j = 1, . . . , n, qi ∈ K, called expression of f in coordinates, are of class Cr at
qi = pi.

The mapping f : M → N is of class Cr, r ≤ k (is a Cr mapping, is Cr

differentiable) if it is Cr differentiable at every point p ∈ M . Analogously, f is a
Cr mapping on M ′ ⊂ M if it is a Cr at every point p ∈ M ′.

The above definitions are mutatis mutandis transferred on mappings like
f : M ′ → N ′ with M ′ ⊂ M and N ′ ⊂ N : at the corresponding places U and V
have to be replace by U ∩ M ′ and V ∩ N ′ respectively.

Under a differentiable mapping or simply mapping between Ck manifolds, we
shall understand a Ck mapping between them, i.e., a Cr mapping with maximal
r, r = k.

Example 2.4. A mapping f : M → Km is called function on M . If it is of class Cr

(at p ∈ M), it is called a Cr function (at p ∈ M). It is real or complex depending
on K = R, C. If (U, ϕ) is a chart of M and we take (Km, idKm) as a natural atlas
of Km, then f has the local representation f̄ = f ◦ϕ−1 : ϕ(U) → Km. The algebra
of Cr, r ≤ k (resp. all) functions on (one and the same neighborhood of) a subset
U ⊆ M of a Ck manifold with k ≥ 0 will be denoted by Fr(U) (resp. by F(U)).
In particular, Fr(p), p ∈ M and Fr(M) are the algebras of Cr functions on a
(fixed) neighborhood of p and on the whole M respectively. Let us note that the
neighborhoods (if U 
= M) in these definitions must be fixed as otherwise the sets
Fr(U) and F(U) are not quite algebras as they will not have unique zero elements:
two zero functions f + (−f) and g + (−g) coincide iff the domains of f and g are
identical.

A mapping f : M → N between Ck manifolds is called Cr, r ≤ k, diffeo-
morphism if it is bijective and f and f−1 are of class Cr. A Ck diffeomorphism is
referred as simply diffeomorphism. With respect to the manifolds, the diffeomor-
phisms play the same role as the isomorphisms (resp. homeomorphisms) in the
theory of vector (resp. topological) spaces.

linear functions, is of class Cr if it extends to a mapping g′ : O′ → H+
µ , g′|O = g, of class Cr ,

where O′ is open subset of H+
λ containing O. A mapping between manifolds with boundary is

of class Cr if it is locally of class Cr , i.e., if ψ ◦ f ◦ ϕ−1 is such in the above notation.
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2.3. Tangent vectors and vector fields

A number of different but equivalent definitions of a tangent vector can be found
in the literature [7, 11–13]. Below we reproduce the most direct one.

Definition 2.3. A tangent vector on a differentiable manifold M of class Ck, with
k ≥ 1, at a point p ∈ M is a linear mapping Xp : F1(p) → K satisfying the Leibnitz
rule:

Xp(af + bg) = aXp(f) + bXp(g), a, b ∈ K f, g ∈ F1(p) (2.1)

Xp(fg) = g(p)Xp(f) + f(p)Xp(g), f, g ∈ F1(p). (2.2)

Thus a tangent vector at p is a derivation of the algebra F1(p).6

Example 2.5. A mapping γ : J → M , J being R-interval of arbitrary type (open
or closed from one or the both ends), is called path (or parameterized curve).7 If
γ is a C1 path, the mapping γ̇(s) : F1(γ(s)) → K given by

(
γ̇(s)

)
(f) :=

df(γ(t))
dt

∣∣∣
t=s

, s, t ∈ J f ∈ F1(γ(s)), (2.3)

where · · · |A means the restriction of · · · to the set A, is an important example of
a tangent vector at p = γ(s) ∈ γ(J).8 So, γ̇(s)(f) is the derivative of f along γ
at the parameter value s. The vector γ̇(s) is called tangent to γ at γ(s) or, more
precisely, at the parameter value s as it may happen that, for a non-injective path,
there are s, t ∈ J such that s 
= t, γ(s) = γ(t) and γ̇(s) 
= γ̇(t). Sometimes γ̇(s)
is denoted by d

ds which can be confusing. As a result of (2.3), the vector γ̇(s) is
often denoted by d

dt

∣∣
t=s

γ(t).

The set of all tangent vectors at p ∈ M is a linear space (over K = R, C)
called tangent (vector) space to M at p. It is denoted by Tp(M) or, for brevity,
by Mp or Tp if there is no risk of ambiguity. The dimensions of Tp(M) and M
coincide for every p, dimTp(M) ≡ dim M . Moreover, if (U, ϕ) is a chart with

6Generally, a mapping ∂ : R → L from a ring R to a left R-module L is derivation if ∂(x ·y) =
x∂(y) + y∂(x), x, y ∈ R. The case when R is an algebra, which in turn is a linear space over K,
is frequently met in the differential geometry. In the last case on ∂ is added the restriction to be
K-linear.

7We make a clear distinction between the concepts ‘path’ and ‘curve’. By a curve or geometric
curve we understand an equivalence class of paths with respect to some set of changes of the
path’s parameter. More precisely, let T be some set of bijective mappings between the R-intervals,
two paths γa : Ja → A, with a = 1, 2 and A being a non-empty set, are equivalent (with respect
to T ) if there is τ ∈ T such that γ2 = γ1 ◦ τ and J2 = τ(J1). This is an equivalence relation on
the set of paths in A. Any equivalence class [γ] of paths equivalent to γ : J → A is called a curve.
Any path of a curve [γ] provides a ‘parameterization’ of the set γ(J) ⊆ A which sometimes is
also called a curve. Most often as T is chosen the class of (C0, C1, . . . ) diffeomorphisms between
the real intervals.

8If J has end point(s) and s is such a point, the derivative in (2.3) is considered as one-sided,
resp. γ̇(s) is one-sided tangent vector to γ at the endpoint(s).
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U � p, {xi = ri ◦ ϕ} is the corresponding coordinate system, and {ri} are the
standard Cartesian coordinates on ϕ(U), then the mappings (i = 1, . . . ,dimM)

∂

∂xi

∣∣∣∣
p

: F1(p) → K,
∂

∂xi

∣∣∣∣
p

: f �→ ∂f

∂xi

∣∣∣
p

:=
∂(f ◦ ϕ−1)

∂ri

∣∣∣∣
ϕ(p)

(2.4)

form a basis
{

∂
∂xi |p

}
of Tp(M), called associated (coordinate or holonomic [5,

p. 110] basis) with the given chart or local coordinates.9 Therefore every Xp ∈
Tp(M) has a unique decomposition

Xp = X i
p

∂

∂xi

∣∣∣∣
p

:=
i=n∑
i=1

X i
p

∂

∂xi

∣∣∣∣
p

(2.5)

where
X i

p := Xp(xi) = Xp(ri ◦ ϕ) ∈ K (2.6)

are the (local) components of Xp (with respect to (U, ϕ) or {xi}). Here, as well as
throughout the whole book, the Einstein’s summation convention is assumed (see
the list of conventions, p. xi).

Example 2.6. Let γ : J → M be a C1 path, s ∈ J and (U, ϕ) be a chart such that
U � γ(s). Then

γ̇(s) =
d
dt

∣∣∣
t=s

γ(t) =
dγi(s)

ds

∂

∂xi

∣∣∣
γ(s)

, (2.7)

where γi(s) = xi(γ(s)) are the local coordinates of γ(s) in {xi}.
For every (tangent) vector Xp ∈ Tp(M) there exists a path γ : J → M such

that for some s ∈ J is fulfilled γ(s) = p and γ̇(s) = Xp.10 In such representation
X i

p = Xp(xi) = dxi(γ(t))/dt
∣∣
t=s

.
A change (U, ϕ) �→ (U ′, ϕ′) of the chart containing p, p ∈ U ∩ U ′ 
= ∅,

or equivalently, of the local coordinates xi �→ x′ i implies corresponding transfor-
mation of the basic vectors (2.4) and the vector’s components in (2.5). For the
components of Xp ∈ Tp(M), due to (2.5) and (2.4), we have

X
′ i

p = Xp(x′ i) =
∑

j

Xj
p

∂(x′ i ◦ ϕ−1)
∂rj

∣∣∣∣
ϕ(p)

=
∂x′ i

∂xj

∣∣∣∣
p

Xj
p (2.8)

and, analogously, X i
p = ∂xi/∂x′ j∣∣

p
X

′ j

p . Very often the restrictions |ϕ(p) and |ϕ′(p)

in these formulae are abbreviate to |p or even are not written at all. Accord-
ing to (2.6) the components of ∂

∂x′ i

∣∣
p

with respect to ∂
∂xi

∣∣
p

are
(

∂
∂x′ i

∣∣
p

)j =

9Notice, in (2.4) enters the local representation f̄ := f ◦ ϕ−1 of f with respect to the charts
(U, ϕ) of M and (Kn, idKn ) of Kn.

10This path is not unique. Actually, there is a family of such paths having a common tangent
vector at p.
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∂
∂x′ i

∣∣
p
(xj) = ∂(xj◦ϕ′ −1)

∂ri

∣∣
ϕ′(p)

= ∂xj

∂x′ i

∣∣
p
, i.e.,

∂

∂x′ i

∣∣∣
p

=
∂xj

∂x′ i

∣∣∣
p

∂

∂xi

∣∣∣
p

=
∂(xj ◦ ϕ′ )

∂ri

∣∣∣
ϕ′(p)

∂

∂xi

∣∣∣
p
. (2.9)

More generally, if {Ei|p} is an arbitrary basis of Tp(M) and the expansion of
Xp ∈ Tp(M) over {Ei|p} is

Xp = X i
pEi|p, X i

p ∈ K, (2.10)

the change
{Ei|p} �→ {E′

i|p = Aj
i (p)Ej |p}, (2.11)

with a nondegenerate matrix A(p) :=
[
Aj

i (p)
]
, Aj

i (p) ∈ K, implies

X i
p �→ X ′ i

p =
(
A−1(p)

)i

j
Xj

p (2.12)

as one must have Xp = X ′ i
p E′

i|p. Clearly, the equations (2.8) and (2.9) are special
case of (2.12) and (2.11), respectively.

The basis
{

∂
∂xi

∣∣
p

}
is usually referred as a coordinate one (associated with or

generated by the local coordinates {xi}) while {Ei|p} is called non-coordinate. For
any basis {Ei|p} there exist local coordinates with respect to which it is coordinate
(see Lemma II.5.2 on page 116).

The set of all tangent vectors on a manifold M is denoted by T (M), i.e.,
T (M) := ∪p∈MTp(M), and is called tangent bundle space.

Definition 2.4. A (tangent) vector field on U ⊆ M is a mapping X assigning to
each p ∈ U a (tangent) vector Xp at p, i.e., X : p �→ Xp ∈ Tp(M).

If U is clear from the context or if U = M , we speak simply of a vector field.

Example 2.7. If γ : J → M is a C1 path without self-intersections, the mapping
γ̇ : γ(s) �→ γ̇(s), γ̇(s) being the vector tangent to γ at γ(s) (see (2.3)), is an
important example of a vector field over γ(J). It is called tangent to γ vector
field.11

The set X(U) of the vector fields on U is a linear space over K; for the purpose
we put (αX + βY ) : p �→ αXp + βYp with α, β ∈ K, p ∈ U , and X, Y ∈ X(U).
Moreover, this set can naturally be turned into a (left) module over the ring
(algebra in this case) F(U) of functions on U ; this is done by defining (fX +
gY ) : p �→ f(p)Xp + g(p)Yp with f, g : U → K.

There is a naturally defined action of the vector fields on C1 functions, viz. a
vector field X on U ⊆ M can be regarded as a mapping F1(U) → F(U) by setting
X : f �→ Xf := X(f) with X(f) : p �→ Xp(f) for all p ∈ U and f ∈ F1(U).

11If γ is not injective, the mapping γ̇ : γ(s) → γ̇(s) may turn to be multiple-valued at the
points of self-intersection.
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In terms of local coordinates {xi} defined via a chart (U, ϕ), we have

X = X i ∂

∂xi
,

∂

∂xi
: p �→ ∂

∂xi

∣∣∣
p

:=
∂( · ◦ ϕ−1)

∂ri

∣∣∣
ϕ(p)

, (2.13)

where the functions

X i := X(xi) = X(ri ◦ ϕ) : U → K (2.14)

are called components of X with respect to {xi} or (U, ϕ).
It is important to be noted that the set of vector fields X(U) is a finitely

generated (left) F(U)-module of rank n = dimM (see (2.13)) but it is also infinitely
dimensional linear (vector) space over K. A basis in the former case is formed by
the vector fields { ∂

∂xi }. This basis is called associated to (generated by) the local
coordinates {xi} or the chart (U, ϕ).

By virtue of (2.8), (2.9), (2.13), and (2.14), a change (U, ϕ) �→ (U ′, ϕ′) of the
chart implies the transforms

∂

∂xi
�→ ∂

∂x′ i =
∂xj

∂x′ i
∂

∂xj
, X i �→ X ′ i =

∂x′ i

∂xj
Xj (2.15)

where ∂xj

∂x′ i : p �→ ∂xj

∂x′ i

∣∣
p

= ∂(xj◦ϕ′ −1)
∂ri

∣∣
ϕ′(p)

and ∂x′ i

∂xj : p �→ ∂x′ i

∂xj

∣∣
p

= ∂(x′ i◦ϕ−1)
∂rj

∣∣
ϕ(p)

,

p ∈ U ∩ U ′.
We call a basis {Ei} of the module of vector fields on (over) U a frame on

(over) U .12 So, a frame on U is a collection of dim M vector fields on U such that
at every point p ∈ U they form a basis of Tp(M). At a single point p, U = {p},
the concepts ‘basis in Tp(M)’ and ‘frame on (over, at) p’ are synonyms.

The frame
{

∂
∂xi

}
on U is referred as a coordinate (or natural) one (associated

with or generated by the local coordinates {xi}) while a general frame {Ei} is
referred as a noncoordinate frame. A frame {Ei} is called holonomic on U if
there exist local coordinates {xi} on U such that Ei = ∂/∂xi, i.e., if {Ei} is the
associated with {xi} coordinate frame. Otherwise, if such {xi} do not exist, the
frame is called anholonomic.13 Equivalently, the holonomic (resp. anholonomic)
frames can be defined as ones whose basic vector fields commute (resp. do not
commute); for details vide infra Section 8.

Any change
{Ei} �→ {E′

i = Aj
i Ej} (2.16)

of a frame {Ei} on U with a non-degenerate matrix-valued function A = [Aj
i ],

where Aj
i : U → K, implies the transformation

X i �→ X ′ i =
(
A−1

)i

j
Xj (2.17)

of the local components of some vector field X = X iEi = X ′ iE′
i.

12For details, see Section 8.
13A frame given only on U can be extended outside U , if U ⊂ M , in a holonomic as well as in

anholonomic way. (Cf. Remark 5.1 on page 40 or see Lemma II.5.2 on page 116.)
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A vector field X on U ⊆ M , M being a Ck differentiable manifold, is said
to be differentiable of class Cr , or simply is called Cr (vector) field, with r ≤ k if
for every Cr+1 function f : U → K the function X(f) : U → K is of class Cr. A
vector field is of class Cr if and only if its local components are Cr functions in
any local chart (see (2.13)). The (left) module of all Cr vector fields on U will be
denoted by Xr(U).

Define the bracket, called also Lie bracket or commutator, of two C1 vector
fields X, Y ∈ X1(U) by14

[X, Y ] := X ◦ Y − Y ◦ X. (2.18)

In local coordinates {xi}, the local components of [X, Y ] are [X, Y ]j = Xj ∂Y i

∂xj −
Y j ∂Xi

∂xj ; in an arbitrary frame, we have [X, Y ]j = X(Y i) − Y (X i). The set X1(U)
is an infinitely dimensional Lie algebra over the field K under the operation
[ · , · ] : X1(U) × X1(U) → X(U).

A frame {Ei} on a neighborhood (open set) U ⊆ M is holonomic if and only
if [Ej , Ek] |U = 0 (see Section 8 for some details).

Further, in Subsection IV.2.4, we shall look on the tangent vector fields as
sections of the tangent bundle over a manifold.

Let X ∈ X0(U) and γ : J → U be a C1 path in a neighborhood U ⊆ M . The
path γ is called integral path (curve) for X through p ∈ U if

γ̇(s) = Xγ(s), γ(s0) = p (2.19)

for some fixed s0 ∈ J end every s ∈ J . Through every p ∈ U passes a (locally)
unique integral path for X ; so if two integral paths have a common point, they
(locally) coincide.15 On the opposite, if U is filled with a family of non-intersecting
C1 paths passing through every its point, there exists a unique C1 vector field on
U whose integral paths form the given family of paths. It coincides with the field
of vectors tangent to the paths of the family.

Let f : M → N be a C1 mapping between C1 manifolds M and N and
p ∈ M . The differential or induced tangent mapping f∗|p of f at p, denoted also
by dfp ≡ df |p and f ′

p ≡ f ′|p, is a linear mapping

f∗|p : Tp(M) → Tf(p)(N) (2.20)

such that, for all Xp ∈ Tp(M) and all g : N → K differentiable at f(p),

(f∗|p(Xp))(g) := Xp(g ◦ f). (2.21)

Evidently, f∗|p is a linear mapping. Its matrix, in the coordinate bases associ-
ated to charts (U, ϕ) of M and (V, ψ) of N with U � p and V � f(p) can be found

14Often the Lie bracket is denoted by [ · , · ], omitting the minus sign as a subscript.
15For details on integral paths, see, e.g., [9, p. 131ff], [7, Sections 1.46–1.53] or [8, Sec-

tions 8.5–8.7].
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as follows. Let {xi|i = 1, . . . ,dimM} and {yj|j = 1, . . . ,dimN} be the respec-
tive coordinate systems and {ri} and {vj} be the standard Cartesian coordinate
systems in Kdim M and Kdim N , respectively. Then(

f∗|p
( ∂

∂xi

∣∣∣
p

))
(g) =

∂

∂xi

∣∣∣
p
(g ◦ f) =

∂(g ◦ f ◦ ϕ−1)
∂ri

∣∣∣
ϕ(p)

=
dim N∑
j=1

∂(g ◦ f ◦ ϕ−1)
∂vj

∣∣∣
ϕ(p)

∂(yj ◦ f ◦ ϕ−1)
∂ri

∣∣∣
ϕ(p)

=
dim N∑
j=1

∂(g ◦ ψ−1)
∂vj

∣∣∣
ψ(f(p))

× ∂(yj ◦ f ◦ ϕ−1)
∂ri

∣∣∣
ϕ(p)

=
(dim N∑

j=1

∂(yj ◦ f)
∂xi

∣∣∣
p

∂

∂yj

∣∣∣
f(p)

)
(g),

so that

f∗|p
( ∂

∂xi

∣∣∣
p

)
=

dim N∑
j=1

∂(yj ◦ f ◦ ϕ−1)
∂ri

∣∣∣
ϕ(p)

∂

∂yj

∣∣∣
f(p)

. =
dim N∑
j=1

∂(yj ◦ f)
∂xi

∣∣∣
p

∂

∂yj

∣∣∣
f(p)

.

(2.22)
Therefore the matrix of f∗|p in the bases chosen has elements

∂(yj ◦ f ◦ ϕ−1)
∂ri

∣∣∣
ϕ(p)

=
∂

∂xi

∣∣∣
p
(yj ◦ f) =

∂(yj ◦ f)
∂xi

∣∣∣
p
, (2.23)

where i = 1, . . . ,dimM and j = 1, . . . ,dimN , and, consequently, coincides with
the Jacobi matrix of the mapping f (with respect to the given coordinate systems).

Example 2.8. If γ : R → M is a C1 path in a C1 manifold M , s ∈ R, and we
choose a chart (U, ϕ) of M with U � γ(s) and the standard chart (R, idR) of R,
with coordinate function idR (as r1 = idR in the one-dimensional case), then the
differential γ∗|s at s maps the standard basic vector ∂

∂r1

∣∣
s

of Ts(R) into the tangent
vector γ̇(s) of γ at s and the matrix of γ∗|s consists of the components of γ̇(s) :

γ∗|s
( ∂

∂r1

∣∣∣
s

)
=

∑
i

∂(xi ◦ γ)
∂r1

∣∣∣
s

∂

∂xi

∣∣∣
γ(s)

= γ̇i(s)
∂

∂xi

∣∣∣
γ(s)

= γ̇(s).

Note that often r1 is identified with s and one writes γ̇i(s) = ∂(xi◦γ(s))
∂s .

Analogously, one can prove that the matrix of the differential at p ∈ M of a
function f : M → K is formed from the gradient components of f , i.e., they are
∂(f◦ϕ−1)

∂ri

∣∣
ϕ(p)

in appropriate bases.

A C1 mapping f : M → N between C1 manifolds is called regular if its
differential f∗|p at p ∈ M is one-to-one (injective) for every p ∈ M . The above
example (with interval J for R) shows that a C1 path γ : J → M is regular iff
its tangent vector γ̇ is non-zero everywhere. Generally, a mapping f : M → N is
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regular iff dimR M ≤ dimR N and the Jacobi matrix of f in some (and hence in
any) bases has maximum rank, equal to dimR M (in real terms).

Details concerning the differential of C1 mappings can be found in most of
the standard (text)books on differential geometry, for instance, in [10, 11, 15].

2.4. Covectors and covector fields

The vector space T ∗
p (M) dual to the tangent space Tp(M), p ∈ M , consists of

the linear forms on Tp(M). It is called the cotangent (vector) space to M at p
and is of dimension n = dimM . The elements of T ∗

p (M) are referred as covectors,
covariant vectors, or covariant tangent vectors at p. For Xp ∈ Tp(M), the covector
ωp ∈ T ∗

p (M) is a linear mapping16

ωp : Xp �→ ωp(Xp) ∈ K

If {Ei|p} is a basis in Tp(M), its dual basis {Ei|p} in T ∗
p is uniquely defined by

Ei|p
(
Ej |p

)
:= δi

j (2.24)

where δj
i are the Kronecker (delta-)symbols, δj

i = 1 for i = j and δj
i = 0 for

i 
= j. If {xi} are local coordinates in a neighborhood of p, the (full) differ-
entials dxi|p at p form the natural cobasis

{
dxi|p

}
with respect to {∂/∂xi|p};

dxj
(
∂/∂xi|p

)
= δj

i . For the expansion of ω|p ∈ T ∗
p (M) with respect to {Ei|p},

we write ωp = (ωp)iE
i|p ≡ ωp iE

i|p. So, the components of covectors/vectors are
labeled by subscripts/superscripts.

The change {Ei|p} �→ {E′ i|p = Bi
j(p)Ej |p} with a nondegenerate matrix

B(p) = [Bi
j(p)] leads to ωp i �→ ω′

p i =
(
B−1(p)

)j

i
ωp j . Such a transformations are

rarely used. The wide spread case is a transform {Ei|p} �→ {E′ i|p} induced by a
change {Ei|p} �→ {E′

i|p = Aj
i (p)Ej |p} of the dual basis in Tp(M). In this situation,

by (2.24), we have

Ei
∣∣
p
�→ E′ i∣∣

p
=

(
A−1(p)

)i

j
(p)Ej |p (2.25)

while the covectors’ components transform like (cf. (2.12))

ωp i �→ ω′
p i = Aj

i (p)ωp j . (2.26)

Hence, under (2.11) the covectors’ components transform like a basis of vectors
and the vectors’ components change like a cobasis (basis of covectors).

16Sometimes the notation ωp : Xp �→ 〈ωp, Xp〉 is used. It expresses the action of the Kronecker
(unit) tensor (see below) on the ordered pair (ωp, Xp). We prefer to reserve the symbol 〈 · , · 〉 for
the scalar products in quantum mechanics as accepted in this theory. More precisely, at present,
in it the symbol 〈 · | · 〉 for the Hermitian scalar product is used which sometimes is replaced by
〈 · , · 〉 or ( · , · ).
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If local coordinate {xi} and {x′ i} in charts (U, ϕ) and (U ′, ϕ′), respectively,
are employed and U ∩ U ′ 
= ∅, then it is fulfilled (see (2.9))17

Aj
i (p) =

∂xj

∂x′ i

∣∣∣
p

:=
∂(xj ◦ ϕ′ −1)

∂ri

∣∣∣
ϕ′(p)

, p ∈ U ∩ U ′ 
= ∅. (2.27)

Therefore (2.25) and (2.26) now read (cf. (2.9) and (2.8) resp.)

dxi|p �→ dx′ i|p =
∂x′ i

∂xj

∣∣∣
p
dxj |p :=

∂(x′ i ◦ ϕ−1)
∂rj

∣∣∣
ϕ(p)

dxj |p (2.28)

ωp i �→ ω′
p i =

∂xj

∂x′ i

∣∣∣
p
ωp j :=

∂(xj ◦ ϕ′ −1)
∂ri

∣∣∣
ϕ′(p)

ωp j . (2.29)

A covariant vector (covector) field ω on U ⊆ M is a mapping assigning to
each p ∈ U a covector at p, ω : p �→ ωp ∈ T ∗

p (M). It is often called a one-form
(abbreviated to 1-form), or differential form of degree 1.18 Equivalently, a 1-form
ω on U can be considered (defined) as F(U)-linear mapping from the (left) F(U)-
module X(U) into F(U) given by

ω : X �→ ω(X), ω(X) : p �→ ωp(Xp), X ∈ X(U), p ∈ U. (2.30)

In a chart (U, ϕ), the full differentials dxi of the local coordinates {xi} form
a natural basis

{
dxi

}
in the set of 1-forms on U which is dual to the basis {∂/∂xi}

in X(U):
ω = ωidxi, dxi

(
∂/∂xj

)
:= δi

j . (2.31)

More generally, if {Ei} is a frame on U , i.e., a basis in the module X(U), then in
the dual to it coframe {Ei} we have

ω = ωiE
i, Ei := (Ei)∗, Ei(Ej) := δi

j . (2.32)

In such a pair ({Ei}, {Ei}) of frame and coframe, the mapping ω : X �→ ω(X) is
given by ω(X) = ωiX

i ∈ F(U). The change (2.16) of the frame implies a change
of the dual coframe and of the component of a covector field in it:

Ei �→ E′ i =
(
A−1

)i

j
Ej , ωi �→ ω′

i = Aj
iωj . (2.33)

In a case of a coordinate frame {∂/∂xi} and its dual coframe {dxi} we, obviously,
obtain

Ai
j =

∂xi

∂x′ j : p �→ ∂xi

∂x′ j

∣∣∣
p

=
∂(xi ◦ ϕ′ −1)

∂rj

∣∣∣
ϕ′(p)

. (2.34)

A covector field ω on U is said to be differentiable of class Cr if for X ∈ Xr(U)
the function ω(X) is of class Cr or, equivalently, the components of ω (in one and
hence in any coframe) are in Fr(U). For brevity such a covector field is called Cr

covector field (or Cr 1-form).
17Recall that xi := ri ◦ ϕ and ri : Kn → K is defined by ri(c1, . . . , cn) := ci, ci ∈ K.
18With a few exceptions, in this work differential forms of degree greater than one (and the

exterior algebra) will not be considered.
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2.5. Tensors and tensor fields. Tensor algebras

Denote by ⊗ the tensor product sign (see, e.g., [11, Chapter 1, § 2]) and let
⊗rV := V ⊗ · · · ⊗ V where the vector or vector space V over K is taken r ∈ N

times; by definition ⊗0V := K.
The tensor space of type (r, s), r, s ∈ N ∪ {0}, (and order (rank) r + s) at

(over) p ∈ M is

Tp
r
s
(M) :=

[⊗r
(
T ∗

p (M)
)]⊗ [⊗s

(
Tp(M)

)]
(2.35)

and consists (for r + s ≥ 1) of all multilinear forms[×r
(
Tp(M)

)]× [×s
(
T ∗

p (M)
)] → K, (2.36)

with ×rV := V ×· · ·×V (r-times). It is a K-linear space of dimension (dimM)r+s.
Since the tensor product is not commutative, the order of the multipliers in (2.35)
is essential.

Remark 2.2. More generally, the tensor space of type (r1, . . . , rm; s1, . . . , sm) ∈
×2m

(
N ∪ {0}) at p is defined as

Tp
r1

s1

...

...

rm

sm

:=
[⊗r1T ∗

p (M)
] ⊗ [⊗s1Tp(M)

] ⊗ · · · ⊗ [⊗rmT ∗
p (M)

]⊗ [⊗smTp(M)
]
.

All such space with
∑m

a=1(ra + sa) = const are isomorphic but different unless
their types coincide. In the complex case, K = C, some of the space Tp(M) and
T ∗

p (M) can be replaced with their complex conjugate spaces T̄p(M) and T̄ ∗
p (M),

respectively; for instance, a Hermitian metric on a complex manifold M at p is
a Hermitian form on Tp(M) × Tp(M) but, equivalently it is a bilinear mapping
Tp(M)×T p(M) → C whose transpose is equal to its complex conjugate mapping.
In this book only tensor spaces of the type (2.35) will be involved. All results (and
definitions) in it can mutatis mutandis be transferred to the above general cases
which is a simple technical problem.

The elements of (2.35) are referred as tensors, or, if their type must be spec-
ified, tensors of type (r, s) (and rank r + s). They are also called r-contravariant
(r times contravariant) and s-covariant (s times covariant) tensors, or tensors of
contravariant degree r and covariant degree s.

In (2.35) can, of course, be introduced an arbitrary basis Ej1...js

i1...ir

∣∣
p
, all indices

running from 1 to dimM , but this is done very rarely. The interesting case, which
is practically the only one considered in the literature and in our book, is when the
basis is induced by some basis {Ei|p} in Tp(M) and its dual basis {Ei|p := (Ei|p)∗}
in T ∗

p (M):

Ej1...js

i1...ir

∣∣
p

= Ej1
∣∣
p
⊗ · · · ⊗ Ejs

∣∣
p
⊗ Ei1

∣∣
p
⊗ · · · ⊗ Eir

∣∣
p
. (2.37)
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The components Ki1...ir

j1...js
(p) ∈ K of Kp ∈ Tp

r
s are defined by the expansion

Kp = Ki1...ir

j1...js
(p)Ej1

∣∣
p
⊗ · · · ⊗ Ejs

∣∣
p
⊗ Ei1

∣∣
p
⊗ · · · ⊗ Eir

∣∣
p
. (2.38)

where the Einstein’s summation convention (see p. xi) is used. It is an elementary
exercise to verify that a transform {Ei|p} �→ {E′

i|p = Aj
i (p)Ej |p} of the basis in

Tp(M) induces the changes:

Ej1...js

i1...ir

∣∣
p
�→ E′j1...js

i1...ir

∣∣
p

= Ak1
i1

(p) · · ·Akr

ir
(p)

(
A−1(p)

)j1

l1
· · · (A−1(p)

)js

ls
El1...ls

k1...kr

∣∣
p

(2.39)

Ki1...ir

j1...js
(p) �→ K ′i1...ir

j1...js
(p)

=
(
A−1(p)

)i1

k1
· · · (A−1(p)

)ir

kr
Al1

j1
(p) · · ·Als

js
(p)Kk1...kr

l1...ls
(p) (2.40)

where A(p) = [Aj
i (p)] is a nondegenerate (constant) matrix.

The tensor algebra T p(M) at p ∈ M is the direct sum of all tensor spaces
Tp

r
s for r, s ≥ 0 with the ordinary tensor multiplication19 as the algebra’s multi-

plication. This algebra is associative but non-commutative algebra.
A tensor field K of type (r, s) on U ⊆ M is a mapping K : p �→ Kp ∈

Tp
r
s(M), p ∈ U . The set Tr

s(U) of tensor fields on U consists of all F(U)-multilinear
mappings from the Cartesian product of r copies if the set of covectors on U and
s copies of X(U) into F(U). It is a natural left F(U)-module: for K ∈ Tr

s(U) and
f ∈ F(U), we define fK : U → Tr

s(U) with fK : p �→ (fK)p := f(p)Kp. It is also
a K-linear space: for α, β ∈ K and K, L ∈ Tr

s(U), the field αK + βL ∈ Tr
s(U) is

defined pointwise, viz. (αK + βL) : p �→ (αK + βL)p := αKp + βLp. As a linear
space Tr

s(U) is infinitely dimensional but as a module its rank is (dim M)r+s.
A frame {Ei} on U induces the tensor frame (cf. (2.37))

Ej1...js

i1...ir
= Ej1 ⊗ · · · ⊗ Ejs ⊗ Ei1 ⊗ · · · ⊗ Eir . (2.41)

where {Ei = (Ei)∗} is the coframe on U dual to {Ei}. With respect to (2.41) a
field K ∈ Tr

s(U) has the representation

K = Ki1...ir

j1...js
Ej1 ⊗ · · · ⊗ Ejs ⊗ Ei1 ⊗ · · · ⊗ Eir . (2.42)

where Ki1...ir

j1...js
∈ F(U) are called components of K with respect to (2.41) (or with

respect to {Ei}, or to some local coordinate {xi} on U if Ei = ∂
∂xi ). Analogously

to (2.39) and (2.40), a change {Ei} �→ {E′
i = Aj

i Ej} of the frame {Ei} with a
non-degenerate matrix-valued function A = [Aj

i ] implies

Ej1...js

i1...ir
�→ E′j1...js

i1...ir
= Ak1

i1
· · ·Akr

ir

(
A−1

)j1

l1
· · · (A−1

)js

ls
El1...ls

k1...kr
(2.43)

19See, e.g, [11, Chapter 1, § 2] for definition of tensor multiplication. Note that α ⊗ Kp =
Kp ⊗ α = αKp for α ∈ K and a tensor Kp at p
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Ki1...ir

j1...js
�→ K ′i1...ir

j1...js
=

(
A−1

)i1

k1
· · · (A−1

)ir

kr
Al1

j1
· · ·Als

js
Kk1...kr

l1...ls
. (2.44)

A tensor field is of class Cr, or is a Cr (tensor) field, if its components are of
class Cr in some, and hence in any, tensor frame. The set of all Ck tensor fields
of type (r, s) on U will be denote by Tr;k

s (U).

Example 2.9. An example of C∞ tensor field on M is the unit tensor (field), called
also the Kronecker tensor (field). In any local frame {Ei} it is given by

Ei ⊗ Ei =
dim M∑

i=1

Ei ⊗ Ei. (2.45)

and, consequently, its components are the Kronecker (delta-)symbols:

δj
i =

{
1 for i = j

0 for i 
= j
. (2.46)

The algebra T (U) of the tensor fields on U ⊆ M is the direct sum of all Tr
s(U)

for r, s ≥ 0 with the tensor product of tensor fields as algebra’s multiplication.20

This algebra over the field K = R, C is associative but not commutative. If we
restrict ourselves to Cr tensor fields, the corresponding algebra will be denoted by
T r(U).

At the end of this section, we define the contraction operator(s). Let the
integers m, n, r, and s be such that 1 ≤ m ≤ r and 1 ≤ n ≤ s. The contraction
operator Cm

n (of type (m, n), acting on the mth superscript and nth subscript)
maps a tensor or tensor field K of type (r, s) into respectively a tensor or tensor
field Cm

n K of type (r − 1, s− 1) such that in any local basis or frame respectively,
we have (

Cm
n K

)j1...jr−1

i1...ir−1
:=

dim M∑
k=1

K
j1...jn−1kjn+1...jr−1
i1...im−1kim+1...ir−1

. (2.47)

This definition is independent of the basis or frame in which the last equation is
written; for example, C1

1 (Ei ⊗ Ei) = δi
i = dim M and C1

1 (ω ⊗ X) = ω(X) for
vector (field) X and covector (field) ω. Generally two contraction operators do
not commute. If the numbers m and n are arbitrary (and insignificant) for some
problem, we shall speak simply of a contraction operator and denote it by C.

3. Linear connections on a differentiable manifold

Below we define the linear connections on a differentiable manifold by means of
axiomatic description of the properties of covariant derivative. We give also an
idea of a parallel transport and the connected to it concepts of geodesics and
exponential mapping.

20Note that f ⊗ K = K ⊗ f = fK for f ∈ F(U) and a tensor field K on U . (Cf. footnote 19
on the preceding page.)
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3.1. Motivation

The comparison of objects defined or given at different points is the main idea
and task of the theory of connections.1 The mathematical structures by means of
which this is done are known as connections. In more free and general language,
by this term is understand any rule for implicit or explicit ‘transportation’ of
objects from one point to another. A typical physical situation where these kind
of problems arise is the following. Given an electromagnetic field in a region U
of the space-time M and two (e.g., identical) charged point particles moving in
U . The problems are to compare the velocities of the particles, the forces acting
on them, and to describe (in an invariant way) the relative motion of one of the
particles with respect to the other one. Leaving aside the last problem, the first
two ones reduce to the comparison of two vectors, say X and Y , defined at points
p, q ∈ M and representing the particle’s velocities or the forces acting on them.
If for the space-time model M is taken R3, as in the classical physics, we can
simply form the difference X − Y of X, Y ∈ R3.2 But if M is a more general
manifold, for instance the one of general relativity, then the difference X − Y
is meaningless unless it is explicitly defined. Just for this purpose a connection is
needed; in this case it must establish a link between the tangent spaces Tp(M) � X
and Tq(M) � Y . If this is done appropriately, we can define X − Y as, e.g.,
X − Ȳ ∈ Tp(M) where Ȳ ∈ Tp(M) is the vector corresponding to Y ∈ Tq(M)
with respect to the connection. As one can expect, such a procedure is not unique
(if it exists) and when physical problems, like the above one, are investigated,
the correct correspondence between the theory’s predictions and the Nature is the
only criteria that can select the ‘right’ connection.

Without any doubts, the natural scene where the connections ‘live’ are the
(fibre) bundles (see Section V.3) which is clearly reflected in the modern math-
ematical literature [10–12, 16] where the connection theory is primary described
in terms of fibre bundles and only then is specified on manifolds. But we shall
not follow this general approach for the following reasons. The historical order of
events is just the opposite and for the main purpose of this book, the description
of normal frames, is better if it is followed. This is justified and from pedagogical
view-point: beginning with simple concepts, we step by step generalize them, the
positive results at a lower level being a motivation for further developments of
the theory. Besides, until recently (1992) the normal frames ware known only for
symmetric linear connections and the presentation of general results (with a few
applications at the moment) at the beginning may cause some phycological prob-
lems and push away the reader, especially if he/she is a physicists. At last, the

1In the old literature (see, e.g., [19]) the word ‘connexion’ instead of ‘connection’ is used.
Nowadays this is rarely done [10, 28].

2More precisely, the velocities X and Y are elements of the tangent spaces Tp(R3) and Tq(R3)
which are naturally identified with R3, where, after the identification is done, the difference X−Y
is formed. In fact, this implicit convention is a connection on R3. The situation, when X and Y
represent forces, is similar to the one when these vector fields represent velocities.
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physical applications of the normal frames concern at present mainly the gravity
physics.

In the connection theory there are two basic concepts, a ‘connection’ and
‘parallel transport’, the latter being called sometimes ‘parallel translation’ [22,
Chapter VII, § 5]. In the majority of the literature, the connection is taken as
a primitive one and the parallel transport is defined on its base. We shall follow
this approach in the present and the next two chapters. It is also possible to take
as an initial concept the parallel transport and on its ground to define what a
connection is (see, e.g., [23]). This point of view is, by our opinion, more general
(and difficult) and we utilize it in Chapter IV.

3.2. Basic definitions

The shortest way to come to the concept ‘connection’ on a manifold M is to try
to define what a ‘derivative of a C1 vector field’ is. The direct transferring of the
definition of the derivative of a C1 function K → K is impossible since the dif-
ference Xp − Xq, X ∈ X1(U), p, q ∈ U ⊆ M is not defined for q 
= p. If p and q
belong to one and the same coordinate neighborhood U , the quantities X i

p − X i
q

and ∂X i
p/∂xi, with {xi} being local coordinate system in U , are well defined but

are not components of a vector (field). It is well known that these quantities can
be ‘repaired’ (redefined) in such a way that this results in the (equivalent in this
context) concepts parallel transport [20] and covariant derivative(≡ connection
here) [21], respectively. This approach is typical for the elementary textbooks on
general relativity, as the above-cited. Below we present an equivalent to these
methods axiomatical point of view which is almost standard for the modern dif-
ferential geometry.3

Definition 3.1. A linear connection (or covariant derivative) ∇ in (on) a neighbor-
hood U ⊆ M , M being C1 manifold, is a mapping assigning to every vector field
X on U a mapping ∇X , called covariant derivative along X , of the tensor algebra
of C1 tensor fields on U into the algebra of tensor fields on U , i.e., ∇ : X �→ ∇X ,
X ∈ X(U) with ∇X : T 1(U) → T (U), such that:

(i) ∇X+Y = ∇X + ∇Y , X, Y ∈ X(U);
(ii) ∇fX = f∇X , f ∈ F(U);
(iii) ∇X(K + L) = ∇XK + ∇XL, K, L ∈ Tr;1

s (U);
(iv) ∇X(K ⊗ L) = (∇XK) ⊗ L + K ⊗ (∇XL), K, L ∈ T 1(U);

(v a) ∇X : F1(U) → F0(U);
(v b) ∇X : T1;1

0 (U) → T1;1
0 (U);

(v c) ∇X : T0;1
1 (U) → T0

1;1(U);
(vi) ∇X(g) = X(g), g ∈ F1(U);
(vii) ∇X(ω(Z)) = C1

1

(∇X(ω ⊗ Z)
)
, ω ∈ T0;1

1 (U), Z ∈ T1;1
0 (U).

3Other equivalent definitions, as well as extended comments on them, can be found in the
specialized literature on differential geometry; see, e.g., [9, 11, 12].
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Comments 3.1. There exist a number of equivalent definitions of a linear connec-
tion on a manifold. For this reason, we make below some remarks on the above
one:
(1) Conditions (i) and (ii) specify that ∇ is F(U)-linear with respect to the vector

fields along which (in the direction of which) it acts.
(2) Condition (iii) means that ∇X is compatible with the additive structure of

the tensor algebra on U .
(3) According to the Leibnitz rule/formula (iv), ∇X is a derivation with respect

to the tensor multiplication, i.e., it is a derivation of T1(U).
(4) The conditions (v) mean that the covariant derivative maps C1 functions in

functions and C1 vector/covector fields in vector/covector fields. Taking this
into account, one can derive from (iii) and (iv) that ∇X preserves the types
of the tensor fields. That is why often (va)–(vc) are replaced by the demand
∇X to be type-preserving, but this is partially contained in the preceding
axioms.

(5) Conditions (i)–(v) uniquely define ∇X up to its action on C1 functions, vector
and covector fields. This arbitrariness in the definition of ∇X is considerably
reduced by (vi) and (vii): Condition (vi) defines ∇X on C1 functions while
from (vii) follows that it is uniquely defined if its action on C1 vector (or,
equivalently, covector) fields is fixed.

(6) Often condition (vii) is formulated as: ∇X commutes with the contraction
operator C, i.e., [∇X , Cr

s ] = 0 for every r, s ∈ N. Such a general demand is
not needed as it follows from the presented axioms.

For the conditions under which a manifold admits linear connections, the
reader is referred to the books on differential geometry cited in Section 1; in
particular, to those problems are devoted [11, Chapter II, § 2] and [22, Chap-
ter VII, § 3].

Below we suppose on a manifold M (of class at least C1) to be given a linear
connection ∇. Everything of what follows can be specified in an evident way on a
neighborhood U ⊂ M .

Let {Ei} be a C1 frame on U ⊆ M . The (local) coefficients Γi
jk in {Ei}

of a linear connection ∇ on U are defined by the expansion (see Definition 3.1,
condition (v b))

∇Ek
Ej =: Γi

jkEi (3.1)

where all indices run from 1 to dim M and summation on repeated indices is
assumed.4

4The functions Γi
jk are sometimes called Christoffel symbols but we shall preserve this term

for a special kind of Γi
jk on a Riemannian manifold (see Section 4 and footnote 9 on page 36).

Note the order of the indices j and k in the both sides of (3.1). In some works, like [11, 12], in
the right-hand side of (3.1) instead of Γi

jk stands Γi
kj . This results in the change of signs before

certain terms in some equations.
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If K is a C1 tensor field of type (r, s) with expansion (2.42) in {Ei}, then it
is a simple exercise to verify the formula

∇XK = Ki1...ir

j1...js;kXkEj1 ⊗ · · · ⊗ Ejs ⊗ Ei1 ⊗ · · · ⊗ Eir . (3.2)

where

Ki1...ir

j1...js;k := Ek

(
Ki1...ir

j1...js

)
+

r∑
a=1

Γia

lkK
i1...ia−1lia+1...ir

j1...js

−
s∑

b=1

Γl
jbkKi1...ir

j1...jb−1ljb+1...js

(3.3)

are the components of the so-called covariant differential ∇K ∈ Tr
s+1(U) of K

defined by (see (2.36))

(∇K)
(
ω(1), . . . , ω(r), X(1), . . . , X(s); X

)
:=

(∇XK
)(

ω(1), . . . , ω(r), X(1), . . . , X(s)

)
(3.4)

with ω(1), . . . , ω(r) ∈ T0
1(U) and X(1), . . . , X(s) ∈ T1

0(U).
If we make a change {Ei} �→ {E′

i = Aj
iEj} of the frame with a non-degenerate

C1 matrix-valued function A = [Aj
i ], equation (3.1) implies the transformation5

Γi
jk �→ Γ′ i

jk =
(
A−1

)i

l
Am

j An
kΓl

mn +
(
A−1

)i

l
E′

k

(
Al

j

)
(3.5)

of the coefficients of a linear connection ∇. Because of the importance of this result
for the present book, we will rewrite it in the case of frames associated with two
local C2 coordinate systems {xi} and {x′ i} in their common domain (see (2.34)):

Γi
jk �→ Γ′ i

jk =
∂x′ i

∂xl

∂xm

∂x′ j
∂xn

∂x′ k Γl
mn +

∂x′ i

∂xl

∂2xl

∂x′ j∂x′ k . (3.6)

Note, in this result enter the second partial derivatives of the local coordinates,
so it is meaningful if the manifold M is of class not less than C2 which will be
supposed in this and the next chapters.

Consequently, a linear connection ∇ defines in any frame {Ei} a family of
functions {Γi

jk} which transform according to (3.5). The opposite statement is
also true (see, e.g., [11, Chapter III, Proposition 7.3]): if in every frame {Ei} is
given a family of functions {Γi

jk} satisfying the transformation law (3.5), then
there exists a unique linear connection ∇ whose local coefficients in {Ei} coincide
with {Γi

jk}.
5Notice, here and below we suppose the frames and the matrix-valued function A to be defined

on a neighborhood (open set) in M of each point in U , i.e., on a neighborhood of U if U is not
a neighborhood. Otherwise expressions like Ek(Ai

j) may turn to be not (uniquely) defined.
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The set of linear connections on M is not F(M)-linear or even K-linear space.
In fact, if ∇ and ∇̄ are linear connections with coefficients Γi

jk and Γ̄i
jk respec-

tively and f, g ∈ F(M), then we can define f∇+g∇̄ as a ‘linear connection’ whose
local coefficients are fΓi

jk + gΓ̄i
jk but, by virtue of (3.5), one verifies easily (see

the last term in (3.5)) that these functions form coefficients of a linear connection
if and only if f + g = 1.6 So, the only K-linear (resp. F(M)-linear) combination
under which the set of linear connection is closed is

Γi
jk, Γ̄i

jk �→ fΓ
i

jk := fΓi
jk + (1 − f)Γ̄i

jk (3.7)

where f ∈ K (resp. f ∈ F(M)). This result is often mentioned when f = 1/2.
If we restrict ourselves to coordinate frames, i.e., to ones associated with local
coordinates, then, due to (3.6), the quantities fΓi

jk + gΓ̄i
kj form coefficients of

some linear connection iff f + g = 1. Hence, the mapping

Γi
jk, Γ̄i

jk �→ fΓ̄
i

jk = fΓi
jk + (1 − f)Γ̄i

kj (3.8)

defines a linear connection if only coordinate frames are considered. In particular,
from every linear connection ∇ with local coefficients Γi

jk we can form a linear
connection s∇ with coefficients

sΓi
jk :=

1
2
(
Γi

jk + Γi
kj

)
=: Γi

(jk) (3.9)

in some coordinate frame. This is an example of symmetric linear connection.
Generally a linear connection is called symmetric if in one (and hence in any –
see (3.6)) coordinate frame {∂/∂xi} its local coefficients Γi

jk are symmetric in
their subscripts:

Γi
jk = Γi

kj . (3.10)

Often these equations are written as

Γi
kj = Γi

(kj) or Γi
[kj] = 0 (3.10′)

where symmetrization (resp. antisymmetrization) is understood over the indices
included in round (resp. square) brackets (see the list of conventions, page xii).
It is important to be emphasized, in the general case it is meaningful to be spo-
ken on the symmetry properties of the coefficients of a linear connection only in
coordinate frames. The same is valid with respect to the transform (3.8), or its spe-
cial case (3.9): if (anholonomic) non-coordinate frames are involved, the quantities
fΓ̄

i

jk generally do not define coefficients of some linear connection.
Now we want to define what a Cr linear connection, called also linear con-

nection of class Cr or Cr differentiable linear connection, on a Ck manifold is.7

6Notice, for g = −f we get the quantities f
(
Γi

jk − Γ̄i
jk

)
which are components of a tensor

field of type (1, 2).
7In the literature the problem of defining the differentiability of a linear connection does not

arise because usually only the C∞ case is considered and/or only the class of coordinate frames
is employed (see below and, e.g., [12, p. 295]).
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Our intention is to call ∇ a Cr differentiable if its local coefficients are of class
Cr but this is not quite rigorous. Actually, if its coefficients Γi

jk in a frame {Ei}
are Cr functions, then in another frame {E′

i = Aj
i Ej} the differentiability of the

new coefficients Γ′ i
jk will depend, in conformity with (3.5), on of what class the

transformation nondegenerate matrix A = [Aj
i ] is. If Aj

i are of class Cr′
, then that

of Γ′ i
jk will be Cmin(r,r′−1). Consequently the differentiability of the coefficients

of a linear connection is essentially frame-dependent concept. For this reason,
we adopt the following definition. Given a class of frames connected with linear
transformations whose matrices are Cr′

, r′ ≥ 1 matrix-valued functions, a linear
connection is said to be Cr differentiable with r ≤ r′ − 1 with respect to it if
its local coefficients are of class Cr with respect to one (and hence relative to
any) frame in the given set of frames. Beginning with this point henceforth, when
speaking of a Cr linear connection, we shall suppose, by default if the opposite is
not explicitly stated, that the above class of Cr′

, r′ ≥ r + 1, frames is fixed and
consists of all frames associated to (one or all systems of) local coordinates on
the Ck, k ≥ r′ + 1 ≥ r + 2, manifold or some its open subset and all frames that
can be obtained from them by means of Cr′

linear transformations. For example,
talking of a C1 linear connection, we have in mind that it is a linear connection
on C3 manifold and such that its local coefficients in (one or) any frame, which is
coordinate or obtainable from a coordinate one by means of C2 changes, are C1

functions.8

We shall now introduce two basic characteristics of the linear connections
which will be mentioned frequently in this book.

The curvature tensor field (or simply curvature), R, and the torsion tensor
field (or simply torsion), T , of a linear connection ∇ are tensor fields of types
respectively (1, 3) and (1, 2), i.e.,

R : T0
1(M) × (×3X(M)

) → K

T : T0
1(M) × (×2X(M)

) → K,

defined as follows. The curvature R for a C1 linear connection ∇ on a C3 mani-
fold M is considered as an F(M)-trilinear mapping ×3X(M) → X(M) such that
(X, Y, Z) �→ R(X, Y )Z, X, Y, Z ∈ X(M), where the curvature operator (called also
simply curvature) R(X, Y ) (along the pair (X, Y )) is

R(X, Y ) := ∇X ◦ ∇Y −∇Y ◦ ∇X −∇X◦Y −Y ◦X ≡ [∇X ,∇Y

] −∇[X,Y ] . (3.11)

Analogously, the torsion T of an arbitrary linear connection ∇ on a manifold
M is treated as an F(M)-bilinear mapping X(M) × X(M) → X(M) such that
(X, Y ) �→ T (X, Y ), X, Y,∈ X(M), where the torsion operator (called also simply
torsion) T (X, Y ) (along the pair (X, Y )) is

T (X, Y ) := ∇XY −∇Y X − [X, Y ] . (3.12)
8For a general and coordinate/frame independent definition of a differentiability class of a

connection, see Section V.3.2.
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Remark 3.1. Nevertheless that the torsion is defined for arbitrary linear connec-
tion on every manifold, this concept is intrinsically linked to the module of vector
fields on the manifold, or, equivalently, to the tangent bundle to it, and can not
be generalized on more general bundles. On the other hand, the concept of curva-
ture survives a generalizations on vector bundles endowed with linear connections
(or, more generally, linear transports along paths), as well as for connections on
differentiable bundles.

In a local frame {Ei}, the components of the curvature R, Ri
jkl, and torsion

T , T i
jk, are defined by the expansions

R(Ek, El)Ej =: Ri
jklEi, T (Ej , Ek) =: T i

jkEi

and their explicit form is:

Ri
jkl = −2Γi

j[k,l] − 2Γm
j[kΓi

|m|l] − Γi
jmCm

kl

= −Γi
jk,l + Γi

jl,k − Γm
jkΓi

ml + Γm
jlΓ

i
mk − Γi

jmCm
kl

(3.13)

T i
jk = −2Γi

[jk] − Ci
jk = −Γi

jk + Γi
kj − Ci

jk. (3.14)

Here the summation and (anti)symmetrization conventions are used (see the list
of conventions), f,i := Ei(f) for f ∈ F1(M) and the (structure) functions Ci

jk ∈
F(M) define the commutators of the basis vector fields,

[Ej , Ek] =: Ci
jkEi. (3.15)

Notice, in a coordinate or holonomic frame Ci
jk ≡ 0 (see Section 8 for some details).

A linear connection with zero curvature (resp. torsion) on ⊆ M is called flat,
or curvature free, or integrable (resp. torsionless or torsion free) on U . If U = M
it is call simply flat (resp. torsionless).

Comparing (3.10) with (3.14), we see that a linear connection is symmetric
on U ⊆ M iff it is torsion free on U . So, the vanishment of the torsion is the
invariant way to describe what a symmetric linear connection is.

The properties and geometric interpretation of curvature and torsion, as well
as that of linear connections as a whole, are well known and investigated at length
in the books on differential geometry pointed in Section 1.

3.3. Parallel transport

The concept of a ‘parallel transport’, first introduced on surfaces by Levi-Civita
in 1917 [29], will be employed in the present and subsequent chapters mainly for
many purposes, e.g., for proving and formulating some results. Besides this, we
include here a small subsection devoted to it also for the following reasons:

(i) The parallel transport is the practical realization of the ideas underlying the
connection theory (see subsection 3.1);
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(ii) Up to this point we have introduce the full ‘machinery’ required for describing
what a parallel transport associated to (defined by) a linear connection is;

(iii) This concept can be defined independently of the connection theory by a
system of axioms and on its base the (linear) connection can (equivalently)
be introduced [17, 23, 30–33] (see also Section IV.11, Definitions IV.11.2
and IV.11.3);

(iv) As we shall see in Chapter IV, the ‘transport theory’ is extremely suitable for
exploring normal frames in vector bundles, in particular for arbitrary linear
connections in them.

Let γ : J → M , J being R-interval, be a C1 path in a manifold M endowed
with a linear connection ∇. Let V ∈ X(U) be arbitrary vector field on a neighbor-
hood U ⊃ γ(J) and such that V |γ(J) = γ̇, γ̇ being the vector field tangent to γ
(see (2.3)), i.e., Vγ(s) = γ̇(s), s ∈ J .9 Consider the restriction of the action of ∇V

on γ(J):

∇γ̇(K) := (∇V K)|γ(J), (∇γ̇K)|γ(s) :=
DK

ds
:= (∇V K)|γ(s). (3.16)

The operator ∇γ̇ is called covariant derivative along the path γ. In an arbitrary
frame on U , due to (2.3), (3.2), and (3.3), we see that, for any tensor field K ∈
Tr;1

r′ (U), the tensor field ∇γ̇K given by ∇γ̇K : γ(s) �→ (∇V K)γ(s) is independent
of U and of the values Vp and Kp for p ∈ U\γ(J):

(∇γ̇K)γ(s) =
{ d

ds

(
K

i1...ir′
j1...jr

(
γ(s)

))
+

r∑
a=1

Γia

lk

(
γ(s)

)
K

i1...ia−1lia+1...ir

j1...js

(
γ(s)

)
γ̇k(s)

−
r′∑

b=1

Γl
jbk

(
γ(s)

)
Ki1...ir

j1...jb−1ljb+1...js

(
γ(s)

)
γ̇k(s)

}
× (

Ej1 ⊗ · · · ⊗ Ejr′ ⊗ Ei1 ⊗ · · · ⊗ Eir

)∣∣
γ(s)

.

(3.17)

Definition 3.2. The parallel transport (along paths or curves) assigned to a C0

linear connection ∇ is a mapping P : β �→ Pβ which, for every C1 path β : [a, b] →
M ,10 a, b ∈ R, a ≤ b, puts into correspondence a mapping Pβ : T β(a) → T β(b)

from the tensor algebra at β(a) into the one at β(b) such that if K0 ∈ T β(a), then

9Here we implicitly suppose γ to be injective as otherwise γ̇ : γ(s) �→ γ̇(s) may not be a
single-valued mapping (see footnote 11 on page 11). However (see Remark 3.3 on the following
page), taking (3.17) as a definition for ∇γ̇K, the next considerations hold for arbitrary, injective
or non-injective, paths.

10With [a, b] = {x ∈ R : a ≤ x ≤ b} we denote a real closed interval with end points a, b ∈ R

such that a ≤ b. Similarly, by (a, b] = {x ∈ R : a < x ≤ b} and [a, b) = {x ∈ R : a ≤ x < b}
we denote real intervals closed from right and left, respectively, and opened from left and right,
respectively, and with end points a, b ∈ R such that a < b. The notation (a, b) = {x ∈ R : a <
x < b} will stand for an open from both end points a, b ∈ R, with a < b, real interval.
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Pβ(K0) := Kβ(b), where K is a tensor field on β([a, b]) of the same type as K0 and
is defined as the unique solution of the initial-value problem

∇β̇K = 0, Kβ(a) = K0. (3.18)

Remark 3.2. According to (3.17), the problem (3.18) reduces in a local frame to
a first-order system of ordinary differential equations with respect to the local
components of K with initial condition at s = a. This initial-value problem has
a unique solution along β by virtue of the existence and uniqueness theorems for
such systems [34].
Remark 3.3. By (3.17), the solution K of (3.18) depends, generally, explicitly on β,
i.e., the value Kβ(s) for s ∈ [a, b] generally depends on s and β separately, not only
on the combination β(s); in particular, at the points of self-intersection of β, if any,
K may be multiple-valued (as a tensor field). The right and natural interpretation
of K is as a lifting of β from M to the bundle space of the tensor bundle of the
same type as K0. This fact will become important in Chapter IV where it will be
treated appropriately. If β is injective, i.e., without self-intersections, K is ordinary
(single-valued) tensor field over β([a, b]). So, to be more precise, one should write
Kβ and Kβ(s) for K and K(β(s)) respectively, and, according to (3.17), the symbol
(∇β̇K)(s), denoting the covariant derivative of (a lifting of paths) K along β at
s ∈ [a, b], should be defined by

(∇β̇K)(s) =
{ d

ds

(
Kβ

i1...ir′
j1...jr

(s)
)

+
r∑

a=1

Γia

lk

(
β(s)

)
Kβ

i1...ia−1lia+1...ir

j1...js
(s)β̇k(s)

−
r′∑

b=1

Γl
jbk

(
β(s)

)
Kβ

i1...ir

j1...jb−1ljb+1...js
(s)β̇k(s)

}
× (

Ej1 ⊗ · · · ⊗ Ejr′ ⊗ Ei1 ⊗ · · · ⊗ Eir

)∣∣
β(s)

.

(3.19)

The reader is referred to Chapter IV, in particular to Sections IV.11, IV.14,
and IV.3 for further details concerning the definition of a parallel transport and
its links with the concept of lifting (of paths).
Remark 3.4. Since in the present book, with an exception of Section IV.14 and
Chapter V, only linear connection on manifolds and respectively parallel transports
assigned to such connections will be employed, we shall implicitly understood,
when talking about parallel transports, that they are with respect to (assigned to)
some linear connection on a manifold, if this is not explicitly stated.

The properties of the parallel transport are well-known and can be found in
practically every book on differential geometry covering the connection theory, e.g
in [11,22]. We will mention only some of them: (i) The transport along β depends
on the set β([a.b]), not on its particular parameterization; (ii) It depends only on
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β(a) and β(b) iff ∇ is flat; (iii) To product of paths corresponds the composition
of the corresponding transports; (iv) The mapping Pβ is a linear isomorphism.

Thus the parallel transport generated by a linear connection realizes the
general ideas presented in Subsection 3.1. In particular, by its help we can give
sense to operations with tensors defined at different points, say p, q ∈ M , p 
= q,
by parallelly transporting, e.g., the tensors at p to q along some path connecting
p and q.11 For instance, we can compare two vectors X ∈ Tp(M) and Y ∈ Tq(M)
by forming, e.g, the difference Y − Pβ(X) for some path β : [a, b] → M such that
β(a) = p and β(b) = q (see footnote 11).

Remark 3.5. Above we implicitly supposed the existence of a C1 path β in M
connecting the (arbitrary) points p and q. This is true if M is simply connected. If
M is multiply connected, then always exist paths joining every p, q ∈ M but such
a path can be chosen in a smooth way, i.e., of class C1 or higher, iff p and q belong
to a simply connected region of M . Since, by definition, the parallel transport is
defined only along C1 paths, when talking of a parallel transport along a path
joining two points in M , we always presuppose that they are situated in a simply
connected subset of M . Moreover, when saying that the parallel transport between
two points p and q is path-independent, we have in mind that this is with respect
to reconcilable paths, i.e., ones forming (belonging to) a smooth, C1, homotopy
η : [a, b] × W → M where W is inessential for us non-empty set,12 η(a, W ) = p,
and η(b, W ) = q. Said more freely, the paths connecting p and q are suppose such
that any closed loop formed from every pair of them can smoothly be deformed
to a point in M . This will be presupposed and further in this book. Otherwise
the parallel transport may turn to be path-dependent even in the flat case: such
situation may happen if M is multiply connected and there is a smooth closed path
connection p and q which can not be smoothly contracted to a single point in M .

Remark 3.6. The concept of a parallel transport has a natural generalization
in arbitrary vector bundles, called linear transport along paths. For details, see
Sections IV.3 and IV.11, in particular Definition IV.11.1 and Proposition IV.11.1.
For some links between (parallel) transports (along paths) and connections on
differentiable bundles, see Section V.8.

Definition 3.3. A tensor field K ∈ T 1(U), U ⊆ M is called parallel along a C1

path γ : J → U with respect to a linear connection ∇ if ∇γ̇K = 0. The field K is
called parallel (with respect to ∇) on U if it is parallel along every path γ : J → U .

A parallel (along γ) field is uniquely defined by fixing its value K0 at a point
p = γ(c) for some c ∈ J ; in fact we have Kγ(s) = Pγ|[c,s](K0), s ∈ J , with γ|[c, s]
being the restriction of γ to [c, s] ⊆ J , for c ≥ s and Kγ(s) =

(
Pγ|[s,c]

)−1(K0)
for c ≤ s. The field K is parallel along γ iff Kγ(t) = Pγ|[t,s](Kγ(s)) for t ≥ s and

11This operation is path dependent unless the connection is flat.
12The set W is a manifold whose real dimension is (dim M − 1) if K = R and (2 dimC M − 1)

for K = C.
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Kγ(t) =
(
Pγ|[s,t]

)−1(Kγ(s)) for t ≤ s for all s, t ∈ J . A tensor field K is parallel on
U ⊆ M if and only if (∇XK)|U = 0 for all X ∈ X(U).

Definition 3.4. A frame {Ei} on U ⊆ M (resp. along a path γ : J → M) is called
parallel (on U , resp. along γ) if its basic vector fields E1, . . . , Edim M are parallel
on U(resp. along γ).

Frames parallel on (dim M)-dimensional submanifolds U , i.e., on neighbor-
hoods, exist iff ∇ is flat on U .

An almost standard way for construction of a (parallel) frame on some path-
connected flat set U (with respect to a linear connection) is to fix a basis in
Tp(M) for some arbitrarily chosen point p ∈ U and then to transport parallelly its
vectors, i.e., the whole basis, to every q ∈ U along some path connecting p and q.
A frame parallel on U is analogous to a Cartesian coordinate system on Rn (see
Chapter IV).

3.4. Geodesics and exponential mapping

The geodesic paths, called in different contexts also geodesic curves, geodesic lines,
or simply geodesics, in a manifold with connection are in many aspects analogues of
the straight lines in Rn. Historically the introduction of normal frames/coordinates
is primary related to them.

Definition 3.5. A geodesic or a geodesic path in a C2 manifold endowed with C0

linear connection ∇ is a C1 path γ : J → M whose tangent vector γ̇ is parallel
along γ, i.e.,

γ̇(s2) =

{
Pγ|[s1,s2]γ̇(s1) for s1, s2 ∈ J, s1 ≤ s2(
Pγ|[s2,s1]

)−1
γ̇(s1) for s1, s2 ∈ J, s2 ≤ s1

(3.20)

where P is the assigned to ∇ parallel transport, or, equivalently (however, see
below Remark 3.8),

∇γ̇ γ̇ = 0. (3.21)

This equation, as well as its equivalent local forms (3.22) and (3.23) presented
below, are known as the geodesic equation or equation of the geodesics.

Remark 3.7. In some works, like [18], the paths satisfying (3.21) are called autopar-
allel, the term ‘geodesic’ being reserved for paths satisfying certain Euler-Lagrange
equations (derived from a variational principle) [12, 18]. This is more typical for
the ‘physically oriented’ literature [35] which is connected with the development
of theories based on manifolds endowed with (more or less independent) linear
connection and Riemannian metric [36, 37]. The more widely accepted modern
mathematical terminology is to call the former paths geodesics and the latter ones
extremals [10,11,19]. That last convention is followed in the present book. We re-
serve the term “autoparallels” or “autoparallel paths” for a certain generalization
of the geodesics to which is devoted Section IV.15.
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Remark 3.8. If the C1 path γ : J → M is not injective, the mapping γ̇ : s �→ γ̇(s) ∈
Tγ(s)(M) cannot be considered as a vector field over γ(J) assigning to γ(s) the
value γ̇(s) as the mapping γ(s) �→ γ̇(s) is generally multiple-valued at the points
of self-intersection of γ.13 For this reason, the symbol ∇γ̇ γ̇ is not well-defined if
γ is not injective. In that case, as well as in the general one, it should be defined
as a path in T (M) whose local components are defined by the left-hand side of
equation (3.22) below.

In the domain U of some local frame {Ei}, the geodesic equation (3.21) reads

dγ̇i

ds
+ Γi

jkγ̇j γ̇k = 0, s ∈ J (3.22)

where (3.17) was used. If some local coordinate system {xi} is employed and
Ei = ∂/∂xi, then γ̇i = dγi/ds with γi = xi ◦ γ, so (3.22) reduces to

d2γi(s)
ds2

+ Γi
jk(γ(s))

dγj(s)
ds

dγk(s)
ds

= 0 s ∈ J. (3.23)

From here a number of immediate observations can be derived:

(i) If γ : J → M is a geodesic, then so is the path γ ◦ τ , with τ : J ′ → J and
τ : t �→ at + b, a, b ∈ R, a 
= 0, t ∈ J ′, i.e., a geodesic is mapped into geodesic
under nondegenerate affine change of its parameter.14

(ii) If γ : J → M is a geodesic, its restriction γ|J ′ to any subinterval J ′ ⊂ J is
also geodesic.

(iii) If the connection is of class Ck, k ≥ 0 (on Ck+2 manifold), i.e., if Γi
jk are

of class Ck, any geodesic, which is a C1 path by definition, is automatically
a Ck+2 path; in particular the geodesics of C∞ linear connection on C∞

manifold are C∞ paths.
(iv) Since (3.23) is a second-order system of ordinary differential equations, from

the theorems of existence and uniqueness of the solutions of such systems [34]
follows that for every point x ∈ M and every vector X ∈ Tx(M) there exists
a geodesic γ : J → M such that

γ(s0) = x, γ̇(s0) = X (3.24)

for a fixed s0 ∈ J and some interval J . Besides, there is a subinterval J0 ⊆ J
such that J0 � s0 and on J0 all such geodesics coincide. Hence locally, on
J0 � s0, there is a unique geodesic with initial conditions (3.24). Generally
J0 ⊂ R. If for every geodesic J0 = R, the connection/manifold is called
(geodesically) complete.

13In fact, γ̇ is a lifting of γ in the tangent bundle over M , not a vector field on γ(J); it can be
considered as a vector field iff γ is injective. For details, see Section IV.2.

14If τ(J ′) = J , the sets γ(J) and (γ ◦ τ)(J ′) coincide, i.e., they represent one and the same
(geometric, unparametrized geometric) curve σ = γ(J); see [11, Chapter III, § 6] and footnote 7
on page 9.
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(v) The geodesics depend only on the ‘symmetric’ part of the connection, i.e.,
on the symmetric part Γi

(jk) of its coefficients Γi
jk in any frame, coordinate

or not: in particular, since γ̇j γ̇k = γ̇kγ̇j, we have the equivalent to (3.23)
equation

d2γi(s)
ds2

+ Γi
(jk)(γ(s))

dγj(s)
ds

dγk(s)
ds

= 0 s ∈ J. (3.23′)

So, if two (or more) linear connections on M generate one and the same
symmetric connection via (3.9), their geodesics coincide.

(vi) A geodesic is either regular or degenerate path: if γ̇(s0) = 0 for some s0 ∈ J ,
then γ̇(s) ≡ 0 for every s ∈ J as the parallel transport is an isomorphism.

Now we are going to formulate a result which is often used for the proof of
existence of normal frames at a single point.

A geodesic is called maximal if it is not a restriction of other geodesic, i.e.,
γ : J → M is maximal geodesic if there does not exist a geodesic γ̄ : J̄ → M such
that J ⊂ J̄ and γ = γ̄|J . For every point x ∈ M , every vector X ∈ Tx(M), and
any number s0 ∈ R there exists a unique maximal geodesic γs0

x,X : Jm → M defined
on some interval Jm � s0 and such that15

γs0
x,X(s0) = x, γ̇s0

x,X(s0) = X. (3.25)

Using the uniqueness of the maximal geodesics, one easily verifies that

γs0
x,aX(s) = γs0

x,X(a(s − s0) + s0) a ∈ R. (3.26)

In what follows, we put s0 = 0 (see Remark 3.9 on the next page) and write
γx,X for γ0

x,X . For this choice, equation (3.26) reads

γx,aX(s) = γx,X(as) s ∈ Jm � 0 ∈ R, a ∈ R. (3.27)

Let Vx ⊆ Tx(M) be such that γx,X , with X in Vx, is defined on interval Jm

containing the point s = 1, Jm � 1 ∈ R. The set Vx contains, evidently, the zero
vector; besides, by (3.27) it contains also non-zero vectors. We define a mapping
expx : Vx → M , called exponential mapping at the point x, by16

expx X := γx,X(1), X ∈ Vx. (3.28)

Due to (3.27), it is fulfilled

expx(sX) = γx,X(s), s ∈ Jm � 1, X ∈ Vx. (3.29)

The following important result is valid.
15For the proof, see [38, p. 380]. Generally γs1

x,X and γs2
x,X are different unless s1 = s2.

16The exponential mapping, exp, itself is defined via exp : x �→ expx, x ∈ M , or by exp: X �→
expx X for X ∈ Vx ⊆ Tx(M).
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Proposition 3.1. For every point x ∈ M there exists a neighborhood V 0
x of the zero

vector in Tx(M) such that:

(i) It is star-shaped (star-like), i.e., if X ∈ V 0
x , then aX ∈ V 0

x for 0 ≤ a ≤ 1;
(ii) The exponential mapping expx at x is defined on V 0

x ⊆ Vx ⊆ Tx(M);
(iii) There exists a neighborhood V (x) of x in M such that expx : V 0

x → V (x) is
diffeomorphism.

Proof. See [38, pp. 381–384], [11, Chapter III, § 8] or [39, Section 1.6] �

Remark 3.9. The choice s0 = 0 made above is not necessary, it only saves some
writing, simplifies the formulae, and eliminates from the theory an arbitrary num-
ber (which is insignificant at present). For s0 
= 0 the above construction goes like
this: Let Vs0,x ⊆ Tx(M) be such that γs0

x,X with X ∈ Vs0,x is defined on Jm ⊆ R

containing the point s = s0 + 1, Jm � (s0 + 1) ∈ R. The exponential mapping
at x (depending on s0) is exps0,x : Vs0,x → M with exps0,x X := γs0

x,X(s0 + 1),
X ∈ Vs0,x. So, exps0,x(sX) = γs0

x,X(s0 + s), (s0 + s) ∈ Jm. Proposition 3.3 remains
true if we replace in it V 0

x , Vx, expx, and V (x) respectively by V 0
s0,x, Vs0,x, exps0,x,

and Vs0 (x). At present this generalization does not find applications.

Definition 3.6. A neighborhood V 0
x of the zero vector in Tx(M) having the prop-

erties (i)–(iii) described in Proposition 3.1 is called normal (neighborhood of 0 ∈
Tx(M)). A neighborhood V (x) of x ∈ M is called normal if it is the image of a
normal neighborhood of the zero vector in Tx(M) under the exponential mapping
(at x), V (x) = expx(V 0

x ).

Therefore the essence of Proposition 3.3 is that every point x ∈ M admits
normal neighborhoods.

The normal neighborhoods possess a number of remarkable properties de-
scribed, for instance, in [11, 38]. They have a straightforward relation to the exis-
tence of normal frames that will be revealed in Section 6 and in Chapter II.

4. Riemannian manifolds

Freely said, a Riemannian manifold is a real differentiable manifold on each tangent
space, considered as a vector space, of which a scalar product is given. When
metrics (scalar or inner products) are concerned, one should clearly distinguish
the real, K = R, and complex, K = C, cases. In the former case the scaler product
is understand as Riemannian metric [10,11], while in the latter case it is assumed
to be a Hermitian metric [10,26,40].1 That is why, usually a real manifold with a

1Formally one can consider a ‘Riemannian metric’ on a complex manifold as a non-degenerate
bilinear form on it. Such a form is complex-valued and does not define a metric or inner product
in the accepted sense [16, p. 2], [10, Chapter I, Section 11]; in particular such a ‘metric’ does not
define a distance function on the manifold and, correspondingly, there is no associated with it
‘metric topology’, etc. Regardless of this, if in what follows one considers such forms, all remains
true mutatis mutandis.
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Riemannian metric is called Riemannian manifold [11] while a complex manifold
with a Hermitian metric is called Hermitian manifold [26].

In this book only Riemannian metrics will be considered as the Hermitian
once require somewhat different treatment which is not primary related to its main
subject.

Definition 4.1. A Riemannian metric g on a subset U ⊆ M of a real manifold M
is a field of symmetric non-degenerate bilinear forms on the tangent spaces at the
points in U , i.e., g is a symmetric non-degenerate tensor field in F0

2(U):2

g : x �→ gx, x ∈ U, gx : Tx(M) × Tx(M) → R, (4.1a)
gx(Xx, Yx + Zx) = gx(Xx, Yx) + gx(Xx, Zx) Xx, Yx, Zx ∈ Tx(M), (4.1b)

gx(Xx, aYx) = agx(Xx, Yx) a ∈ R, Xx, Yx ∈ Tx(M), (4.1c)
gx(Xx, Yx) = gx(Yx, Xx) Xx, Yx ∈ Tx(M), (4.1d)

gx(Xx, Yx) = 0 for all Xx ∈ Tx(M) and some Yx ∈ Tx(M) ⇐⇒ Yx = 0. (4.1e)

A real manifold endowed with a Riemannian metric is called Riemannian
manifold. Below we suppose the existence of a Riemannian metric on the real
manifold M .3

Example 4.1. The n-dimensional Euclidean space En, n ∈ N, is an almost trivial
example of a Riemannian manifold. It is defined as Rn endowed with Euclidean
metric e such that e(X, Y ) :=

∑n
i=1 X iY i for X = (X1, . . . , Xn) ∈ Rn and Y =

(Y 1, . . . , Y n) ∈ Rn (see footnote 2 on page 20 and Example 7.1 below).

Let g denotes a Riemannian metric on a real manifold M . For any U ⊆ M ,
it induces a Riemannian metric on the set X(U) of vector fields on U : we define
g : X(U) × X(U) → F(U) by g : (X, Y ) �→ g(X, Y ) ∈ F(U), X, Y ∈ X(U) with
g(X, Y ) : x �→ gx(Xx, Yx), x ∈ U .

If X, Y ∈ Tx(M) (resp. X, Y ∈ X(U)), the number gx(X, Y ) ∈ R (resp.
the function g(X, Y ) ∈ F(U)) is called scalar product of the vectors (resp. vector
fields) X and Y in Tx(M) (resp. in X(U)). In [11, Chapter IV, § 1] is shown how
the scalar product in Tx(M) (resp. in X(U)) can be extended to a scalar product
in T x

r
s (resp. in Tr

s) for every r, s ≥ 0 with r + s ≥ 1 and that it induces an
isomorphism T x

r
s → T x

r±1
s∓1 for every r, s ≥ 0 such that r ± 1, s∓ 1 ≥ 0 but these,

otherwise useful, results will not find applications in our investigation.
A Riemannian metric g on U is called Cr metric (Cr differentiable, (differ-

entiable) of class Cr) if it is a Cr tensor field on U , i.e., g ∈ T0;r
2 (U).

The Riemannian manifolds of class C2 are interesting for us due to the exis-
tence on them of a ‘natural’ linear connection induced by the metric. This unique
linear connection associate with a C1 Riemannian metric is called Riemannian

2The condition (4.1e) is equivalent to the non-degeneracy only in the finite-dimensional case,
as we presuppose here.

3See, e.g., [11,12,26] for the existence of such metrics, in particular on paracompact manifolds.
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connection, known also as Levi-Civita connection, and it is defined as a metric-
preserving torsionless linear connection on the respective manifolds. Explicitly this
means that the Riemannian connection ∇ on U for a C1 metric g on U is defined
as a C0 linear connection satisfying the system of equations4

∇Xg = 0 (4.2)
T (X, Y ) := ∇XY −∇Y X − [X, Y ] = 0 (4.3)

for all vector fields X, Y ∈ X(U). Its solution with respect to ∇XY is implicitly
given by [11, Chapter IV, § 2]5

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X, Z)) − Z(g(X, Y ))
+ g([X, Y ] , Z) + g([Z, X ] , Y ) + g(X, [Z, Y ] ) (4.8)

where X, Y, Z ∈ X(U) are arbitrary. The explicit solution of this equation for the
Riemannian connection is easily found in some local frame {Ei} on U .

Let
gij := g(Ei, Ej) (4.9)

be the local (covariant) components of g in {Ei}.6 From Definition 4.1 follows that
[gij ] is a symmetric non-degenerate matrix-valued function on U :

gij = gji det[gij ] 
= 0,∞. (4.10)
4The metric preserving condition (4.2) can be expressed in a number of equivalent ways; e.g.,

by ∇X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ), Z ∈ X(U) or by saying that the scalar product of
every two vectors does not change after they are parallelly transported along an arbitrary path
in U . A linear connection satisfying only the condition (4.2) is called metric connection; generally
it depends on g and the torsion tensor.

5 Since g(Y, Z) = C1
1 (C1

1 (g ⊗ Y ⊗ Z)), we have

X(g(Y, Z)) = ∇X(g(Y, Z)) = (∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ). (4.4)

Making here the cyclic permutations (X, Y, Z) �→ (Y, Z, X) �→ (Z, X, Y ), summing the first two
equations obtained and subtracting the last one from the result, we get

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z, X)) − Z(g(X, Y )) + (∇Zg)(X, Y ))

− (∇X)(Y, Z)) − (∇Y g)(Z, X)) + g([X, Y ] , Z) + g([Z, Y ] , X) + g([Z, X] , Y ), (4.5)

where the torsionless condition (4.3) was used. Now the metricity condition (4.2) reduces this
equation to (4.8). Equation (4.5) is useful, for example, in the Weyl spaces in which (4.2) is
replaced with

∇Xg = ω(X)g (4.6)

for some one-form ω. A torsionless connection ∇ satisfying the equation (4.6) is called Weyl
connection [41, 42]; the choice ω = 0 reduce a Weyl connection to Riemannian one. Let us note
that for a Weyl connection equation (4.13) below is replaced by

Γi
jk =

{ i

jk

}
+

1

2

(
gimCl

mjglk + gimCl
mkglj − Ci

jk

)
+

1

2
(gjkgilωl − δi

jωk − δi
kωj) (4.7)

where ωi := ω(Ei) is the ith component of ω.
6Note, in the real case g(X, Y ) = gijXiY j , while in the complex case, for a Hermitian metric

h, we have h(X, Y ) = gijXiY j where Y j is the complex conjugate to Y j .
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Define gij , the contravariant components of the metric g, as the elements of the
matrix inverse to [gij ], [gij ] := [gij ]−1, i.e.,

gijgjk = δi
k. (4.11)

The matrix [gij ] is also symmetric and non-degenerate.
Now, if we set X = Ei, Y = Ej , and Z = Ek in (4.8) and take into ac-

count (3.1) and (3.15), we get

2glkΓl
ji = gjk,i + gik,j − gij,k + Cl

ijglk + Cl
kiglj + Cl

kjgil. (4.12)

From here and (4.11), we obtain

Γi
jk =

{
i

jk

}
+

1
2
(
gimCl

mjglk + gimCl
mkglj − Ci

jk

)
(4.13)

where {
i

jk

}
:=

{
i

jk

}
g

:=
1
2
gil

(
glj,k + glk,j + gjk,l

)
(4.14)

are the so-called Christoffel symbols [19, p. 132] 7 of the metric g (induced by g,
assigned to g).8 If we restrict ourselves to the class of (C0) holonomic frames on
U (or on the whole C2 manifold M), then Ci

jk ≡ 0 and the Christoffel symbols
coincide with the local coefficients of the Riemannian connection in them.9 That

is why the Riemannian connection is often denoted by ∇{} (and also by {}∇ or
{}
∇

if the position of the superscripts to ∇ is reserved for other purposes).
If the Christoffel symbols are known, from (4.14) we can find [18, p. 81] the

derivatives gij,k = Ek(gij) of the metric tensor:

gij,k = gil

{
l

jk

}
+ gjl

{
l

ik

}
. (4.16)

This equality, which in the context of (4.14) is identity, can be interpreted in
the following way. Let ∇ be a torsionless connection with coefficients Γi

jk = Γi
kj

7The right-hand side of (4.12) without the last three terms is known as Christoffel symbols of
the first kind and is denoted by [ij, k]. That is why (4.14) are also known as Christoffel symbols
of the second kind. For detains see, e.g., [18] and [24, p. 17]. Nowadays this old terminology,
introduced by E. B. Christoffel is practically out of usage.

8If the metric g happens to be diagonal in {Ei}, i.e., [gij ] = diag(g1, . . . , gdim M ) where
diag(a1, . . . , an) means a diagonal matrix with diagonal elements a1, . . . , an, then [gij ] =
diag(1/g1, . . . , 1/gdim M ) and (do not sum over i!){ i

jk

}
=

1

2gi
(δijgi,k + δikgi,j − δjkgj,i). (4.15)

9For this reason, sometimes, the coefficients of an arbitrary linear connection are called
Christoffel symbols. This is not quite fair as E.B. Christoffel introduced his symbols in 1869 [19,
p. 132, footnote 1], [24, p. 17], while the general theory of linear (affine) connections was devel-
oped more then half a century later, mainly due to the works of E. Cartan.
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in some coordinate frame. Define
{

i
jk

}
= Γi

kj , then all metrics g whose Christoffel
symbols coincide with Γi

kj in the given frame are solutions of (4.16).
On a Riemannian manifold whose metric is of class C2 exist two types of

‘privilege’ paths [11,24]: the geodesics assigned to the Riemannian connection and
the extremals.10 A remarkable result of the Riemannian geometry [11, 12, 24] is
that in it the geodesics and extremals (defined as paths of minimal, maximal, or
zero length between two points) coincide. Consequently, by (3.23) and (4.13), they
satisfy the equations

d2γi

ds2
+

{
i

jk

}
dγj

ds

dγk

ds
= 0, (4.17)

in any coordinate frame {∂/∂xi}, with
{

i
jk

}
being defined by (4.14).

The geometry of Riemannian manifolds is one of the best developed branches
of the differential geometry. To it is devoted a huge number of woks, some of which
were mentioned in Section 1. The reader is referred to them for deeper concepts
and results in this region.

5. Normal frames: general ideas
uniqueness, and holonomicity

Any manifold, as we saw in Section 2, is locally Euclidean in a sense that every
its point has a neighborhood homeomorphic to Kn (or its open subset). In sub-
section 3.2, we introduced linear connections on a manifold by means of covariant
derivatives along vector fields on it. Are the linear connections ‘locally Euclidean’?
Are the covariant derivatives ‘locally looking’ like ordinary derivatives (along vec-
tor fields or along paths)? At this point these questions are only heuristic and their
rigorous meaning will be revealed further in the present book. Since in any local
frame the components of the covariant derivative of a tensor field are formed from
the ordinary derivatives (along the basic vector fields) of its components (see (3.2)
and the first term in (3.3)) and a ‘correction’ which is linear in them (see (3.2)
and the sums in (3.3)), we may pose a problem for choosing a local frame so that
this ‘correction’ to vanish. Since a vector field along it’s integral paths can be re-
place by the integral paths’ tangent vectors, we, by virtue of (3.17), could expect
that such special frames may, possibly, exist along C1 paths. We would like the
above ‘correction’ to vanish for all C1 tensor fields of arbitrary type. Due to (3.2)
and (3.3), this is equivalent to the demand the (local) coefficients of the linear
connection to vanish in the mentioned special kind of frames. Thus we have come
to the following definition.

Definition 5.1. Given a linear connection ∇ on a differentiable manifold M and
a subset U ⊆ M . A frame {Ei}, define on an open subset of M containing U

10The extremals are defined as paths for which some functional on the space of paths connecting
two fixed points is stationary; for details see, e.g., [12, p. 309ff] or [24, p. 48ff].



38 Chapter I. Manifolds. Riemannian Coordinates

or equal to it, is called normal for ∇ on U if in it the coefficients of ∇ vanish
everywhere on U . Respectively, {Ei} is called normal for ∇ along g : Q → M , Q
being non-empty set, if it is normal for ∇ on g(Q).

We can rephrase the first part of this definition by writing

{Ei} is normal on U ⇐⇒ Γi
jk|U = 0 in {Ei}. (5.1)

Therefore if K ∈ Tr
s(M), in a frame normal on U , if it exists, according to (3.2)

and (3.3), we have on U(∇XK
)i1...ir

j1...js
=

[
Ek

(
Ki1...ir

j1...js

)]
Xk = X

(
Ki1...ir

j1...js

)
(5.2)

which looks exactly like a directional derivative (along X) in Rn. Just in this
sense one can say that the linear connections and covariant derivatives are locally
Euclidean but this is not quite rigorous because, at this point, we still do not know
anything on the existence of normal frames. That problem will be investigated at
length further in the present monograph.

By virtue of (3.1), the equalities Γi
jk|U = 0, i, j, k = 1, . . . ,dimM , on a

neighborhood U are equivalent to (∇XEi)|U = 0 for every X ∈ X(M), i.e., the
basic vector fields Ei must be parallel on U (see Definition 3.3). Thus we have
proved the following simple result.

Proposition 5.1. A frame is normal on a neighborhood U in M iff it is paral-
lel on U .

Therefore the concepts ‘parallel frame’ and ‘normal frame’ are equivalent on
neighborhoods.

Example 5.1. A frame normal for a linear connection on a neighborhood U on
which the connection is flat is provided by a frame obtained from a basis at a
fixed point in U by its parallel transportation to the other points in U along paths
lying in U .

We want to emphasize on the fact that a frame {Ei} normal for ∇ on a set
U ⊆ M is always supposed to be defined on a neighborhood U containing or equal
to U , U ⊇ U , and the equality U = U is admissible if U is itself a neighborhood.
This is quite essential assumption as the property of {Ei} to be normal at p for
∇ for every p ∈ U depends on the properties of {Ei} and ∇ in a neighborhood of
p, not only at p. (See, e.g., equation (5.4) below in which the action of Ei on A
appears which is not defined if A is not given on a neighborhood of each p ∈ U .)

Let {Ei} be a frame on U ⊆ M . On U exists a normal frame {E′
i} iff there is a

C1 matrix-valued function A := [Aj
i ] transforming {Ei} into {E′

i}, E′
i = Aj

iEj , and
such that in {E′

i} the coefficients on ∇ are Γ′ i
jk = 0 which is a system of partial

differential equations with respect to A. To write it in a compact form, as well as for
saving writing and for purposes that will be clear in the next chapters, we introduce
the matrices of the connection coefficients Γk :=

[
Γi

jk

]dim M

i,j=1
, k = 1, . . . ,dimM .
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In their terms, the equation (3.5) reads1

Γk �→ Γ′
k = Al

kA−1
(
ΓlA + El(A)

)
(5.3)

where El(A) :=
[
El(A

j
i )
]dim M

i,j=1
. Consequently {E′

i} is normal on U if the first-order
system of partial differential equations(

ΓlA + El(A)
)∣∣

U
= 0 (5.4)

has solution(s) on U with respect to the matrix A.
The above considerations show that normal frames {E′

i} exist on a set U
if and only if the system (5.4) has solutions in some (and hence in any) frame
{Ei}. Besides, if such solutions exist, their properties are completely responsible
for the properties of the frames normal on U . Moreover, to any solution A of (5.4)
there corresponds a unique frame normal on U and v. v., i.e., there is a bijective
correspondence between the solutions of (5.4) and the frames normal on U . For
these reasons, the equation (5.4) is called the equation of the normal (on U) frames
or simply the normal frame equation.

To the problems of existence and uniqueness of the solutions of (5.4) for
linear connections is devoted Chapter II. It contains a complete description of all
frames and coordinates normal at a point, along path, or on submanifolds (if such
exist at all in the last case).

Now we shall prove two simple propositions, the first concerning the unique-
ness of normal frames while the second one reveals the role of the torsion for the
existence of normal coordinates (see below Definition 5.2).

Proposition 5.2. Let a linear connection admits a frame normal on U ⊆ M . The
set of all frames normal for this connection on U consists of all frames that can be
obtained from a fixed normal frame by means of linear transformations whose ma-
trices vanish on U under the action of the basic vector fields of the normal frames.

Proof. Let {Ei} be a frame normal on U , i.e., Γl = 0 and {E′
i = Aj

i Ej} be a
frame on U . By (5.3), in {E′

i} the matrices of the connection’s coefficients are
Γ′

k = Al
kA−1El(A), A = [Aj

i ]. Hence, Γ′
k|U = 0 iff El(A)|U = 0. �

Let us mention the following evident consequence of this proposition (or of
its proof).

Corollary 5.1. All frames normal on U for a linear connection, if any, are con-
nected via linear transformations whose coefficients vanish on U under the action
of the basic vector fields of the normal frames.

Proposition 5.3. Let a linear connection admits frames normal on some neigh-
borhood U ⊆ M . All of these frames are either holonomic or anholonomic on U
depending on is the torsion of the connection zero or non-zero on U respectively.

1When writing the elements of a matrix A in the form Aj
i (or Aj

i, or A j
i ), we consider the

superscript as a first index and the subscript as a second index (see the list of conventions,

page xii). So, the product of A and B is AB = [Ai
jBj

k] if A = [Aj
i ] and B = [Bj

i ].



40 Chapter I. Manifolds. Riemannian Coordinates

Proof. Suppose {Ei} is a normal frame on U . In it, by (3.14), the torsion’s
components are T i

jk|U = −Ci
jk|U and, consequently (see (3.15)), [Ej , Ek] |U =

−(
T i

jkEi

)|U . Therefore [Ej , Ek] |U = 0 iff T |U = 0. �

Remark 5.1. The holonomicity of the frames normal on U ⊆ M does not imply
any conclusions for their holonomicity outside U if U 
= M and the frames are
defined on a larger set V ⊃ U , V ⊆ M . Moreover, on V \U the frames (normal
on U , but not on V \U) can be either holonomic or anholonomic (or both on
different subsets of V \U). In fact, let {Ei} be a frame defined on V ⊆ M which
is normal on U ⊂ V and A = [Aj

i ] be non-degenerate matrix-valued function on
V . According to (3.5), in the frame {E′

i := Aj
i Ej} the connection’s coefficients

on U are Γ′ i
jk =

(
A−1

)i

l
E′

k

(
Al

j

)
. Thereof {E′

i} is normal on U iff E′
k

(
Al

j

)|U = 0
or, equivalently, iff Ek

(
Al

j

)|U = 0 which do not imply any restrictions on A (or
on {E′

i}) on the set V \U . Hence, choosing appropriately A on V \U , we can force
{E′

i}, which is normal on U , on the set V \U , i.e., outside U , to be holonomic as
well as anholonomic depending on the properties of A on V \U .

Remark 5.2. Proposition 5.3 has the following generalization. Call a frame {Ei},
define on a neighborhood containing or equal to U ⊆ M , commuting on U if
[Ej , Ek] |U = 0. (If U is a neighborhood, a frame commuting on U is holonomic
on U and vice versa.) Then a frame normal for a connection ∇ is commuting on U
iff ∇ is torsion free on U . (The proof is identical with the one of Proposition 5.3.)
This result will not be used further as the commutativity of {Ei} on U does not,
generally, imply some assertions concerning the holonomicity of {Ei} on U .

Remark 5.3. If U is not a neighborhood, from the relation [Ej , Ek] |U = 0, gen-
erally, does not follow the holonomicity of the frame {Ei} on U as, by definition,
this is a property defined on neighborhoods.

In particular, Proposition 5.3 means that only the symmetric, i.e., torsion-
less, linear connections may admit holonomic frames normal on a neighborhood
and, consequently, normal coordinates. Moreover, these connections do not admit
anholonomic normal frames.

Definition 5.2. Given a linear connection ∇ on a differentiable manifold M . A chart
(V, x) of M and the associated to it coordinate system {xi} are called normal on
a subset U ⊆ V for ∇ if the coordinate frame

{
∂

∂xi

}
is normal on U for ∇.

Rewording, normal coordinates are those the associated to which local frames
are normal. A trivial consequence of Definition 5.2 and Propositions 5.2 and 5.3
is the following result.

Corollary 5.2. Coordinates normal on a neighborhood may exist only for torsion
free linear connections and they generate all normal frames for them, if such exist
at all.
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Remark 5.4. The theorem what spaces (with linear connection) admit normal co-
ordinates (at a fixed point), which is a special case of Proposition 5.3 and Corol-
lary 5.2, dates back to the first third of the twentieth century; see [43, 44].

We can also paraphrase the above in the assertion that the linear connections
with non-vanishing torsion do not admit holonomic frames normal on a neighbor-
hood and, consequently, coordinates normal for them do not exist; if for them
normal frames exist, these frames are anholonomic with necessity.

For future purposes, we reformulate equation (5.4) in terms of local coor-
dinates. Let U ⊆ M , and {xi} be local coordinates associated with a chart
(V, x) such that V ∩ U 
= ∅. Then, due to (3.6), the defined on V coordinates
x′ i = x′ i(x1, . . . , xdim M ) are normal on U ∩ V iff(

∂2xi

∂x′ j∂x′ k +
∂xm

∂x′ j
∂xn

∂x′ k Γi
mn

)∣∣∣∣
U∩V

= 0. (5.4′)

Hence, normal coordinates exist iff the last equation has solution(s) with respect to
{x′ i} provided {xi} is given. Obviously, (5.4′) is a special case of (5.4) for Ei = ∂

∂xi ,
E′

i = ∂
∂x′ i , and U replaced with U ∩ V , the last reflecting the local character of

the coordinates. We call (5.4′) the normal coordinates equation or the (system of )
equation(s) of normal coordinates. Thus we see that the normal coordinates can
be found by solving a second order system of partial differential equations while
the analogous system for the normal frames is of first order. Correspondingly, if
we are interested only in normal frames, the smoothness class of the connection
admitting them is generally with one less then the one required for the existence
of normal coordinates.

If the subset U ⊆ M is not a neighborhood, results slightly weaker than
Proposition 5.3 and Corollary 5.2 hold:

Proposition 5.4. If a linear connection ∇ admits coordinates normal on a set U ,
it is torsionless on U . Said differently, if ∇ admits frame normal and holonomic
on U , it is torsion free on U .

Proof. If q ∈ U and (V, x) with V � q is a normal chart on U for ∇, equa-
tion (5.4) holds and, taking its antisymmetric part with respect to j and k, we get
Γi

[mn]|U∩V = 0. Since
{

∂
∂xi

}
is a holonomic frame, Ci

jk = 0, the last equality is
equivalent to T i

jk|U∩V = 0 (see (3.14)). Hence T i
jk(q) = 0 for every q ∈ U , i.e., ∇

is torsion free on U . �

Corollary 5.3. Normal coordinates and holonomic normal frames may exist on
U ⊆ M only for linear connections which are torsionless on U .

Proof. See Proposition 5.4. �
Further, we shall see that if frames normal on a submanifold exist, the van-

ishment of the torsion is also a sufficient conditions for the existence of normal
coordinates.
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Just in the above arguments we see the reasons, why in the majority of the
literature only the case of normal coordinates for torsionless (symmetric) linear
connections is investigated.

Let {Ei} be a frame normal on U , defined on larger set V ⊃ U , V ⊆ M ,
and not normal on V \U 
= ∅. In such a case it should be clearly understood that
the connection coefficients in {Ei} vanish solely on U and generally are non-zero
on V \U . This implies the non-vanishment of the derivatives Γi

jk,l := El

(
Γi

jk

)
,

Γi
jk,lm := Em

(
El

(
Γi

jk

))
, etc., if they exist, i.e., some of the partial derivatives

of the connection’s coefficients may vanish on U but not all of them. If dim U =
dimM , the equalities Γi

jk|U = 0, due to (3.13), imply R|U = 0, i.e., the flatness of
the connection on U . Therefore on a neighborhood of M normal frames may exist
if on it the connection is flat; in Section II.4 we shall see that this condition is also
sufficient. By virtue of the above remarks, the normal frames, if any, can sometimes
be used to simplify certain calculations. For instance, in a normal frame the com-
ponents of curvature and torsion are (in the domain where the frame is normal):

Ri
jkl = −2Γi

j[k,l] T i
jk = −Ci

jk.

Now, let us see what happens with the parallel transport in a set U ⊆ M
admitting a normal frame {Ei}. In it, due to (3.17), the parallel transport initial-
value problem (3.18) reads

d
ds

K
i1...ir′
j1...jr

(γ(s)) = 0, K
i1...ir′
j1...jr

(γ(s0)) = K0
i1...ir′
j1...jr

(5.5)

and hence K
i1...ir′
j1...jr

(γ(s)) = K0
i1...ir′
j1...jr

= const. This implies an interesting conclu-
sion: the parallel transport along paths lying entirely in the domain of a normal
frame preserves the tensors’ components in such a frames. A trivial, but impor-
tant, corollary from here is the following result.

Proposition 5.5. If on a subset U ⊆ M exist normal frames, then the parallel
transport between every two points in U is independent of the path along with it is
performed provided this path lies entirely in U .

So, in a normal frame the parallel transport looks exactly as the ‘parallel
transport’ in R

n which preserves the vectors’ components while it changes only
the points at which they are ‘attached’. This rigorous result is the strict meaning of
the assertion that ‘locally the parallel transport is Euclidean’. Here the problem
what exactly ‘locally’ means is open. Strictly speaking, by ‘locally’ one should
understand a set on which normal frames or coordinates exist.

The assertion inverse to Proposition 5.5 is (locally) valid if U is a submani-
fold. This is important and highly untrivial result that will be proved in Subsec-
tion II.5.2 (see Corollary II.5.1 on page 123).

Proposition 5.6. If frames normal on U ⊆ M exist, then all of them are parallel
on the set U .



5. Normal frames: General ideas and uniqueness 43

Proof. Let the frame {Ei} be normal on a set U and X = X iEi ∈ X(U). Ap-
plying condition (ii) of Definition 3.1, (3.1), and (5.1), we obtain (∇XEj)|U =
(Xk∇Ek

Ej)|U = Xk|U
(
Γi

jk|U
)
Ei|U = 0. So, according to Definition 3.4, the frame

{Ei} is parallel on U . �
The statement inverse to Proposition 5.6 is partially valid provided U is a

submanifold of M : if on U exist parallel frames (with respect to paths in U), it
admits also normal ones but, generally, not all parallel on U frames are normal.
This essential assertion will be proved in Subsection II.5.2 (see Corollary II.5.2 on
page 123). From more general positions, the links between parallel transports and
normal frames will be studied in Chapter IV.

Running a few steps forward, we want briefly to stress on the importance
of the normal frames for the physics. Above we saw that in a normal frame the
mathematical structures related to a linear connection look like the ones in Rn (or
in the Euclidean space En). Similar situation is observed in the theoretical physics:
the consideration of a physical phenomenon in a suitable reference frame, usually
called inertial, makes it looking like a ‘free’ one, i.e., as in the absence of forces.2

The analogy between normal frames and frames of reference is most obvious in
the general theory of relativity: in it the gravitational field strength is (locally)
described via the coefficients of some Riemannian linear connection, so the gravity
force (locally) ‘disappears’ in a frame normal for this connection and, consequently,
this frame is inertial. The same situation can be discovered in the classical physics
but it is so natural and (almost?) trivial that it is practically nowhere mentioned
in this context. Recently it was shown that the Heisenberg picture of (nonrela-
tivistic) quantum mechanics, which is something like a ‘quantum mechanics in
an inertial frame’, is identical to the representation of this theory in Schrödinger
in an appropriate normal frame (in a Hilbert bundle – see Section IV.16 below).
These and other examples push forward the idea of identifying the mathematical
concept ‘normal frame’ with the physical concept ‘inertial frame (of reference)’.
Generally, in the identification

normal frame ≡ inertial frame

we see the reason why the manifolds with linear connection find a broad application
in a lot of fundamental physical theories. The above explains why the investigation
of the normal frames is essential for the theoretical physics, not only for pure
mathematical purposes.

2A simple, but typical, example is the representation of the Klein-Gordon equation in normal
coordinates which leads to the decomposition of the initial scalar field as a sum of independent
harmonic oscillators [45, Chapter XXI, § 2]. A role similar to the normal coordinates play the nor-
mal modes or, more generally, normal waves in some linear dynamical systems [46, pp. 360–362].
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6. Normal coordinates on Riemannian manifolds

In local coordinates {xi} on U ⊆ M , M being a Riemannian C2 manifold with
Riemannian metric g, the local coefficients of the Riemannian connection ∇ are
(see (4.13) and (4.14))

Γi
jk =

1
2
gil

(
∂glj

∂xk
+

∂glk

∂xj
− ∂gjk

∂xl

)
=

{
i

jk

}
(6.1)

Proposition 6.1. Local coordinates {xi} are normal on U if and only if in them

∂gij

∂xk

∣∣∣
U

= 0. (6.2)

Proof. If {xi} are normal on U , then Γi
jk|U = 0 by definition and, from equa-

tion (4.16), we get gij,k(x) = 0, x ∈ U . Conversely, if (6.2) holds, equation (6.1)
implies Γi

jk|U = 0. �

Therefore the normal coordinates on a Riemannian manifold can be defined
as ones in which the partial derivatives of the components of the Riemannian
metric vanish. Notice, equation (6.2) generally does not imply the vanishment of
(all of) the second derivatives of the metric’s components on U .

Regardless that nowadays we have at our disposal refine and powerful meth-
ods for proving the existence and construction of normal frames/coodinates on
spaces far more general than the Riemannian ones, considered in the next chap-
ters, below we present, following [24, pp. 51–57], possibly the first known such
method which goes back to B. Riemann in 1854 [19, 24, resp. p. 155 and p. 53].
Besides from historical positions, this method is interesting due to the fact that, at
least at a level of ideas, it is explicitly or implicitly presented as a part or underling
background of some of the modern methods in that field.

Let M be a C∞ manifold endowed with a C∞ Riemannian metric g. Take an
arbitrary point p ∈ M and let {xi} be local coordinate system in a neighborhood
U ′ � p. Consider on some subneighborhood U � p of U ′ the unique geodesic
γ : J → M passing through p, γ(s0) = p for some s0 ∈ J , in the direction of
arbitrarily chosen vector X ∈ Tp(M), γ̇(s0) = X . This geodesic is necessarily of
class C∞ (see Section 4) and we can expand γi(s), s ∈ J in a power series with
respect to s − s0:

γi(s) = γi(s0) +
dγi

ds

∣∣∣
s0

(s − s0) +
∞∑

n=2

1
n!

dnγi

dsn

∣∣∣
s0

(s − s0)n. (6.3)

Taking into account γi(s0) = pi = xi(p), γ̇i(s0) = X i and the geodesic equa-
tion (4.17), as well as the infinite number of equations obtained from it by
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differentiation with respect to s, we derive the expansion

γi(s) = pi + X i(s − s0) − 1
2

{
i

jk

}∣∣∣
p
XjXk(s − s0)2

−
∞∑

n=3

1
n!

Γi
i1...in

(p)X i1 · · ·X in(s − s0)n. (6.4)

Here the C1 functions Γi
i1...in

: U → R, which are symmetric in i1, . . . , in, are
given via the recurrent relations

Γi
i1...in+1

=
∂

∂x(i1
Γi

i2...in+1) − nΓk
(i1i2

Γi
i3...in+1)k

, n ∈ N\{1}, (6.5)

where

Γi
jk =

{
i

jk

}
(6.6)

and the round brackets denote symmetrization according to our convention on
page xii.

If the series (6.4) is convergent and γ is without self-intersections, the quan-
tities

yi = X i(s − s0) (6.7)

can be used as coordinates along γ (i.e., of the current point γ(s)) since the
mapping ϕ : γ(s) �→ (

X1(s−s0), . . . , XdimM (s−s0)
)

is homeomorphism (between
1-dimensional manifolds). These coordinates can be extended in a whole neighbor-
hood of p. Let V (p) be a normal neighborhood of p (see Definition 3.6 and Propo-
sition 3.1). Since U ∩V (p) is, evidently, normal neighborhood, every q ∈ U ∩V (p)
can be connected with p with a unique geodesic, say γ : J → U ∩ V (p), lying en-
tirely in U ∩ V (p) [38, p. 385], [11, Chapter IV, Proposition 3.4]. So, there exist
unique s0, s ∈ J such that γ(s0) = p and γ(s) = q. In U ∩ V (p) we define a
coordinate system {yi} such that

yi(q) := γ̇i(s0)(s − s0). (6.8)

In particular yi(p) = 0. By virtue of (6.4), the link between {xi} and {yi} in
U ∩ V (p) is

xi(q) = xi(p)+yi(q)− 1
2

{
i

jk

}∣∣∣∣
p

yj(q)yk(q)−
∞∑

n=3

1
n!

Γi
i1...in

(p)yi1(q) · · · yin(q).

(6.9)

The transition {xi} �→ {yi} is regular in a neighborhood of p as its Jacobian at
p is det

[
∂yi/∂xj|p

]
= det

[
∂xi/∂yj|p

]−1 = det[δj
i ] = 1 
= 0. Below we shall prove

that {yi} are normal at p.
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The just introduced coordinates {yi} are known as Riemannian coordinates
with origin (pole) p.1 Their domain coincides with that for which the series (6.9)
may be inverted or, equivalently, it is a neighborhood of p in which no two geodesics
through p meet again in it. The above results can be formulate as the following
assertion.

Proposition 6.2. For every point of a C∞ Riemannian manifold with C∞ met-
ric there exists its normal neighborhood in which Riemannian coordinates can be
introduces.

Evidently, the equation (6.7) is nothing else but the equation of the unique
geodesic with initial conditions (3.24). So, in Riemannian coordinates, the geodesic
equation (4.17) looks exactly as the equation of the straight lines in Rn. Denoting
the Christoffel symbols with respect to {yi} with

{
i

jk

}y
, from (6.7) and (4.17), we

derive {
i

jk

}y

yjyk ≡ 0

in the domain of {yi}. On the opposite, if these equations hold, {yi} are Rieman-
nian coordinates.

The following proposition expresses the most important for us result of this
section.

Proposition 6.3. The Riemannian coordinates are normal at their origin.

Proof. Using (6.9), we calculate

∂xi

∂yj

∣∣∣
p

=
∂yi

∂xj

∣∣∣
p

= δi
j,

∂2xi

∂yj∂yk

∣∣∣
p

= −
{

i

jk

}∣∣∣∣
p

The substitution of these equations in the transformation law (3.6) results in{
i

jk

}y∣∣
p

= 0. �

Corollary 6.1. The partial derivatives of the metric’s components gy
ij in the Rie-

mannian coordinate system {yi} vanish at the their origin p:

∂gy
ij

∂yk

∣∣∣
p

= 0. (6.10)

Proof. The result is a consequence of Propositions 6.1 and 6.3 �

The Riemannian coordinates are ‘more than normal’ at their origin, viz. at
it vanish not only the Christoffel symbols, but also all of the quantities (6.5) and

1The Riemannian (normal) coordinates find a vast field of application in physics, e.g., for
approximate calculation of the metric tensor [47].
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their symmetrized partial derivatives:

y
Γi

i1...in+1
(p) = 0, n ∈ N, (6.11a)

∂

∂y(i1

y
Γi

i2...in+2)
(p) = 0, (6.11b)

∂

∂y(i1
· · · ∂

∂yin

y
Γi

jk)(p) = 0. (6.11c)

Here the left superscript y indicates that the corresponding quantities are com-
puted in {yi}. The equalities (6.11a) follow from (6.9) if we put in them xi = yi

(the initial choice of {xi} is completely arbitrary) and take into account the sym-
metry of Γi

i1...in+1
in the subscripts. The other equations, (6.11b) and (6.11c), are

consequence of (6.11a) and (6.5). So, at the origin of the Riemannian coordinates
vanish the Christoffel symbols together with their symmetrized derivatives of all
orders.

If we (C∞) change the initial local coordinates {xi}, {xi} �→ {x′ i}, then, due
to (6.8) and (6.9), this results in the change of the Riemannian coordinates with
a constant matrix:

yi(q) �→ y′ i(q) = ai
jy

j(q) (6.12)

with ai
j = ∂x′ i

∂xj

∣∣
p
. The converse is also true: a change (6.12) can be described via

analytic change {xi} �→ {x′ i} which is, of course, not unique.
If {yi} are Riemannian coordinates with origin at some p ∈ M in a neighbor-

hood U � p, the holonomic frame {∂/∂yi} on U is normal at p. As we know from
Proposition 5.2, all other frames {Ei} normal at p are given by Ei = Aj

i
∂

∂yj on U

where the non-degenerate matrix-valued function A = [Aj
i ] is such that ∂A

∂yi |p = 0.
According to Proposition 5.3, these frames are holonomic at p, [Ei, Ej ] |p = 0, but
outside p they need not to be such, i.e., generally [Ei, Ej ] |q 
= 0 for q ∈ U\{p}
(see Remark 5.1 on page 40).

In this way we have obtained a complete description of the frames normal at
a single point of a C∞ Riemannian manifold.2

According to [19, pp. 155, 158] and [24, p. 53] normal coordinates (in a sense
of Riemannian ones) ware first introduce by B. Riemann in 1854 [48].

Let {yi} be Riemannian coordinates with origin at p ∈ M . Since [gy
ij(p)] is

a constant symmetric non-degenerate matrix, it can be diagonalized via trans-
formation of the form A[gy

ij(p)]A� with constant orthogonal matrix A = [aj
i ],

A� = A−1, A� being the transposed to A matrix [49, Chapter 4, § 7]. So we can
define new Riemannian coordinates y′ i = ai

jy
j in which [gy′

ij (p)] = A[gy
ij(p)]A� =

diag(ε1, . . . , εdim M ) where εi = ±1 and diag(a1, . . . , an) means a diagonal matrix
with diagonal elements a1, . . . , an. These particular Riemannian coordinates were

2At the moment this description is implicit. The explicit formula for the matrix A transforming
{∂/∂yi} to arbitrary normal frame will be derived in Subsection II.2.2; see Theorem II.2.3.
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first introduced by G.D. Birkhoff in 1923 [50] under the name ‘normal coordi-
nates’ (see [19, p. 155] and [24, p. 55]). The associated to these coordinates frame
{∂/∂yi} is such that at p it is orthonormal, g(∂/∂yi, ∂/∂yj)|p = ±δij , and at the
same time it is normal, ∇∂/∂yi(∂/∂yj)|p = 0 (see [11, Chapter IV, § 3]). Nowadays
these special Riemannian coordinates are constructed by means of the exponential
mapping; see the end of Subsection II.2.3 and [8].

Besides the Riemannian coordinates, there are also other classes of coor-
dinates normal at a single point. Their complete description on a manifold with
arbitrary symmetric linear connection will be given in Subsection II.2.2. An exam-
ple of such coordinates are the geodesic coordinates.3 If {xi} are local coordinates
in a neighborhood U of p ∈ M , the geodesic coordinates {zi} with origin at p of a
point q belonging to some subneighborhood of U , are given via the series [24, p. 56]

xi(q) = xi(p)+ zi(q)− 1
2

{
i

jk

}∣∣∣
p
zj(q)zk(q)−

∞∑
n=3

1
n!

ci
i1...in

zi1(q) · · · zin(q) (6.13)

where ci
i1...in

= ci
(i1...in) ∈ R and zi(p) := 0. Analogously to (6.9), it is convergent

and invertible with respect to zi(q) in some neighborhood of p.
Repeating the proof of Proposition 6.3, we see that the geodesic coordinates

are normal at their origin p,
{

i
jk

}∣∣
p

= 0. In them the equation of the geodesics
through the origin reads (see (6.4))

γi(s) = γi(s0)(s − s0) −
∞∑

n=3

1
n!

Γi
i1...in

(p)X i1 · · ·X in(s − s0)n

with p = γ(s0), X = γ̇(s0), and the Γ’s being defined by (6.5). Hence the Rieman-
nian coordinates are geodesic ones in which the Γ’s vanish at the origin (cf. (6.11)).

A number of examples of coordinates/frames normal for Riemannian connec-
tions will be presented below in Section 7. Instances of some applications of the
Riemannian and geodesic coordinates can be found in [19, 24, 51].

At this point a natural question arises: are there subsets of a Riemannian
manifold, different from single points, on which normal coordinates/frames exist?

The first result in this field was obtained by E. Fermi in 1922 [52]: a coordinate
system can be chosen so that in it the partial derivatives of the components of
the metric tensor vanish along a given smooth path without self-intersections (see
also [53,54]). Now the Fermi’s proof of this theorem is only of historical interest and
we are not going to reproduce it here. Further, in Section II.3, we will establish an
analogous result for arbitrary linear connections from which the above assertion is
an evident special case (see, in particular, Proposition II.3.2 and Corollary II.3.1).

3In [51] the geodesic coordinates are defined as ones in which the partial derivatives of the
metric vanish at a given point. By Proposition 6.1, the concepts ‘geodesic coordinates’ in Fock’s
sense and ‘normal coordinates’ in our sense are synonyms.
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Till 1958 the problem for existence of normal coordinates/frames on sets
other than points and curves (without self-intersections) in a general Riemannian
manifold, as well as for other manifolds with linear connection, was open. In 1958
O’Raifeartaigh [55] proved a general theorem concerning the existence of normal
frames on arbitrary submanifolds of manifolds with symmetric, i.e., torsionless,
linear connection. This result will be reviewed in Section II.5. When applied to
the above problem, it asserts that the points and curves are the only submanifolds
of a Riemannian manifold on which normal coordinates/frames always exists. Only
special types of Riemannian connections admit frames normal on other submani-
folds; in particular, coordinates/frames normal on the whole manifold or its open
subset (neighborhood) exist iff the connection is flat on it.

7. Examples of normal coordinates for
Riemannian connections

The purpose of this section is to exemplify the general theory of Sections 5 and 6
on manifolds endowed with Riemannian connections generated by Riemannian
metrics. The section contains also several exercises.

Most of the examples presented below will follow the following scheme. Let
M be a submanifold of RN for some N ∈ N 1 and f : RN × RN → R be a scalar
product (see, e.g., (7.1) and (7.16) below) which induces a Riemannian metric f̄
on T (RN); one usually identifies f and f̄ as T (RN) and RN are isomorphic vector
spaces. Suppose g is the Riemannian metric on M induced (generated) by f̄ , viz.
g = f̄ |M is the restriction of f̄ to M .2 Then the metric g induces on M a Rieman-
nian connection ∇ as described in Section 4 (see, in particular, equations (4.13)
and (4.14)). We shall calculate the coefficients of ∇ in concrete coordinate systems
and will look for subsets of M on which these systems are normal for ∇. Besides,
some constructions of geodesic coordinates will be pointed out.

Suppose the manifold under consideration has some symmetry and the coor-
dinates/frames on it are chosen in a way that ‘reflects’ this symmetry. As we shall
see below, in such a situation it is ‘quite likely’ that these coordinates/frames
may happen to be normal on some (‘natural’ for the symmetry) subset for the
connection induced on the manifold by a Riemannian metric which, in its turn, is
generated by the Euclidean metric of some Rn for some n ∈ N in which the initial
manifold is embedded.

1Recall the Whitney embedding theorem [56, p. 44, Theorem 1.9.12]: every C2 n-dimensional
manifold can be embedded in R2n, i.e., can be considered as a submanifold of RN for some
N ∈ N; see also [56, p. 119, Remark 3.2.9].

2The easiest way to find g explicitly is to use differential forms. Let d denotes the exterior
derivative operator and ∧ is the wedge (exterior) product sign. If f̄ = fijdxi ∧ dxj in some
coordinate system {xi} on RN , then g = fij |Mdxi|M ∧ dxj |M and it is quite convenient to use
as a coordinate system on M the restricted coordinate system {xi|M}, which agrees with the
definition of a submanifold given on page 7.
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Example 7.1 ((Locally) (pseudo-)Euclidean spaces). The Euclidean space En, n ∈
N, is a collection of Rn and (standard Euclidean) scalar product e : Rn ×Rn → R

such that

e(p, q) =
n∑

i=1

piqi (7.1)

for all p = (p1, . . . , pn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn. If {ui} is the standard
coordinate system in Rn,3 ui(p) := pi, the linear mapping Iq : Tq(En) → En with
Iq

(
pi ∂

∂ui

∣∣
q

)
= p is an isomorphism and transfers the scalar product e from En to

Tx(En) by e �→ ē : p �→ ēp := e ◦ (Ip × Ip); hence ē is a metric on En (or Rn) such
that

ē
(
pi ∂

∂ui
, pi ∂

∂ui

)
= e(p, q) (7.2)

and the components of ē in the global frame
{

∂
∂ui

}
are ēij = δij (see (4.9)).4 The

metric ē induces on En a (flat) Riemannian connection ∇E whose coefficients in{
∂

∂ui

}
are (see (4.13))

Γi
jk =

{
i

jk

}
= 0. (7.3)

Consequently the (global) coordinate system {ui} and the (global) frame
{

∂
∂ui

}
are normal for ∇E on the whole space En.

Similarly, if on a manifold M is given a Riemannian metric g such that
its components gij are constant functions relative to a frame

(
∂

∂xi

)
induced by

the coordinates xi of a chart (V, x) of M , then the Riemannian connection ∇g

generated by g is such that (see (4.13))

Γi
jk|V =

{
i

jk

}∣∣∣
V

= 0. (7.4)

Consequently the coordinate system {xi} and the corresponding to it natural
frame

{
∂

∂xi

}
are normal for ∇g on V ; the afore considered case of En corresponds

to the choice (M, g) = (Rn, ē), V = Rn and xi = ui. All other frames {Ei} normal

on V for ∇g are such that Ei = Aj
i

∂
∂xj with det[Aj

i ] 
= 0,∞ and ∂Aj
i

∂xk

∣∣
V

= 0 (see
Proposition 5.2), so that Aj

i are constant on V . Evidently Ei = ∂
∂yi for some

coordinates yi normal on V and such that xi = Ai
jy

j + Ai for some numbers
Ai ∈ K.

Example 7.2 (One-dimensional manifolds). Let M be one-dimensional manifold,
dimM = 1, endowed with a C1 Riemannian metric g. Let (V, x) be a chart of M

3In this section, we denote the standard coordinates on Rn by u1, . . . , un instead by r1, . . . , rn

to distinguish them from some radii (e.g., of (pseudo)spheres or torii), typically denoted by r
with possible indices, and their powers.

4Usually one identifies Tp(En) with En, pi ∂
∂ui with p, and e with ē.
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and {x1} be the corresponding local coordinate system. The sole coefficient of the
Riemannian connection ∇ induced by g is (see (4.13) or (4.15))

Γ1
11 =

{
1
11

}
=

1
2

1
g11

∂g11

∂x1
=

1
2

∂ ln g11

∂x1
, (7.5)

where g11 = 1/g11 is the sole component of g in
{

∂
∂x1

}
. Therefore {x1} and

{
∂

∂x1

}
are normal on a subset U ⊆ V , i.e., Γ1

11|U = 0, iff

∂g11

∂x1

∣∣∣
U

= 0. (7.6)

Suppose U is an open set, i.e., U = x−1(J) for some open real interval J .
Define a chart (V, x′) with local coordinate x′ 1 such that, for a fixed p0 ∈ V and
all p ∈ V ,

x′ 1(p) = x1(p0) +

p∫
p0

|g11|− 1
2 dx1 (7.7)

where |λ| is the absolute value of λ ∈ R, viz. |λ| = (signλ)λ with sign λ := ±1 for
λ ≶ 0 and signλ = 0 for λ = 0. The transformation x1 �→ x′ 1 is invertible in V

as its Jacobian is ∂x′ 1
∂x1 = |g11|− 1

2 
= 0. The component of g in
{

∂
∂x1

}
is

(
see (2.44)

with A1
1 = ∂x1

∂x′ 1
)

g′11 = g
( ∂

∂x′ 1 ,
∂

∂x′ 1
)

= sign g11. (7.8)

It is constant on V and consequently

∂g′11
∂x′ 1

∣∣∣
V

= 0 Γ′i
jk|V = 0 (7.9)

so that {xi} and
{

∂
∂x1

}
are normal on V for ∇.

The main conclusion from the above is that for any point in one-dimensional
Riemannian space there exists local coordinates in some its neighborhood which
coordinates are normal on their domain for the Riemannian connection induced
via the initial Riemannian metric. Since the curvature tensor identically vanishes
for a C1 connection on C3 1-manifold (see (3.11) and (3.13)), this result is also
a consequence of Theorem II.4.1, presented below on page 104, in a case of a C2

metric on a C3 1-dimensional Riemannian manifold.5

Example 7.3 (The two-sphere S2). Let S2 := {(v1, v2, v3) ∈ R3 : (v1)2 + (v2)2 +
(v3)2 = r2} be a two-dimensional sphere of radius r ∈ R, r > 0, in R3. Let on S2

minus one point (e.g., the ‘North pole’) be given the standard spherical coordinates
(θ, ϕ), with range (0, π] × [0, 2π), obtained from the spherical coordinates in R3

via restriction to S2 (see equations (7.12) below or/and [57, Section 3.1-6]).

5See also Example II.6.7.
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The Euclidean metric in R3 induces on S2 a metric g whose components gij ,
i, j = 1, 2, in the coordinates {x1 = θ, x2 = ϕ} are such that [57, Table 6.5-1]

[gij ] = diag(r2, r2 sin2 θ) [gij ] = diag
( 1

r2
,

1
r2 sin2 θ

)
. (7.10)

Let ∇ be the Riemannian connection generated by g (see Section 4). An elementary
calculation by means of (4.15) shows that the non-vanishing coefficients of ∇ in
{x1, x2} are (see also [57, Table 6.5-1])

Γ1
22 = − sin θ cos θ Γ2

12 = Γ2
21 = cot θ. (7.11)

Since cos π
2 = cot π

2 = 0, the spherical coordinates {x1 = θ, x2 = ϕ} and hence the

frame
{

∂
∂θ , ∂

∂ϕ

}
on S2 are normal for ∇ along the path γ : [0, 2π) → S2 such that

θ ◦ γ = π
2 and ϕ ◦ γ = id[0,2π), i.e., they are normal on the great circle obtained by

intersecting S2 with the equatorial plane {u3(p) = 0 : p ∈ R3}. The general frame
{E1, E2} normal for ∇ along γ is such that Ei = Aj

i
∂

∂xj where the 2 × 2 matrix-

valued function A satisfies the equation (see Proposition 5.2) ∂Aj
i

∂xk

∣∣
γ([0,2π))

= 0. The
explicit form of A will be presented in Example II.6.2 below; for details concerning
frames/coordinates normal along paths for linear connections, see Section II.3 in
the Chapter II.

Due to the symmetry of the sphere S2, it is clear that for any great circle
on it there exist (local) coordinates on S2 which are normal on this circle for the
Riemannian connection on S

2 generated by the metric g (induced from R
3).

Example 7.4 (The spheres Sn for any n ∈ N). The circle S1 := {(v1, v2) ∈ R2 :
(v1)2 + (v2)2 = r2} of radius r ∈ R, r > 0, is a 1-dimensional manifold. The polar
coordinate function ϕ, with range [0, 2π) and induced from polar coordinates in R2,
provides a coordinate function on a subset V equal to S1 without some arbitrarily
fixed point. The standard Euclidean metric on E

2 induces on S
1 a metric g whose

only component in {x1 = ϕ} is g11 = r2 = const. Hence the metric g generates
on S2 a Riemannian connection ∇ whose only coefficient in {x1} is Γ1

11|V = 0.
Consequently, the polar coordinate system {x1 = ϕ} on S2 is normal for ∇ on
V . This result agrees with the results of Examples 7.1 (g is a ‘constant’ metric in
{x1}) and 7.2 (S1 is a one-dimensional manifold).

Consider now the general case of an n-dimensional, n ≥ 2, sphere Sn in Rn+1

of radius r > 0, viz.

S
n := {(v1, . . . , vn) ∈ R

n+1 : (v1)2 + · · · + (vn)2 = r2}.

Let (R, θn−1, . . . , θ1, ϕ) be the (hyper-)spherical coordinates in Rn+1; the range of
R is (0,∞), the one of θn−1, . . . , θ1 is (0, π] and ϕ takes values in [0, 2π). They
are connected with the standard coordinate system {u1, . . . , un+1} in R

n+1 by the
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following equations:

u1 = R sin θn−1 sin θn−2 · · · sin θ2 sin θ1 cosϕ

u2 = R sin θn−1 sin θn−2 · · · sin θ2 sin θ1 sin ϕ

u3 = R sin θn−1 sin θn−2 · · · sin θ2 cos θ1 (if n ≥ 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uk = R sin θn−1 sin θn−2 · · · sin θk−1 cos θk−2 for 3 ≤ k ≤ n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un = R sin θn−1 cos θn−2 (if n ≥ 3)

un+1 = R cos θn−1.

(7.12)

The equation of Sn in these coordinates is R2 = r2 or R = r (as r > 0 and R takes
non-negative values). The functions

{x1 = θn−1, x
2 = θn−2, . . . , x

n−1 = θ1, x
n = ϕ} (7.13)

provide an internal coordinates system on Sn (without one point) in which the
metric g induced on Sn from En has components gij , i, j = 1, . . . , n, such that
(2 ≤ k ≤ n − 1)

[gij ] = diag(r2, r2 sin2 x1, . . . , r2 sin2 x1 . . . sin2 xk−1, . . . , r2 sin2 x1 · · · sin2 xn−1).
(7.14)

The metric g induces on Sn a Riemannian metric ∇. Using equations (4.15)
and (4.13), we can calculate that ∇ has the following non-vanishing coefficients in
the coordinate system (7.13) (do not sum over i and k!):

Γi
ik|k<i = Γi

ki|k<i = cotxk (7.15a)

Γi
kk|k>i = − sinxi cosxi

k−1∏
l=i+1

sin2 xl (7.15b)

for 1 ≤ i, k ≤ n. (We set
∏b

l=a(· · · ) := 1 for b < a.) For instance, these coefficients
for n = 2 (resp. for n = 3) are given by (7.11) (resp. by (7.43) below).

Let γ : [0, 2π) → S
n be a path in S

n such that xi ◦ γ = π
2 for i = 1, . . . , n− 1

and xn ◦ γ = id[0,2π]. Since cos π
2 = cot π

2 = 0 and sin π
2 = 1, we have

Γi
jk|γ([0,2π)) = 0

and, consequently, the coordinate system {xi} and the frame
{

∂
∂xi

}
are normal for

∇ along the path γ. From (7.12) is clear that the set γ([0, 2π)) is a circle obtained
by intersecting Sn ⊂ Rn+1 with the (u1, u2)-plane {v ∈ Rn+1 : ui(p) = 0 for i ≥ 3}
in Rn+1; in fact, we have

γ([0, 2π)) = {(v1, v1, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

) ∈ R
n+1 : (v1)2 + (v2)2 = r2} = S

1 × ( 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

).
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It is clear, if C is a circle on Sn obtained by intersecting Sn by a 2-plane
through its origin, then there are coordinates on Sn normal along C for the Rie-
mannian connection considered above; this is a consequence of the afore-presented
material in which u1 and u2 should be standard coordinates in the 2-plane to
which C belongs.

The case of S2, investigated in Example 7.3, corresponds to the choice n = 2.

Example 7.5 (The pseudospheres Sn
q ). The Euclidean space Rn

q :=Rn
p,q :=(Rn,en

q )
of index q,where p, q ∈ N ∪ {0} and p + q = n ∈ N, consists of the space Rn

endowed with a scalar product (metric) (of index q) en
q := en

p,q such that

en
q (v, w) :=

p∑
a=1

vawa −
n∑

b=p+1

vbwb (7.16)

for v = (v1, . . . , vn) ∈ R
n and w = (w1, . . . , wn) ∈ R

n.6

Special cases of the spaces Rn
q are well know in physics. For instance, the

(Lorentzian) space R5
4 = R4

4 × R and the spherical space S3 ⊂ R4 of (special)
radius R find application in the geometrical interpretation of the Einstein model
of the Universe [58, § 138] (see also Example 7.9 below). However, the most famous
example is the Minkowski spacetime M4 := R4

3 (or the isomorphic to it space R4
1)

on which the special theory of relativity and the whole relativistic physics rests;
for instance, see [20, 21, 51, 59–64].

The pseudosphere (pseudo-Riemannian spherical manifold) Sn
q of index q,

with n ≥ 1 and 0 ≤ q ≤ n, of radius r ∈ R, r > 0, in Rn+1
q is defined by [39,

Section 2.4], [27, Chapter 1, § 4]

S
n
q := {v ∈ R

n+1
q : en+1

q (v, v) = r2}.
It is a Cω 2-connected manifold. Since the pseudospheres reduce in the case q = 0
to ordinary spheres, Sn

0 = Sn, investigated in Example 7.4, further we shall suppose
that q ≥ 1. Since the pseudosphere S1

1 is a 2-connected 1-dimensional manifold,
which case is covered by Example 7.2, we shall suppose below n ≥ 2.7

By g below will be denoted the Riemannian metric on Sn
q induced by the

metric en+1
q , g = en+1

q |Sn
q
. Respectively, by ∇ will be denoted the Riemannian

connection on Sn
q generated by g as described in Section 4.

6By replacing e and ē in (7.2) by en
q and ēq, respectively, we obtain a Riemannian (pseudo-

Euclidean) metric ēq of index q on Rn induced by en
q ; for evident reasons, one usually writes en

q
for ēn

q .
7Example 7.1 is also applicable in the concrete case. Briefly this can be shown as follows. On

R2
1 can be introduced pseudospherical coordinates (ρ, χ), with respective ranges R \ {0} and R,

connected with the standard coordinates (u1, u2) on R2 by

u1 = ρ cosh χ u2 = ρ sinhχ. (7.17)

In them S1
1 = {v ∈ R2

1 : ρ(v) = ±r}. The function χ provides a coordinate system {χ} with
domain {v ∈ R2

1 : ρ(v) = +r} or {v ∈ R2
1 : ρ(v) = −r} on S1

1. In it the metric g induced on S1
1

by e1
1 has a single component equal to r2. Hence g induces a flat Riemannian connection on S1

1
for which {χ} is normal on its domain. Cf. the last part of Example 7.1.
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Let n ≥ 2, q ≥ 1 and p := n − q ≥ 1; hence q ≤ n − 1. Then in Rn+1
q can be

introduced pseudospherical coordinates

(ρ, χq, . . . , χ1, θp−1, . . . , θ1, ϕ) (7.18)

where for p = 1 the θ’s and the terms containing them below should be miss-
ing/deleted. The range of ρ is R \ {0}, the one of the χ’s is R, the range of the θ’s
is (0, π], and ϕ takes values in [0, 2π). The connection of the coordinates (7.18)
with the standard ones (u1, . . . , un+1) in R

n+1 (or R
n+1
q ) is:

u1 = ρ coshχq · · · cosh χ1 sin θp−1 · · · sin θ2 sin θ1 cosϕ

u2 = ρ coshχq · · · cosh χ1 sin θp−1 · · · sin θ2 sin θ1 sin ϕ

u3 = ρ coshχq · · · cosh χ1 sin θp−1 · · · sin θ2 cos θ1 (if p ≥ 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u2+k = ρ coshχq · · · cosh χ1 sin θp−1 · · · sin θk+1 cos θk for 1 ≤ k ≤ p − 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

up = ρ coshχq · · · cosh χ1 sin θp−1 cos θp−2 (if p ≥ 3)

up+1 = ρ coshχq · · · cosh χ1 cos θp−1 (if p ≥ 2)

up+1+1 = ρ coshχq · · · cosh χ2 sinh χ1 (if q ≥ 3)
. . . . . . . . . . . . . . . . . . . . . . .

up+1+k = ρ coshχq · · · cosh χk+1 sinh χk for 2 ≤ k ≤ q − 1 (if q ≥ 3)
. . . . . . . . . . . . . . . . . . . .

un = ρ coshχq sinh χq−1 (n = p + 1 + q − 1)

un+1 = ρ sinh χq.

(7.19)

The comparison between (7.19) and (7.12) reveals that (θp, . . . , θ1, ϕ) are
spherical coordinates on S

p ⊂ R
p+1 ⊂ R

p+1 × R
q
q
∼= R

n+1
q , where ∼= is the

‘isomorphic to’ sign.
Suppose now that n ≥ 2 and q ≥ 2; hence p := n− q ≥ 0 and this case covers

the possibility q = n, i.e., the pseudosphere S
n
n in the Lorentz manifold R

n+1
n .

Then in Rn+1
q can be introduced phseudospherical coordinates

(ρ, θp−1, . . . , θ1, χ, τq−1, . . . , τ1, ϕ) (7.20)

where for p = 1 (resp. p = 0) the θ’s (resp. the θ’s and τq−1) and the terms
containing them below should be missing/deleted. The range of ρ is R \ {0}, the
one of χ is R, the range of the θ’s and τ ’s is (0, π], and ϕ takes values in [0, 2π). The
explicit connection of these coordinates with the standard ones {u1, . . . , un+1} on
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Rn+1 (or R
n+1
q+1 ) is (cf. (7.12) and (7.19)):

up+1 = ρ sin θp−1 · · · sin θ1 sinh χ sin τq−1 · · · sin τ2 sin τ1 cosϕ

up+2 = ρ sin θp−1 · · · sin θ1 sinh χ sin τq−1 · · · sin τ2 sin τ1 sin ϕ

up+3 = ρ sin θp−1 · · · sin θ1 sinh χ sin τq−1 · · · sin τ2 cos τ1 (if q ≥ 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

up+k = ρ sin θp−1 · · · sin θ1 sinh χ sin τq−1 · · · sin τk−1 cos τk−2 for 3 ≤ k ≤ q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un = ρ sin θp−1 · · · sin θ1 sinh χ sin τq−1 cos τq−2 (p + q = n; if q ≥ 3)

un+1 = ρ sin θp−1 · · · sin θ1 sinh χ cos τq−1

u1 = ρ sin θp−1 · · · sin θ1 coshχ

u2 = ρ sin θp−1 · · · sin θ2 cos θ1 (if p ≥ 3)
. . . . . . . . . . . . . . . . . . . . .

uk = ρ sin θp−1 · · · sin θk cos θk−1 for 2 ≤ k ≤ p − 1
. . . . . . . . . . . . . . . . . .

up−1 = ρ sin θp−1 cos θp−2 (if p ≥ 3)
up = ρ cos θp−1.

(7.21)

The only peculiarity here is the case q = n (≥ 2) and p = 0, when we have (see
above; for q = n = 2, the terms containing the τ ’s should be missing/deleted):

u2 = ρ sinh χ sin τq−2 · · · sin τ1 cosϕ

u3 = ρ sinh χ sin τq−2 · · · sin τ1 sin ϕ

u4 = ρ sinh χ sin τq−2 · · · sin τ2 cos τ1 (if q ≥ 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uk = ρ sinh χ sin τq−2 · · · sin τk−1 cos τk−2 for 4 ≤ k ≤ q − 1
. . . . . . . . . . . . . . . . . . . . . . . . .

un = ρ sinh χ sin τq−2 cos τq−3 (q = n; if q ≥ 4)

un+1 = ρ sinh χ cos τq−2 (if q ≥ 3)

u1 = ρ coshχ.

(7.22)

The coordinates (7.20) are also a modification of the spherical coordinates
given via (7.12); indeed, the coordinates (τq−1, . . . , τ1, ϕ) are spherical coordinates
on S

q
q ⊂ R

q+1
q ⊂ R

q+1
q × R

p ∼= R
n+1
q .

The pseudosphere Sn
q has the following representation in any one of the co-

ordinates (7.18) or (7.20) (when they are applicable for given n, q and p = n− q)

S
n
q = {v ∈ R

n+1
q : ρ(v) = ±r}. (7.23)
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Consider now the case n ≥ 2 and q ≥ 2 when the coordinates (7.20) are
applicable; to exclude the special case (p, q) = (0, n), one can impose the additional
restriction p ≥ 1, but this does not change the essence of the calculations and the
final results. They induce on the pseudosphere S

n
q the coordinate system

{x1 = θp−1, . . . , x
p−1 = θ1, x

p = χ, xp+1 = τq−1, . . . , x
p+q−1 = τ1, x

n = ϕ}.
(7.24)

The Riemannian metric g induced on S
n
q by en+1

q has in {xi} components gij ,
i, j = 1, . . . , n, forming the diagonal matrix

[gij ] = diag(g1, . . . , gn)

= r2 diag
(
1, sin2 x1, sin2 x1 sin2 x2, . . . , sin2 x1 · · · sin2 xp−1, 0, . . . , 0︸ ︷︷ ︸

q-times

)
− r2 sin2 x1 · · · sin2 xp−1 sinh2 xp

× diag
(
0, . . . , 0︸ ︷︷ ︸
p-times

, 1, sin2 xp+1, sin2 xp+1 sin2 xp+2, . . . , sin2 xp+1 · · · sin2 xp+q−1
)
.

(7.25)

Let ∇ be the Riemannian connection on S
n
q generated by g. The coefficients

Γi
jk of ∇ in {xi} can be calculated via equations (4.13) and (4.15). The non-

vanishing of them are (cf. equations (7.15), which remain true for 1 ≤ i, j, k ≤ n
with i, j, k 
= p)

Γi
ik

∣∣
k<i
i,k 	=p

= Γi
ki

∣∣
k<i
i,k 	=p

= cotxk Γp
pk|k>p = Γp

kp|k>p = cotxk (7.26a)

Γi
kk

∣∣
k>i
i,k 	=p

= − sinxi cosxi
k−1∏

l=i+1

sin2 xl Γi
pp

∣∣
i<p

= + sinxi cosxi

p−1∏
l=i+1

sin2 xl

(7.26b)

Γp
kk

∣∣
k>p

= − cothxp Γi
ip

∣∣
i>p

= Γi
pi

∣∣
i>p

= + cothxp (7.26c)

These formulae show that the pseudospherical coordinates (7.24) on Sn
q are

nowhere normal for ∇ as coth s 
= 0 for all s ∈ R. (This result could be expected as
the coordinates employed are ‘quite near’ to a direct sum of two sets of spherical
coordinates, which are suitable of other kind of a symmetry.) However, on the
subset C := {v ∈ Sn

q : xi(v) = π
2 for i 
= p} (which is 2-connected 2-manifold), the

coordinate system {xi} is ‘very near’ to a normal one as only the coefficients (7.26c)
of ∇ are non-vanishing on C. For this reason, one can expect that coordinates
normal on a subset of C can be found by a suitable change of the coordinate
system {xi}.

Let us look for geodesic coordinate system {zi} on Sn
q in a neighborhood of

a point v0 ∈ C ⊂ Sn
q . We set (see (6.13) with ci

··· = 0)

xi(v) = xi(v0) + zi(v) − 1
2
Γi

jkzj(v)zk(v)

where v ∈ C and zi(v0) := 0.
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The equations (7.26) reduce this system of equations to:

xi(v) = xi(v0) + zi(v) for i < p

xp(v) = xp(v0) + zp(v) − 1
2

coth(xp(v0))
n∑

k=p+1

(zk(v))2

xi(v) = xi(v0) + zi(v) +
1
2

coth(xp(v0))zi(v)zp(v) for i > p.

We get from here:

zi(v) = xi(v) − xi(v0) for i < p (7.27a)

zp(v)[1 + coth(xp(v0))zp(v)]2

− [xp(v) − xp(v0)][1 + coth(xp(v0))zp(v)]

− 1
2

coth(xp(v0))
n∑

k=p+1

[xi(v) − xi(v0)]2 = 0 (7.27b)

zi(v) =
xi(v) − xi(v0)

1 + coth(xp(v0))zp(v)
for i > p. (7.27c)

Since (7.27b) is an algebraic cubic equation relative to zp(v), it has at least one
real solution that can explicitly be found (in radicals) by the known methods [57,
Section 1.8-3], [65]. Substituting this solution into (7.27a) and (7.27c), we can
obtain a geodesic coordinate system {zi} on some subset of the pseudosphere Sn

q

and which is normal at a point v0 ∈ C := {v ∈ S
n
q : xi(v) = π

2 for i 
= p}.

Exercise 7.1. Let Hn
q−1 := {v ∈ Rn+1

q : en+1
q (v, v) = −r2} be a hyperbolic space of

radius r ∈ R, r > 0, and index q − 1 and g be the metric on it induced by en+1
q .

Suppose the coordinates (7.20) are defined via (7.21) in which the replacements
sin θi �→ cosh θi for i = 1, . . . , p − 1 and coshχ �→ sinh χ are made. Show that
Hn

q−1 := {v ∈ Rn+1
q : ρ(v) = ±r}. Calculate the components of g and the coeffi-

cients of ∇ in the coordinates (7.24). Construct geodesic coordinate system {zi}
on Hn

q−1 using the results obtained and following the above considerations for Sn
q .

We shall now return to the coordinates (7.18), defined via (7.19), to study
in them coordinates normal on the pseudosphere Sn

q when n ≥ 2, q ≥ 1 and
p = n − q ≥ 1. First of all, we notice that the set of functions

{x1 = θp−1, . . . , x
p−1 = θ1, x

p = ϕ, xp+1 = χq, . . . , x
p+q−1 = χ2, x

n = χ1} (7.28)

provides a coordinate system on Sn
q (precisely on any one of its two connected

components). The metric g has in these coordinates components gij forming the
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diagonal matrix

[gij ] = diag(g1, . . . , gn)

= r2 cosh2 xp+1 · · · cosh2 xp+q

× diag
(
1, sin2 x1, sin2 x1 sin2 x2, . . . , sin2 x1 · · · sin2 xp−1, 0, . . . , 0︸ ︷︷ ︸

q-times

)
− r2 diag

(
0, . . . , 0︸ ︷︷ ︸
p-times

, 1, cosh2 xp+1, cosh2 xp+1 cosh2 xp+2, . . . ,

. . . , cosh2 xp+1 · · · cosh2 xp+q−1
)
.

(7.29)

The Riemannian connection ∇ generated by g has the following non-vanishing
components in {xi} (cf. (7.15) and (7.26)):

Γi
ik

∣∣
k<i
i,k≤p

= Γi
ki

∣∣
k<i
i,k≤p

= cotxk

p+q∏
l=p+1

cosh2 xl

Γi
kk

∣∣
k>i
i,k≤p

= − sinxi cosxi

(
k−1∏

l=i+1

sin2 xl

)
p+q∏

l=p+1

cosh2 xl

Γi
ik

∣∣
k<i
i,k≥p+1

= Γi
ki

∣∣
k<i
i,k≥p+1

= cothxk

Γi
kk

∣∣
i<k
i,k≥p+1

= − cothxi
k−1∏

l=i+1

cosh2 xl

Γi
ik

∣∣
i≤p
k≥p+1

= Γi
ki

∣∣
i≤p
k≥p+1

= coth xk

Γi
kk

∣∣
i≥p+1
k≤p

= coshxi sinh xi

(
p+q∏

l=i+1

cosh2 xl

)
k−1∏
l=1

sin2 xl.

(7.30)

Since cos π
2 = cot π

2 = 0 and sinh 0 = tanh 0 = 0, the coordinate system {xi}
is normal for ∇ on the subset

{v ∈ S
n
q : x1(v) = · · · = xp−1(v) =

π

2
and xp+1(v) = · · · = xp+q(v) = 0} ⊂ S

n
q .

We can also say that the coordinate system {xi} is normal for ∇ along the path
γ : [0, 2π) → Sn

q such that xk ◦ γ = π
2 for k = 1, . . . , p − 1, xk ◦ γ = 0 for k =

p + 1, . . . , p + q and xp ◦ γ = id[0,2π); we can equivalently express this by writing
Γi

jk ◦ γ = 0 in {xi}. Since

γ([0, 2π)) = {(r cos s, r sin s, 0, . . . , 0︸ ︷︷ ︸
(n−1)-times

) : s ∈ [0, 2π)} = S
1 × ( 0, . . . , 0︸ ︷︷ ︸

(n−1)-times

) ⊂ R
n+1,

the circle γ([0, 2π)) can be obtained by intersection Sn
q with the (u1, u2)-plane in

R
n+1.
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Example 7.6 (The torus T2). The torus T2 of radii r1, r2 ∈ R, r1 > 0 and r2 > 0,
in R3 is a product of two circles S1 and S1 of radii r1 > 0 and r2 > 0, respectively,
T2 = S1×S1,8 If ϕ1 and ϕ2 are the respective polar coordinates, with range [0, 2π),
on these circles, then

T
2 = {(r cosϕ1, r sin ϕ1, r2 sin ϕ2) ∈ R

3 : ϕ1, ϕ2 ∈ [0, 2π)}
r := r1 + (1 + cosϕ2)r2.

(7.31)

The standard Euclidean metric on R3 (see Example 7.1) induces on T2 a
metric g whose components in the coordinate system {x1 = ϕ1, x

2 = ϕ2} of T
2

has components gij , i, j = 1, 2, forming the diagonal matrix

[gij ] = diag(r2, r2
2). (7.32)

The Riemannian connection ∇ induced by g on T2 has the following non-vanishing
components in {x1, x2} (see (4.13) and (4.15))

Γ1
12 = Γ1

21 = −Γ2
11 = −r2

r
sinx2. (7.33)

From here immediately follows that the coordinates system {x1 = ϕ1, x
2 = ϕ2}

is normal along the path γ : [0, 2π) → T2 with x1 ◦ γ = id[0,2π) and x2 ◦ γ = 0
(or γ(s) = (r sin s, r cos s, 0)|r=r1+2r2 ∈ T2 ⊂ R3 with s ∈ [0, 2π)). Obviously,
γ([0, 2π)) is the the greater circle obtained by intersecting T2 with the so-called
equatorial plane (i.e., {(v1, v2, 0) ∈ R2 : v1, v2 ∈ R} in the representation we are
using).

Exercise 7.2. Generalize the above results for multidimensional tori, i.e., for

T
n := S

1 × · · · × S
1︸ ︷︷ ︸

n-times

where n ≥ 2 and the ith, i = 1, . . . , n, circle has radius ri ∈ R with ri > 0.
Hint: (i) parameterize the ith circle with a polar angle ϕi with range [0, 2π) and
obtain a representation similar to (7.31),9 (ii) then, in the coordinate system {x1 =
ϕ1, . . . , x

n = ϕn} on T
n, find the components of the metric g induced on T

n by
the standard one in Rn+1 and (iii) at last, calculate in {xi} the components of the
Riemannian connection generated by g and investigate the existence of a subset
of Tn on which {xi} is normal for this connection.

Example 7.7 (Surfaces of revolution). A surface of revolution in R
3 is obtained by

rotating a plane path γ : J → R2 ⊂ R3 around an axis in the plane of the path. If

8For more details regarding tori, see [42].
9For n ≥ 3, a representation like Tn := T2 × S

1 × · · · × S
1︸ ︷︷ ︸

(n−2)-times

may turn to be useful.
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s ∈ J is the path’s parameter and ρ(s) ≥ 0 is the distance of γ(s) from the axis,
say the third axis in R3, then the surface of revolution is [66, p. 767]

S = {(ρ(s) cosα, ρ(s) sin α, z(s)) ∈ R
3 : s ∈ J, α ∈ [0, 2π)} (7.34)

where z(s) defines γ by γ(s) = (ρ(s), 0, z(s)) and α is the angle of rotation; below
we shall suppose that ρ and z are C2 functions. The functions x1 : v → x1(v) = s
and x2 : v → x2(v) = α for v = (ρ(s) cosα, ρ(s) sin α, z(s)) provide a coordinate
system {x1, x2} on S.

The restriction of the Euclidean metric in R3 to S results into a tensor field
g which has in {x1, x2} components gij , i, j = 1, 2, such that

[gij ] = diag(ρ′ 2 + z′ 2, ρ2), (7.35)

where the prime means derivative relative to s, i.e., ρ′ := dρ
ds and z′ := dz

ds . Conse-
quently, the tensor field g defines on the set S\{points at which ρ′(s) = z′(s) = 0}
a Riemannian metric g. The metric g induces on S a Riemannian connection ∇.
The non-vanishing coefficients of ∇ in {x1, x2} are (see (4.13) and (4.15))

Γ1
11 =

ρ′ρ′′ + z′z′′

ρ′ 2 + z′2
Γ1

22 = − ρρ′

ρ′ 2 + z′ 2
Γ2

12 = Γ2
21 =

ρ′

ρ
. (7.36)

Thus the coordinate system {x1, x2} is normal for ∇ on the set

C := {v = (ρ(s) cos α, ρ(s) sin α, z(s)) ∈ S : ρ′(s) = 0, z′(s) 
= 0 and z′′(v) = 0}
(7.37)

if it is non-empty.
For instance, {x1, x2} is normal on the whole surface of revolution S if, and

only if, it is a cylinder defined via ρ(s) = c and z(s) = as + b for some a, b, c ∈ R

with a 
= 0 and c 
= 0. This result can be expected from the considerations in
Example 7.1.

However, the set (7.37) may turn to be the empty set in which case the
coordinates {x1, x2} are nowhere normal on S for ∇. Examples of surfaces of
revolution on which this happens are provided by the choices ρ(s) = es, s3 + s
and/or z(s) = es.

Exercise 7.3. Construct explicitly geodesic coordinates system {z1, z2} with ci
... =

0 (see (6.13)) from {x1, x2} such that {z1, z2} is normal for ∇ at an arbitrarily
chosen point v0 ∈ S. (This construction is completely independent from is the
set (7.37) empty or non-empty.)

Exercise 7.4. Obtain the results of Example 7.3 from the above ones. Hint: a
sphere can be obtained by rotating a semi-circle around the axis passing through
its ends.

Example 7.8 (Geodesic coordinates in Schwarzschild spacetime). The manifold of
Schwarzschild is a 4-dimensional (pseudo-)Riemannian manifold endowed with a
Riemannian connection ∇ induced by the Schwarzschild metric g which in suitably
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chosen (Schwarzschild) coordinates (x1 = r, x2 = θ, x3 = ϕ, x4 = ct), c being the
velocity of light in vacuum, has components [gij ], i, j = 1, . . . , 4, such that10

[gij ] = diag(−e−λ,−r2,−r2 sin2 θ, eν) (7.38)

where11

eν := 1 − rg

r
eλ :=

(
1 − rg

r

)−1

(7.39)

with rg being a constant (known as the (Schwarzschild) gravitational radius).
Using (4.15), we find after some tedious calculations the following non-vanishing
coefficients of the Riemannian connection induced by g [58, eq. (83.2)]

Γ1
11 =

1
2

dλ

dr
Γ1

22 = −re−λ Γ1
33 = −re−λ sin2 θ Γ1

44 =
1
2
eν−λ dν

dr

Γ2
12 = Γ2

21 =
1
r

Γ2
33 = − sin θ cos θ

Γ3
13 = Γ3

31 =
1
r

Γ3
23 = Γ3

32 = cot θ

Γ4
14 = Γ4

41 =
1
2

dν

dr
,

(7.40)

where dν
dr = +

(
1 − rg

r

)−1 rg

r2 and dλ
dr = +

(
1 − rg

r

)−1 rg

r2 , due to (7.39).
The coordinate system {xi} is not normal at all points of the Schwarzschild

spacetime. However, from it can be constricted Riemannian or geodesic coordi-
nates (with origin at any arbitrarily fixed point p) according to the procedures of
Section 6. In particular, setting ci

i1...in
≡ 0 for all n ≥ 3 in (6.13), we see that the

equations

x1(q) = x1(p) + z1(q) − 1
4

dλ

dr
(z1(q))2 +

1
2
re−λ(z2(q))2

+
1
2
re−λ sin2(x2(p))(z3(q))2 − 1

4
eν−λ dν

dr
(z4(q))2

(7.41a)

x2(q) = x2(p) + z2(q) − 1
r
z1(q)z2(q) +

1
2

sin(x2(p)) cos(x2(p))(z3(q))2 (7.41b)

x3(q) = x3(p) + z3(q) − 1
r
z1(q)z3(q) − cot(x2(p))z2(q)z3(q) (7.41c)

x4(q) = x4(p) + z4(q) − 1
2

dν

dr
z1(q)z4(q), (7.41d)

10For details and the physical significants of the Schwarzschild metric, see (text)books on
general relativity and gravitation, like [61, Chapter VII, § 4], [67, Chapter 3], [21, Chapter 8, § 2
and § 8], [68, § 100], or [58, § 83 and § 83].

11If we admit that λ and ν depend on r and do not fix this dependence, we obtain the class
of the so-called spherically symmetric metrics [21, Chapter 13, § 5 B]. In particular, the choice

eν = e−λ = 1 − rg

r
+ Q2

r2 , for some constant Q ∈ R (having a sense of electrical charge), selects
the Reissner-Nordström metric [67, Chapter 5, in particular, § 39]. The particular setting (7.39)
will not be used below; see, for instance (7.40) and (7.41).
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where zi(p) := 0, define z1, . . . , z4 as geodesic coordinates with origin at a point
p in some neighborhood of p. Equations (7.41c) and (7.41d) yield

z3(q) = (x3(q) − x3(p))
(
1 − 1

r
z1(q) − cot(x2(p))z2(q)

)−1

z4(q) = (x4(q) − x4(p))
(
1 − 1

2
dν

dr
z1(q)

)−1

which, when inserted into (7.41a) and (7.41b), give

x1(q) − x1(p) = z1(q) − 1
4

dλ

dr
(z1(q))2 +

1
2
re−λ(z2(q))2

+
1
2
re−λ sin2(x2(p))

(x3(q)) − x3(p))2(
1 − 1

r z1(q) − cot(x2(p))z2(q)
)2

− 1
4
eν−λ dν

dr

(x4(q)) − x4(p))2(
1 − 1

2
dν
dr z1(q)

)2

x2(q) − x2(p) =
(
1 − 1

r
z1(1)

)
z2(q)

+
1
2

sin(x2(p)) cos(x2(p))
(x3(q) − x3(p))2(

1 − 1
r z1(q) − cot(x2(p))z2(q)

)2 .

The latter equation is a cubic algebraic equation relative to z2(q) and hence it
has at least one real solution that can be found by the known methods [57,65,69].
Substituting this solution into the former equation, one obtains an equation for
only z1(q) which has at least one real solution z1 (proof this!). Substituting this last
function into the previous expressions for z2, z3 and z4, one derives the required
geodesic coordinate system {zi} as a function of the initial one {xi}.
Example 7.9 (The Einstein Universe). The Einstein Universe [58, §§ 134–141] is
a homogeneous and static model of the Universe12 whose underlying geometrical
structure is the (4-dimensional) Einstein manifold. This manifold is a Riemannian
4-dimensional manifold with metric g which, in suitable coordinates (x1 = χ, x2 =
θ, x3 = ϕ, x4 = ct) (c is the velocity of light in vacuum), with respective ranges
R, (0, π], [0, 2π) and (−∞, +∞), has components gij , i, j = 1, . . . , 4, forming the
diagonal matrix (see, e.g, [58, eq. (138.6)] or [62, eq. (12.135)])

[gij ] = diag(−R2,−R2 sin2 x1,−R2 sin2 x1 sin2 x2, 1) (7.42)

where R is a constant (known as the radius of the spherical space representing
the spacial part of the Einstein Universe). This metric induces a Riemannian

12There are possible only three versions of a homogeneous and static Universe in general
relativity [58, § 134]: Einstein, de Sitter and Minkowski spacetimes.
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connection ∇ whose nonvanishing coefficients in {xi} are (see (4.13) and (4.15);
cf. (7.15))

Γ1
22 = − sinx1 cosx1 Γ1

33 = − sin x1 cosx1 sin2 x2

Γ2
12 = Γ2

21 = cotx1 Γ2
33 = − sinx2 cosx2

Γ3
13 = Γ3

31 = cotx1 Γ3
23 = Γ3

32 = cotx2.

(7.43)

(Notice, these coefficients are exactly the coefficients (7.15) of the sphere S3 in R4.)
Consequently, the coordinate system {xi} is normal for ∇ on the 2-dimensional
subspace {v : x1(v) = x2(v) = π

2 } of the Einstein Universe.

Example 7.10 (The de Sitter Universe). The de Sitter Universe [58, §§ 136, 142–
145], [62, § 12.7] is also a homogeneous and static model of the Universe. It is
based on a 4-dimensional Riemannian manifold, called the de Sitter manifold,
whose metric g in suitable coordinates (x1 = χ, x2 = θ, x3 = ϕ, x4 = ct) has
components gij such that [58, eq. (142.3)]

[gij ] = diag(−R2,−R2 sin2 x1,−R2 sin2 x1 sin2 x2, cos2 x1) (7.44)

for some constant R. Applying (4.13) and (4.15) (see also (7.43)), one can verify
that the Riemannian connection ∇ induced by g has in {xi} the following non-
vanishing coefficients (cf. (7.43))

Γ1
22 = − sinx1 cosx1 Γ1

33 = − sin x1 cosx1 sin2 x2

Γ1
44 = − 1

R2
sin x1 cosx1

Γ2
12 = Γ2

21 = cotx1 Γ2
33 = − sin s2 cosx2

Γ3
13 = Γ3

31 = cotx1 Γ3
23 = Γ3

32 = cotx2

Γ4
14 = Γ4

41 = − cotx1.

(7.45)

Evidently, the coordinate system {xi} is normal for ∇ on the 2-dimensional sub-
manifold {v : x1(v) = x2(v) = π

2 } of the de Sitter Universe.
Via an appropriate change {xi} �→ {yi} of the local coordinates, one can

transform the metric’s components gij to gy
ij such that (see, e.g., [58, § 142,

eq. (142.11)] or [62, eq. (12.161)])

[gij ] = diag(−e2κy4
,−e2κy4

,−e2κy4
, y4) (7.46)

for some number κ 
= 0. The non-vanishing coefficients yΓi
jk of ∇ in {yi} are

yΓi
i4 = yΓi

4i = −κ for i = 1, 2, 3
yΓ4

kk = κe2κy4
for k = 1, 2, 3.

(7.47)

Thus the coordinates {yi} are nowhere normal for ∇ regardless that the metric
looks ‘simpler’ in them.
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The above conclusion is due to the main difference between the coordinates
systems {xi} and {yi}: the former reflects the symmetry of the de Sitter spacetime
(its spacial part is spherically symmetric) while the latter one ‘tends to represent’
this space ‘as near as possible’ to the flat Minkowski space R

4
3.

Exercise 7.5. Using (6.13) with ci
... = 0, construct from {yi} a geodesic coordinate

system {zi} normal for ∇ at some fixed point.

Example 7.11 (Non-static spacially homogeneous Universes). If we admit the con-
stant R to change with the time, R2 = R2

0ef(x4) for some R0 ∈ R and C1 function
f , in the Einstein metric (7.42), we obtain a 4-dimensional Riemannian manifold
with a metric g which in some fixed coordinates system {xi} has components gij ,
i, j = 1, . . . , 4, forming the diagonal matrix

[gij ] = diag(−R2
0e

f(x4),−R2
0e

f(x4) sin2 x1,−R2
0e

f(x4) sin2 x1 sin2 x2, 1)
=: diag(g1, g2, g3, g4).

(7.48)

This manifold represents a non-static (and spacially homogeneous) model of the
Universe in the general theory of relativity [58, §§ 147–149; eq. (149.7)], [62, § 12.8].
The Riemannian connection generated by g has in {xi} the following non-vanishing
coefficients (see (4.13) and (4.15); cf. (7.43))

Γ1
22 = − sinx1 cosx1 Γ1

33 = − sinx1 cosx1 sin2 x2 Γ1
14 = Γ1

41 =
1
2
f ′(x4)

Γ2
12 = Γ2

21 = cotx1 Γ2
33 = − sin s2 cosx2 Γ2

24 = Γ2
42 =

1
2
f ′(x4)

Γ3
13 = Γ3

31 = cotx1 Γ3
23 = Γ3

32 = cotx2 Γ3
34 = Γ3

43 =
1
2
f ′(x4)

Γ4
kk = −1

2
f ′(x4)gk Γi

i4 = Γi
4i =

1
2
f ′(x4) for i, k = 1, 2, 3,

(7.49)

where f ′(x4) := df(x4)
dx4 . Therefore the function g (which together with the cosmo-

logical constant determine the pressure and energy density [58, § 150, eqs. (150.7)
and (150.8)]) is responsible for the existence of set(s) on which the coordinate
system {xi} is normal. Indeed, if the equation f ′(x4) = 0 has a real solution x4

0,
f ′(x4

0) = 0, then {xi} is normal on the 1-dimensional submanifold {v : x1(v) =
x2(v) = π

2 , x4(v) = x4
0}.

Exercise 7.6. If f ′(a) 
= 0 for all a ∈ R, construct from {xi} a coordinate system
{zi} which is normal at a fixed spacetime point.

Example 7.12 (The light cone in Minkowski spacetime). The 4-dimensional man-
ifold M4 = R4

3 (or the isomorphic to it manifold R4
1) is know as the Minkowski

spacetime and it is the geometrical base for the special theory of relativity and the
whole relativistic physics [20, 21, 51, 59–64]. The causal structure of the physical
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theories based on it is determined by the so-called light cone C3
3 which is defined

as a ‘pseudosphere’ of index 3 and zero radius in it,

C3
3 = {v ∈ R

4
3 : e4

3(v) = 0}
= {(v1, v2, v3, v4) ∈ R

4
3 : (v1)2 − (v2)1 − (v3)2 − (v4)2 = 0}. (7.50)

The light cone is a 3-dimensional 1-connected Cω manifold whose geometry is
very well explored due to its physical significants. From the view-point of the
considerations in Example 7.5, it is described by the choice n = 3 (n + 1 = 4),
q = 3, p = 0, and r = 0. The metric e4

3, when restricted to C3
3 , induces a (1-time)

degenerate tensor field on C3
3 which can further be restricted on other subsets of

C3
3 to give a Riemannian metric g, which generates a connection ∇ on them.

The different kinds of pseudospherical coordinates in R4
3 are not suitable

for studding the light cone due to its vanishing radius when it is consider as a
pseudosphere. For instance, in the coordinates (ρ, χ, τ1, ϕ) in R4

3, provided by (7.22)
and such that

u2 = ρ sinh χ sin τ1 cosϕ u4 = ρ sinhχ cos τ1

u3 = ρ sinh χ sin τ1 sin ϕ u1 = ρ coshχ,

we have C3
3 = {v ∈ R4

3 : ρ(v) = 0} and the components of e4
3 in it are given by

the diagonal matrix diag(1,−ρ2,−ρ2 sinh χ,−ρ2 sinh χ sin τ1). Therefore u1|C3
3
≡ 0

and the ‘metric’ induced by e4
3 will have components forming the degenerate matrix

diag(1, 0, 0, 0); the cause for this is that the change (u1, u2, u3, u4) �→ (ρ, χ, τ1, ϕ)
is degenerate on the light cone.

Below we shall investigate two concrete coordinates systems in R4
3 which are

suitable for description of the light cone C3
3 .

Define on R4
3 coordinates (H, R, θ, ϕ), with respective ranges R, (0,∞), (0, π]

and [0, 2π), such that

u2 = R sin θ cosϕ

u3 = R sin θ sin ϕ

u4 = R cos θ

u1 = H.

(7.51)

The Jacobian of the change to the new coordinates equals −R2 sin θ 
= 0, so
that they are well defined. These coordinates agree with the splitting R4

3 =
R1 × R3

3 and (R, θ, ϕ) are spherical coordinates in R3. In them C3
3 = {v ∈

R4
3 : H = −R or H = +R} and the components of e4

3 form the diagonal ma-
trix diag(1,−1,−R2,−R2 sin θ). The set of functions

{x1 = R, x2 = θ, x3 = ϕ} (7.52)
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is a coordinate system on the future part {v ∈ R4
3 : H = +R} or the past part

{v ∈ R4
3 : H = −R} of the light cone C3

3 . The components of the tensor g obtained
by restricting e4

3 to C3
3 has in {x1, x2, x3} components gij , i, j = 1, 2, 3, such that13

[gij ] = diag(0,−(x1)2,−(x1)2 sin2 x2). (7.53)

Consequently g is degenerate and hence does not define on the light cone a Rieman-
nian metric; one can prove that this result is independent of the particular coordi-
nates used. However, on the set C3

3 |R=R0 = {v ∈ R4
3 : H = ±R0, R = R0} ⊂ C3

3 ,
where R0 is a fixed positive real number, the restriction of e4

3 or of g results into a
Riemannian metric ḡ which in the coordinates {x1 = θ, x2 = ϕ} on C3

3 |R=R0 has
components ḡij , i, j = 1, 2 such that

[ḡij ] = diag(−R2
0,−R2

0 sin2 x1) = − diag(R2
0, R

2
0 sin2 x1). (7.54)

Consequently ḡ = −gS2 , where gS2 is the metric on the 2-sphere S2 of radius R0 in
R3 (see (7.10)). So, if ∇̄ is the Riemannian connection on C3

3 |R=R0 induced by ḡ,
then its non-vanishing coefficients in {x1, x2} are (7.11). Hence {x1, x2} is normal
along the path γ : [0, 2π) → C3

3 |R=R0 such that x1 ◦ γ = π
2 and x2 ◦ γ = id[0,2π).

Geometrically C3
3 |R=R0 is the intersection of C3

3 with the 3-plane u1 = ±R0;
physically this 3-plane represents the spacial part of the spacetime at the moment
t = ±r0/c, c being the velocity of light in vacuum.

Let us now look on the light cone C3
3 from the view-point of coordinates

(ρ, χ, R, ϕ) in R
4
3 such that

u1 = ρ coshχ

u2 = ρ sinh χ

u3 = R cosϕ

u4 = R sin ϕ.

(7.55)

The range of ρ is R\ {0}, the one of χ is R, R ranges in (0,∞), and ϕ takes values
in [0, 2π). The Jacobian of the change to the new coordinates equals ρR and hence
they are well defined. The light cone has in these coordinates the representation
C3

3 = {v ∈ R4
3 : ρ2 = R2} and the components of e4

3 in them form the diagonal
matrix diag(1,−ρ2,−1,−R2). The set {ρ, χ, ϕ} is a coordinates system on C3

3 in
which the tensor g, to which e4

3 reduces on C3
3 , has components gij , i, j = ρ, χ, ϕ,

such that
[gij ] = diag(0,−ρ2,−ρ2). (7.56)

(The same result can be obtained in the coordinate system {±R, χ, ϕ}.) Thus g is
degenerate and does not define a Riemannian metric on the light cone. However,
when restricted to the set C3

3 |ρ=ρ0 = {v ∈ R4
3 : ρ(v) = ρ0 and R = |ρ0|} ⊂ C3

3 for

13To derive (7.53), write e4
3 as a differentials form, e4

3 = dH2 −dR2 −R2(dθ2 +sin2 θdϕ2) and
restrict it to the light cone where H2 = R2.
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a fixed number ρ0 ∈ R \ {0}, this tensor (or e4
3) reduces to a Riemannian metric

ḡ whose components ḡij , i, j = 1, 2, in {x1 = χ, x2 = ϕ} are given by

[ḡij ] = diag(−ρ2
0,−ρ2

0) = −ρ2
0 diag(1, 1). (7.57)

Hence ḡ = −ρ2
0e

2
0, where e2

0 is the standard Euclidean metric in R2
0 = R2 (see Ex-

ample 7.1). In this way, we see that, if ∇̄ is the Riemannian connection induced by
ḡ on C3

3 |ρ=ρ0 , then the coordinate system {x1 = χ, x2 = ϕ} is everywhere normal
on C3

3 |ρ=ρ0 for ∇̄. This conclusion is clear also from the geometrical interpretation
of C3

3 |ρ=ρ0 as an intersection of the ‘3-cylinder’ R2
1 × S1 ⊂ R4

3, of ‘radius’
√−1ρ0

with the pseudosphere S2
1 ⊂ S2

1 × R2
2 ⊂ R4

3 of radius ρ0.

Exercise 7.7. Generalize the above considerations for a general cone Cn
q = {v ∈

Rn+1
q : en+1

q (v, v) = 0} of index q, 1 ≤ q ≤ n, in Rn+1
q . (Hint: Relying on the

Rn+1
q

∼= Rp+1 ×Rq
q for p = n− q, use standard coordinates on Rp+1 and spherical

coordinates on Rq
q.) Show that the different pseudospherical coordinates in Rn+1

q

are not applicable for investigating the cones. Find different analogues in this case
of the coordinates given via (7.55).

8. Terminology 1: Bases and frames. Holonomicity

It is beyond any doubt, all authors define a basis of an n-dimensional, n ∈ N, vector
space as a set of n linearly independent vectors in it (see, for instance, [1,12, resp.
Section 1.5 and p. 9] or any book on vector spaces1). Sometimes the term ‘frame’ is
used as a synonym of basis [13, p. 8]. But when (tangent) vector fields over a subset
U ⊆ M of a differentiable manifold of dimension n are concerned, the situation
slightly changes: a frame (n-frame, comoving (or moving) frame, or vielbein)2 is
defined as a set of n linearly independent vector fields over U [5, Sections 2.2
and 7.6] (see also [7]). It is easily seen that a frame over U is, in fact, a basis in the
module X(U) of vector fields on U over the ring (algebra) F(U) of real or complex,
if the complex case is considered, functions on U [15, p. 10]. Furthermore, when
restricted to a single point x ∈ U (or if U = {x}), any frame becomes a basis of
Tx(M). An evident example of a frame on a coordinate neighborhood U is the
frame {∂/∂xi} associated with some coordinates {xi} on U (see [15, p. 10], [5,
p. 10], or Section 2).

Taking into account the above-said, as well as the argumentation in the
references cited, we accept the following definitions (cf. Subsection 2.3). If a single
vector space of finite dimension n is concerned, the concepts ‘basis’ and ‘frame’
are synonyms and mean an arbitrary set on n linearly independent vectors in it.
A frame on (over) U ⊆ M , M being manifold, is a set of dimM vector fields on U

1Note, the given in [12, p. 9] definition (of Hamel) basis covers the case of infinite, countable
or not, dimension too.

2For n = 3 (resp. n = 4) a frame is often called triad (resp. tetrad) or dreibein (resp. vierbein)
depending one prefers Greek or German.
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such that at each x ∈ U they form a basis in Tx(M), i.e., it is a field of bases over
U .3 So, a frame at (on, over) x and basis in Tx(M) are synonyms, i.e., equivalent
concepts. Further, in Chapter IV, we shall see that the notion of ‘frame’ admits a
natural generalization on vector bundles.4

Let {Ei, i = 1, . . . ,dimM} be a frame on an open subset U in M . It is called
holonomic (resp. anholonomic) [19, p. 99ff], [11] if the basic fields Ei commute
(resp. do not commute), i.e., if Ci

jk = 0 (resp. if Ci
jk 
= 0 for at least one triple

(i, j, k)) where Ci
jk define the commutators

[Ej , Ek] := Ej ◦ Ek − Ek ◦ Ej =: Ci
jkEi. (8.1)

The functions Ci
jk are known as structure functions of the frame {Ei} (of the Lie

algebra of vector fields). The frame {∂/∂xi}, associated with local coordinates
{xi} in a neighborhood U , is holonomic,[

∂

∂xi
,

∂

∂xj

]
≡ 0. (8.2)

Therefore, if we expand a frame {Ei} on U over {∂/∂xi}, Ei = Bj
i ∂/∂xj with a

B := [Bj
i ] being nondegenerate matrix-valued C1 function on U , the holonomicity

of {Ei} depends entirely on the functions

Ci
jk = (B−1)i

m

(
Bl

j

∂

∂xl
Bm

k − Bl
k

∂

∂xl
Bm

j

)
= (B−1)i

m2Bl
[j

∂

∂x|l| B
m
k] = (B−1)i

m2E[jB
m
k]

= 2Bm
[j Ek](B−1)i

m = −2Bm
j Bn

k

∂

∂x[m
(B−1)i

n] (8.3)

where over indices included in square brackets antisymmetrization is assumed,
which up to a constant, equal to (−2), coincides with the components of the (field
of the) object of anholonomicity (anholonomy) [19, p. 100], [70, Chapter IV, § 7].5

From (8.1) one can easily find the transformation law of the functions Ci
jk

under a change {Ei} �→ {E′
i = Aj

iEj}, A = [Aj
i ] being non-degenerate matrix-

valued function, of the frame {Ei}:
Ci

jk �→ C′ i
jk = (A−1)i

l [A
m
j An

kCl
mn + 2E′

[j(A
l
k])] (8.4)

3Said differently, in terms of vector bundles, a frame on U is a section of the frame bundle
(= bundle of frames) restricted to U . The frame bundle over M is (cf. [23, 27], see also [5, p. 139
and Section 9.11]) a vector bundle with base M and whose fibre over x ∈ M consists of all bases
in Tx(M).

4The just presented definition of frame corresponds to the case of the tangent bundle
(T (M), π, M) over M (see Subsection IV.2.4). Here T (M) :=

⋃
x∈M Tx(M) and π : T (M) → M

is such that π(X) := x if X ∈ Tx(M).
5The (index) notation of J.A. Schouten is practically out of usage our days.
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where [E′
j , E

′
k] := E′

j ◦ E′
k − E′

k ◦ E′
j =: C′ i

jkEi. Notice, (8.3) corresponds to (8.4)
with Ei = ∂

∂xi , Ci
jk = 0, A = B, and Ci

jk for C′ i
jk.

We have to emphasize that the holonomicity is a property of the frames,
not of a particular basis. This is clear from (8.3) in which partial derivatives with
respect to the local coordinates (or to frame’s vector fields) enter. The holonomicity
characterizes the frames with respect to the local existence of coordinates the
associated to which (holonomic) frame coincides with the initial one (in some
open subset of the manifold). Evidently (see (8.2)), only the holonomic frames can
admit such coordinates. The opposite assertion is (locally) true too.

Proposition 8.1. A frame {Ei} on a neighborhood U is holonomic iff locally exist
coordinates {yi} such that locally Ei = ∂/∂yi.

Proof. Let {Ei} be the frame dual to {Ei},6 i.e., Ei = (Ei)∗, Ei(Ej) := δi
j .

Hence, if locally Ei = Aj
i∂/∂xj, then Ej = (A−1)j

kdxk, dxk := (∂/∂xk)∗. We are
interested in the existence of local coordinate {yi} such that Ei = ∂/∂yi which is
equivalent to Ei = dyi, i.e., Ei must be locally exact 1-forms [13, p. 108], [2, p. 55].
A necessary and sufficient condition for this is dEi = 0 (cf. Poincaré’s lemma [2,
p. 55], [13, p. 121]), i.e.,

∂

∂xl

(
A−1

)i

k
− ∂

∂xk

(
A−1

)i

l
= 0

which expresses the fact that we must have ∂yi/∂xk =
(
A−1

)i

k
. A simple matrix

computation verifies that the last conditions hold iff Ci
jk = 0. �

Sometimes a frame is called holonomic if it coincides with the coordinate
frame generated by some local coordinates. Respectively, a frame is called locally
holonomic if every point in its domain has a neighborhood in which the frame
coincides with the coordinate frame generated by some local coordinates in this
neighborhood. By Proposition 8.1, the concept ‘holonomic frame’ in our sense
and ‘locally holonomic frame’ in the above sense are identical. and will be used
further. The difference is that the latter emphasizes on the local link between the
holonomic frames and the local coordinates.

Proposition 8.1 suggests a definition of the property ‘holonomicity’ on arbi-
trary set U , not only on neighborhoods.

Definition 8.1. A frame {Ei} defined on a neighborhood U containing or equal
to a set U , U ⊇ U , is called holonomic on U , if there exists a chart (V, x) of M
such that V ⊇ U and Ei|U = ∂

∂xi

∣∣
U

, i.e., the frame {Ei} coincides on U with the
coordinate frame generated by some local coordinates.

If U is a neighborhood and U = U , by virtue of Proposition 8.1, this definition
agrees with the afore-presented one.

6It is a frame in the cotangent bundle (T ∗(M), π, M)|U with π−1(p) := T ∗
p (M), p ∈ M (see

Subsection IV.2.4 below).
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Definition 8.2. A frame {Ei} defined on an open subset of M containing or equal
to a given set U is called locally holonomic on U if for every q ∈ U exists a chart
(V, x) of M such that V � q and Ei|U∩V = ∂

∂xi

∣∣
U∩V

, i.e., on U the frame {Ei}
locally coincides with the frame assigned to some local coordinates.

If U is a neighborhood, the local holonomicity agrees with the holonomicity,
as defined above. But if U is not a neighborhood, e.g., if it is a submanifold of M ,
the local holonomicity is weaker concept than the holonomicity.

The concept of a frame is especially useful in physics where the concept of a
basis (of a single space) is rarely utilized. More precisely, in physics the term frame
of reference or reference frame is applied. This is a set of (real or mathematical)
objects with respect to which is described the behavior, e.g., the evolution in
time, of some physical system(s). Such reference objects are practically always
defined on some subset of the space(-time) which is frequently a neighborhood
or a curve (path) and very seldom chosen as a single point. Taking into account
that the frames are used for referring (describing) of vector fields,7 which in turn
may represent some physical fields, the analogy between frames and reference
frames is evident. The general idea is that to the physical concept reference frame
there corresponds the mathematical concept frame (in some vector bundle). (See,
e.g., [71], where a good analysis of different kinds of reference frames can be found.)

9. Conclusion

This chapter, as we saw, has an introductory character. It does not contain new
original material except the implicit description of the frames normal at a single
point of a Riemannian manifold (Section 6) and partially the investigation of
normal frames/coordinates in Section 7.

After the presentation of the minimum knowledge from the differential ge-
ometry, required for our work, we started with the initial ideas concerning normal
frames and coordinates. The basic results here are: only torsionless linear connec-
tions (may) admit normal coordinates; if the torsion is non-zero, normal frames
(may) exit, but normal coordinates do not. If normal frames exist, they are parallel
and are connected with linear transformations whose matrices are constant under
the action of their basic vector fields.

The Riemannian and geodesic coordinates, which are normal at their origins,
were pointed out as first examples of normal coordinates.

7In the general case they are replaced with sections of vector bundles.
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1. Introduction

This chapter presents a complete exploration of the problems linked to the exis-
tence, uniqueness, and construction of normal coordinates and frames for manifolds
endowed with a linear connection, with or without torsion. The review of the lit-
erature dealing with normal coordinates is mixed with new results. Such are, first
of all, the ones concerning normal frames, connections with non-vanishing torsion,
and the complete constructive description of the normal coordinates, if any.

The methods for description of normal coordinates/frames on Riemannian
manifolds can mutatis mutandis be transferred on arbitrary manifolds, real or com-
plex (K = R, C),1 endowed with linear connection. The possibility for this is hid-
den in the fact that the existence and properties of the normal coordinates/frames
on a Riemannian manifold is intrinsically connected with the properties of the
Christoffel symbols, i.e., with the Riemannian connection, not with the particular
metric generating them. After this situation was clearly understood, somewhere
in 1922–1927 [50, 72–74] (see [19, p. 155] for other references), the attention of
the mathematicians, working in the field, was completely switched to the explo-
ration of normal coordinates on manifolds with linear connections. Practically
only the symmetric (torsionless) case has been investigate (see the comments af-
ter Remark I.5.4 on page 41). Some random works, like [44, 75], dealing with the
asymmetric case (non-zero torsion) do not add nothing new as they simply note
that the symmetric parts (I.3.9) of the connection coefficients (in coordinate frame)
are coefficients of a symmetric linear connection to which the known results for
torsionless connections are applicable.

Below in this chapter, in more or less modern terms and notation, are re-
viewed all results concerning the existence of normal coordinates/frames on man-
ifolds endowed with symmetric linear connection. It contains a number of original
new results too.

At first (Section 2), we concentrate on coordinates or frames normal at a
single point. We present the known classical methods in this field [18, 19, 70] and
then, modifying the methods that will be given in Chapter III in full generality,
we present a full description of these coordinates/frames.

In Section 3 the attention is turned on the coordinates or frames normal
along paths without self-intersections. For symmetric linear connections, we give
a detailed description of the Fermi coordinates as the first known coordinates of
this kind with [19] being our basic reference. Then, modifying the methods devel-
oped for similar but more general problems (see Chapter III and [76]), we derive
a complete description of all coordinates or frames normal along paths without
self-intersections or along locally injective paths in manifolds with symmetric or,
respectively, arbitrary linear connections.

Several pages deal with problems concerning normal frames and coordinates
on submanifolds with maximum dimensionality (Section 4), in particular on neigh-

1In the literature is often supposed K = R but this does not influence the results.
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borhoods and on the whole manifold. We prove that such frames or coordinates
exist iff the connection is (locally) respectively flat or flat and torsionless. A com-
plete description of the normal frames and coordinates in these cases is presented.
We also point to some links between normal frames and parallel transports for flat
linear connections.

Section 5 explores the problems of existence, uniqueness, and construction
of frames or coordinates normal on arbitrary submanifolds. The classical results
of [55] are reproduced in details using modern notation. Meanwhile, the corre-
sponding proofs are improved, some results are generalized for arbitrary connec-
tions, with or without torsion, and new ones are presented. Next, we provide
a complete constructive description of all frames (resp. coordinates) normal on
submanifolds of a manifold with arbitrary (resp. torsionless) linear connection.
Amongst a number of general results, we prove that normal on a submanifold
frames (resp. coordinates) exist iff the parallel transport is path-independent along
paths lying entirely in it (resp. and the connection is torsionless).

Section 6 contains instances and exercises illustrating the general theory of
this chapter. Explicit expressions for frames and coordinates normal at a single
point in and along a great circle on a two-dimensional sphere are presented in a
case of the Riemannian connection induced from the Euclidean space in which the
sphere is embedded. Some problems connected with frames/coordinates normal
for Weyl connections are investigated. All frames/coordinates normal in the one-
dimensional case are explicitly described. A similar problem is solved along a
geodesic path in a 2-dimensional manifold. All coordinates normal at a point in
Einstein-de Sitter spacetime are found.

A brief recapitulation of the above items can be found in Section 7.

2. The case at a single point

The coordinates/frames that are normal at a single point are the most simple and
widely known ones. The proof of existence of coordinates/frames normal at a single
point of Riemannian manifold presented in Section I.6 can be transferred, practi-
cally without changes, to manifolds endowed with symmetric linear connections.
The main steps of the so-obtained proof are outlined below in Subsection 2.1; for
details see [19, p. 155–159], [70, Chapter V, Section 3], or [18, Section 4.3].1

2.1. Old classical method

Let M be a C∞ K-manifold, K = R, C, endowed with C∞ linear connection
∇. Let p ∈ M , V (p) be a normal neighborhood of p, (U, x) be a chart with
U � p, and {xi} be the local coordinates on U associated with (U, x). For every

1In the last book, the symmetry condition is dropped but this does not effect the general
conclusions.
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q ∈ U ∩ V (p) there exists a unique geodesic γ : J → U ∩ V (p) such that γ(s0) = p
and γ(s) = q for some (unique) s0, s ∈ J . As the connection is of class C∞,
such are all geodesics, in particular γ. Therefore in {xi} the expansion (I.6.3) with
γi = xi◦γ is valid. Successively differentiating the equation of geodesics (I.3.23), we
can express the derivatives dnγi

dsn

∣∣
s0

, n ∈ N\{1} via γ̇(s0) and the partial derivatives
of the connection’s coefficients Γi

jk at p = γ(s0). The result is (cf. (I.6.4))

γi(s) = γi(s0) + γ̇i(s0)(s − s0) − 1
2
Γi

jk(γ(s0))γ̇j(s0)γ̇k(s0)(s − s0)2

−
∞∑

n=3

1
n!

Γi
i1...in

(γ(s0))γ̇i1(s0) . . . γ̇in(s0)(s − s0)n (2.1)

where the Γ’s are defined through the recurrent relations (I.6.5) in which Γi
jk must

be replaced with Γi
(jk) = 1

2

(
Γi

jk + Γi
kj

)
, i.e., with the symmetrized connection

coefficients.
Define a coordinate system {yi} on U∩V (p) � p = γ(s0), q = γ(s) by putting

yi(q) = γ̇(s0)(s − s0). (2.2)

The coordinates yi are similar to the Riemannian coordinates of Section I.6 and
are called Riemannian normal coordinates with origin at the point p; obviously
yi(p) = 0. The explicit relations between {yi} and {xi} is (see (2.1) and cf. (I.6.9))

xi(q) = xi(p) + yi(q)− 1
2
Γi

jk(p)yj(q)yk(q)−
∞∑

n=3

1
n!

Γi
i1...in

(p)yii(q) . . . yin(q).

(2.3)

Since the Jacobian of the change {xi} �→ {yi} at p is

det
[ ∂yi

∂xj

]∣∣∣
p

= det
[∂xi

∂yj

]−1∣∣∣
p

= det
[
δi
j

]−1 = 1

and yi(p) = 0, the transition {xi} �→ {yi} is regular in some neighborhood W of
p in which the series (2.3) is convergent and invertible with respect to the y’s.2

Consequently the Riemannian normal coordinates are well-defined in the domain
W ∩ U ∩ V (p) which is a normal neighborhood of p. In it the only common point
of every two geodesics though p is the point p itself. Thus we have proved the
following result which is an evident generalization of Proposition I.6.2.

Proposition 2.1. Every point of a C∞ manifold with C∞ linear connection has a
normal neighborhood in which Riemannian normal coordinates with origin at that
point can be introduced.

2This is a consequence of the implicit function theorem; e.g., see [77, Chapter III, § 8], [7,
Sections 1.37 and 1.38], [78, Chapter 10, Section 2], [79, Theorem 9.18].
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In the domain of Riemannian normal coordinates, any geodesic through their
origin has an equation like (2.2), i.e., the geodesics in these coordinates are locally
described by linear equations like the straight lines in Rn.

The adjective ‘normal’ in the Riemannian normal coordinates is justified by
the following results.

Proposition 2.2. The symmetric parts of the connection coefficients vanish at the
origin of the Riemannian normal coordinates

Proof. Using (2.1), we get:

∂xi

∂yj

∣∣∣
p

=
∂yi

∂xj

∣∣∣
p

= δi
j ,

∂2xi

∂yj∂yk

∣∣∣
p

= −Γi
(jk)(p) = −1

2
(
Γi

jk(p) + Γi
kj(p)

)
. (2.4)

Inserting these equations in (I.3.6), we find the coefficients yΓi
jk(p) of ∇ in {yi}

at p:

y
Γi

jk(p) = Γi
jk(p) − Γi

(jk)(p) = Γi
[jk](p) =

1
2
(
Γi

jk(p) − Γi
kj(p)

)
.

Thereof yΓi
(jk)(p) = Γi

([jk])(p) = 0. �

Corollary 2.1. If a C∞ manifold is endowed with symmetric C∞ linear connec-
tion, the connection’s coefficients vanish at the origin of Riemannian normal co-
ordinates.

Proof. See Proposition 2.2. �
Thus the existence of normal coordinates/frames at a single point in the

symmetric C∞ case is proved.

Example 2.1. Consider a C∞ symmetric linear connection on C∞ manifold M .
Let p ∈ M and in a chart (U, x) with U � p the only non-vanishing coefficient
of the connection at p to be Γ1

11(p) = 1. By (I.6.5), the only non-zero value at
p of the functions Γi

i1...in
, with n ≥ 3, is Γ1

1 . . . 1︸ ︷︷ ︸
n−times

(p) = (−1)n1 × · · · × (n −

1) = (−1)n(n − 1)!. Substituting these equations into (2.3), we get the following
explicit connection between the coordinates {xi}, associated with (U, x), and the
Riemannian normal coordinates {yi} with origin at p:

x1(q) = x1(p) + ln(1 + y1(q))

xi(q) = xi(p) + yi(q) for i ≥ 2,

from which the Riemannian normal coordinates can be expressed as

y1(q) = exp(x1(q) − x1(p)) − 1

yi(q) = xi(q) − xi(p) for i ≥ 2.
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Notice, the Riemannian normal coordinates are ‘more than normal’ at their
origin: at that point, the equations (I.6.11) hold with Γi

jk replaced by Γi
(jk). The

proof of this assertion is identical with the one of (I.6.11) in Section I.6.
Taking the above into account, we see that the equations of geodesics through

p in Riemannian normal coordinates is

γi(s) = γi(s0) + γ̇i(s0)(s − s0). (2.5)

Exercise 2.1. Prove that a path given via the last equation in Riemannian normal
coordinates is a geodesic path through their origin.

A conclusion follows from the above: a path through the origin of the Rie-
mannian normal coordinates is (locally) a geodesic iff in them it is represented
with linear equations with respect to its parameter. Said differently, such paths
are geodesics iff they are inverse images (with respect to the local coordinates) of
the straight lines through a fixed point in Kdim M .

According to [19, p. 158] and [53, p. 59], the Riemannian normal coordinates
for manifolds with symmetric linear connections, considered on them as coordi-
nates normal at a given point, were first introduced in 1922 by O. Veblen [72].

Let {yi} be Riemannian normal coordinates on C∞ manifold endowed with
symmetric C∞ linear connection and p and U be their origin and domain respec-
tively. By the definition of normal coordinates (see Section I.5), the defined on
U frame { ∂

∂yi } is normal at p. Consequently, according to Proposition I.5.2, the

set of all frames on U normal at p is {Ei = Aj
i

∂
∂yj } where the non-degenerate

matrix-valued function A := [Aj
i ] is such that ∂A

∂yi |p = 0. (If required, the frames
{Ei} can be extended outside U in completely arbitrary ways.) As the point p
is arbitrary, in this way we have obtained a complete description of the frames
normal at a single point of a C∞ manifold endowed with symmetric C∞ linear
connection.3

It is almost self-evident, the Riemannian normal coordinates are not the only
local coordinates normal at some point in the symmetric case. For example, we can
define in a coordinate neighborhood U of p ∈ M the geodesic normal coordinates
{zi} through the series (cf. (I.6.13))

xi(q) = xi(p) + zi(q) − 1
2
Γi

jk(p)zj(q)zk(q) −
∞∑

n=3

1
n!

ci
i1...in

zi1(q) · · · zin(q) (2.6)

where {xi} are some coordinates in U , q ∈ U , zi(p) := 0, and ci
i1...in

= ci
(i1...in) ∈

K. As ∂xi

∂yj |p = δi
j , there is neighborhood V ⊆ U of p in which (2.6) is conver-

gent and invertible, i.e., {zi} are really coordinates in V . Repeating the proof of
Proposition 2.2, we get (cf. (2.4)) zΓi

jk(p) = Γi
[jk](p). Therefore zΓi

jk(p) = 0

3This description of the frames normal at a single point is implicit; for the explicit one, see
Theorem 2.3 on page 82.
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iff Γi
[jk](p) = 0, etc. Obviously, the choice ci

i1...in
= Γi

i1...in
(p) returns us to the

Riemannian normal coordinates.

Example 2.2. Let the only non-vanishing values of Γi
jk(p) and ci

i1...in
be Γ1

11 =
c1

1...1 = 1. Then (2.6) reduces to the system

x1(q) = x1(p) + 1 + 2z1(q) − ez1(q)

xi(q) = xi(p) + zi(q) for i ≥ 2,

which is invertible relative to {zi} everywhere in the domain U of {xi}.

2.2. Complete description

The above-presented way for introduction of normal coordinates is the historically
established one. Now we are going to modify it in order to obtain a full description
of all coordinates normal at a given point. The first step in this direction is to
notice that, due to the definition of normal frames/coordinates, the utilization of
the geodesics in the construction of coordinates normal at a single point is not
necessary. This is a useful tool but it does not always work! For instance, as we
shall see, the geodesics may not exist (e.g., if the connection is not continuous)
while coordinates normal at a point exist. Also, we find too strong the requirement
for the underlying manifold to be of class C∞.

Proposition 2.3. Every point p of a C3 manifold with linear connection has a neigh-
borhood in which exist coordinates such that the symmetric parts of the connection
coefficients in them vanish at p. All such coordinates are given via equation (2.11′)
below in which the coordinates {xi} are arbitrary, [bi

j ] is non-degenerate constant
matrix, and the C3 functions bi

jkl together with their partial derivatives are bounded
in the domain of {yi}. The inverse transformation {yi} → {xi} is given by equa-
tion (2.11) below with [ai

j ] = [bi
j ]
−1.

Proof. Let M be a C3 manifold endowed with linear connection ∇ on which we do
not impose any differentiability conditions. Choose an arbitrary point p ∈ M and
charts (U, x) and (V, y) such that p ∈ U∩V 
= ∅. As we know from Subsection I.2.1,
the local coordinates xi(q) and yi(q) of every point q ∈ U∩V are connected via C3

functions yi(q) = f i
(
x1(q), . . . , xdim M (q)

)
, or f i = ri ◦ y ◦ x−1 with ri being the

standard coordinate functions on K
dim M . Since f i and

(
f i
)−1 are C3 functions,

there exist numbers ai
j , a

i
jk ∈ K and C3 functions ai

jkl : U∩V → K, which together
with their partial derivatives are bounded on U ∩ V , such that

xi(q) = xi(p) + ai
j [y

j(q) − yj(p)] + ai
jk[yj(q) − yj(p)][yk(q) − yk(p)]

+ ai
jkl(q)[y

j(q) − yj(p)][yk(q) − yk(p)][yl(q) − yl(p)]. (2.7)
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By virtue of the above-said, this formula is invertible on U ∩ V with respect to
yi(q) which can be expressed in a similar way as functions of {xi(q)}:

yi(q) = yi(p) + bi
j[x

j(q) − xj(p)] + bi
jk[xj(q) − xj(p)][xk(q) − xk(p)]

+ bi
jkl(q)[x

j(q) − xj(p)][xk(q) − xk(p)][xl(q) − xl(p)], (2.8)

where bi
j , b

i
jk ∈ K are constants and bi

jkl : U ∩V → K are of class C3 and they and
their first partial derivatives are bounded on U ∩ V .

Now the problem, which is central for us, is: given a point p and coordinates
{xi}, can a chart (V, y) be chosen so that {yi} are normal at p? As one can expect,
the answer is positive if the connection is symmetric.

From (2.7) and (2.8), we derive:

∂xi

∂yj

∣∣∣
p

= ai
j ,

∂yi

∂xj

∣∣∣
p

= bi
j,

∂2xi

∂yjyk

∣∣∣
p

= 2ai
(jk),

∂2yi

∂xjxk

∣∣∣
p

= 2bi
(jk) (2.9)

where the matrices [ai
j ] and [bi

j ] are non-degenerate as a consequence of the in-

vertability of (2.7) and (2.8) at p. Using the equality ∂xi

∂yk
∂yk

∂xj = δi
j and the one

obtained from it by differentiation with respect to xl, we find from (2.9)

ai
kbk

j = δj
i ⇐⇒ [bi

k] = [ai
k]−1,

ai
(mn)b

m
l bm

j + ai
kbk

(jl) = 0 ⇐⇒ bi
(jk) = −bi

la
l
(mn)b

m
j bn

k .
(2.10)

Let xΓi
jk and yΓi

jk be the coefficients of ∇ in {xi} and {yi} respectively. Applying
the transformation laws (I.3.6) and (2.9), we get at p:

y
Γi

jk(p) =
(
[ai

j ]
−1

)i

l

(
am

j an
k

x
Γl

mn(p) + 2al
(jk)

)
.

So, at p we can obtain yΓi
(jk)(p) = 0 if and only if 2al

(jk) = −am
j an

k

xΓl
mn(p)

which, due to (2.10), is equivalent to 2bi
(jk) = bi

l

xΓl
jk(p).4 Substituting the last

equation into (2.7), we see that all coordinates {yi} for which yΓi
(jk)(p) = 0, if

such exist, are obtainable from fixed coordinates {xi} by inverting the equation

xi(q) = xi(p) + ai
j [y

j(q) − yj(p)]

− x
Γi

(mn)(p)am
j an

k [yj(q) − yj(p)][yk(q) − yk(p)]

+ ai
jkl(q)[y

j(q) − yj(p)][yk(q) − yk(p)][yl(q) − yl(p)] (2.11)

on some subneighborhood W � p of U . By virtue of (2.8), this inversion results in

yi(q) = yi(p) + bi
j[x

j(q) − xj(p)]

+ bi
l

x
Γl

(jk)(p)[xj(q) − xj(p)][xk(q) − xk(p)]

+ bi
jkl(q)[x

j(q) − xj(p)][xk(q) − xk(p)][xl(q) − xl(p)]. (2.11′)

4We cannot set
y
Γi

jk(p) = 0 or
y
Γi

[jk]
(p) = 0 unless ∇ is torsionless at p.
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Here ai
j , b

i
j ∈ K, det[ai

j ] 
= 0,∞, [bi
j] = [ai

j ]
−1, and the C3 functions ai

jkl, b
i
jkl : W →

K together with their partial derivatives are bounded on W . Since the matrix
(the Jacobian at p)

[
∂xi

∂yj |p
]

=
[
ai

j

]
is non-degenerate, by the implicit function

theorem (see [77, Chapter III, § 8], [7, Sections 1.37 and 1.38], or [78, Chapter 10,
Section 2]), there exists a neighborhood W of p in which (2.11) defines yi as
unique C3 functions of xi. Hence, in the neighborhood V = U ∩ W � p, the
mappings {xi} �→ {yi} and {yi} �→ {xi}, defined via (2.11) and (2.11′) in which
xi(p) and yi(p) are fixed numbers, are C3 diffeomorphisms. This ends to proof of
Proposition 2.3. �

If we specify the connection to be symmetric, from Proposition 2.3, we obtain
a theorem describing all local coordinates normal at a given point.

Theorem 2.1. Every point p of a C3 manifold endowed with symmetric linear
connection has a neighborhood on which coordinates normal at p exist. All normal
coordinates {yi} in the mentioned neighborhood are given via equation (2.11′) in
which the coordinates {xi} are arbitrary, [bi

j] is non-degenerate constant matrix,
and the C3 functions bi

jkl together with their partial derivatives are bounded in the
domain of {yi}. The inverse transformation {yi} → {xi} is given by (2.11) with
[ai

j ] = [bi
j]
−1.

This theorem gives a complete description of all normal coordinates at a
single point of a C3 manifold with symmetric linear connection. Analogous result
concerning the normal frames is provided by the following theorem.

Theorem 2.2. Let {yi} be coordinates normal at a point p in a C3 manifold with
symmetric linear connection. In the domain U of {yi} all frames normal at p
have the form

{
Ei = Aj

i
∂

∂yj

}
, where the non-degenerate matrix-valued function

A = [Ai
j ] is such that ∂A

∂yj

∣∣
p

= 0.5 Outside U the frames can be extended arbitrarily.
All of these frames normal at p are holonomic at p but in U\{p} they need not to
be such.

Proof. See Propositions I.5.2 and I.5.3. �

Remark 2.1. In the notation of Theorem 2.3 on the next page below, the explicit
form of A is given via (2.14) with yi for xi and Γi

jk(p) = 0 (as {yi} is normal at
p), i.e.,

A(q) = A0 + Ajk(q)[yj(q) − yj(p)][yk(q) − yk(p)]. (2.12)

For the proof, see the proof of Theorem 2.3 below. The frames {Ei} holonomic on
U and normal at p are such that Ei = ∂

∂zi for some coordinates zi on U which are

5In the notation of Theorem 2.3 on the following page, the explicit form of A is given via (2.14)
with yi for xi; for the proof, see the proof of Theorem 2.3 below.
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normal at p. In this case Ai
j = ∂yi

∂zj which, due to (2.12), implies

zi(q) = yi(p) + (A−1
0 )i

j(q)[y
j(q) − yj(p)]

+ bi
jkl(q)[y

j(q) − yj(p)][yk(q) − yk(p)][yl(q) − yl(p)], (2.13)

where bi
jkl : U → K are of class C1 and they and their partial derivatives are

bounded on U . Of course, this result is a special case of (2.11′) as {yi} are normal
at p and the connection considered is symmetric.

If the manifold and its connection are of class C∞, the choice ai
j = δi

j and
the expansion of ai

jkl into a power series, with suitable coefficients, brings us back
to the results of Subsection 2.1.

Theorem 2.2 can easily be generalized to arbitrary linear connections, with
or without torsion:

Theorem 2.3. Let M be a C2 manifold endowed with linear connection. For every
point p ∈ M there exist frames normal at p. Moreover, if (U, x) is a chart with
U � p, then in U all frames normal at p are

{
Ei = Aj

i
∂

∂xj

}
where A := [Ai

j ] : U →
GL(dim M, K), with GL(n, K) being the group of all n×n invertible matrices with
entries in K, is non-degenerate, of class C1, and its general form is

A(q) =
{
1− Γj(p)[xj(q) − xj(p)]

}
A0

+ Ajk(q)[xj(q) − xj(p)][xk(q) − xk(p)] q ∈ U. (2.14)

Here Γi are the matrices of the connection coefficients, A0 is constant and non-
degenerate matrix, and Ajk are C1 matrix-valued functions on U such that they
and their partial derivatives are bounded at p.

Proof. A frame {E′
i} is normal at p iff A satisfies (I.5.4) with {p} for U and ∂

∂xi

for Ei, i.e., ∂A
∂xi

∣∣
p

+ Γi(p)A(p) = 0. Supposing A to be of class C2, we can write
the expansion

A(q) = A0 + Ak[xk(q) − xk(p)] + Ajk(q)[xj(q) − xj(p)][xk(q) − xk(p)],

where A0, Ai ∈ GL(dim M, K) are constant, A0 is non-degenerate, and the C1

matrix-valued functions Ai
jk on U together with their first partial derivatives are

bounded at p. From the last equation, we get A(p) = A0 and ∂A
∂xi

∣∣
p

= Ai and
hence (see above) Ai = −Γi(p)A0, the substitution of which into the last displayed
equation gives (2.14). �

Theorem 2.3 gives a complete constructive description of all frames normal
at a single point.

The above description of the normal coordinates/frames is an adaptation of
the developed in [80] methods (see also Chapter III) for the case of manifolds with
linear connections.
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2.3. Modern classical method

In the modern books on differential geometry, the normal coordinates as described
in Subsection 2.1 are most often not mentioned at all; see, e.g,: [11, Chapter III,
§ 8], [12, pp. 313–314], [10, p. 110], [28, p. 133], [1, § 6.7], and [8, § 3.8, (ii)]. Nowa-
days the coordinates normal at a point are introduced by means of the exponential
mapping (see Subsection I.3.4), like in the references just cited. This method is
practically identical with the introduction of Riemannian normal coordinates, pre-
sented in Subsection 2.1, only other terminology and concepts are involved. It is
briefly outlined below.

Let M be a C2 manifold, p ∈ M , and (U, ϕ) be a chart with U � p. The chart
(U, ϕ) or the associated with it local coordinates {ϕi} are called normal at p (with
respect to p) if the inverse images of the straight lines through ϕ(p) ∈ Kdim M are
geodesics in M through p. This definition, as we shall see further, agrees with our
previous terminology (see Definition I.5.2).

Let a basis {ei} in Tp(M) be given. Since the mapping ν : Tp(M) → Kdim M

defined by X �→ (X1, . . . , Xdim M ) for X = X iei ∈ Tp(M) is a linear isomorphism,
the exponential mapping can be used to define normal coordinates in a neighbor-
hood of p. The chart (Tp(M), ν) of Tp(M) provides a natural coordinate system on
Tp(M). Let V 0

p ⊆ Tp(M) and V (p) ⊆ M be normal neighborhoods such that the
exponential mapping expp : V 0

p → V (p) is a diffeomorphism (see Definition I.3.6).
Consider a local chart (V (p), x) with

x := ν ◦ exp−1
p : V (p) → K

dim M . (2.15)

If γp,X : J → V (p), J � 0 ∈ R is the unique geodesic with γp,X(0) = p and
γ̇p,X(0) = X , its current coordinates in the coordinate system {xi} are

γi
p,X(s) := xi(γp,X(s)) = (ri ◦ x)(γp,X(s)) = (ri ◦ ν ◦ exp−1

p ) ◦ expp(sX)

= ri(ν(sX)) = ri(sX1, . . . , sXdimM ) = sX i, s ∈ J

where (I.3.29) is used and {ri} are the standard coordinate functions on Kdim M .
Reversing the last equalities, we see that any path given by γi(s) = sX i in
{xi} is a geodesic through p. Consequently {xi} are normal coordinates at p
according to the last definition. In case of symmetric connection, the coordi-
nates {xi} are also normal according to Definition I.5.2. Indeed, if γ : J → M
is a geodesic through p, in {xi} we have γi(s) = sX i for some X i ∈ K, the
substitution of which in the geodesic equation (I.3.23′) on page 32 results in
Γi

(jk)

(
x−1(sX1, . . . , sXdimM )

)
XjXk = Γi

(jk)(γ(s))XjXk ≡ 0 with Γi
jk being

the connection coefficients in {xi}. In particular we have

0 = Γi
(jk)(p)XjXk = Γi

(jk)(x
−1(0))XjXk

as p = x−1(0), 0 ∈ Kdim M . Since X is completely arbitrary, such are X i, and
consequently

Γi
(jk)(p) :=

1
2
(
Γi

jk(p) + Γi
kj(p)

)
= 0.
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So, if the connection is symmetric, then Γi
jk(p) = 0, i.e., {xi} are normal coordi-

nates at p in the sense of Definition I.5.2.
Comparing the above results with the ones in Subsection 2.1, we see that

in the case of a C∞ manifold with C∞ linear connection the coordinates {xi}
are just the Riemannian normal coordinates introduced in Subsection 2.1. For
this reason, we find it appropriate and convenient to call the coordinates defined
by (2.15) Riemannian normal coordinates, not simply normal as in the literature
cited, with an exception of [8, § 3.8, (ii)], and at the beginning of this subsection;
thus we reserve the adjective ‘normal’ for frames and coordinates described via
Definitions I.5.1 and I.5.2.

At the end, let us note that in [8, § 3.8, (ii)] the local coordinates, described
by (2.15) (with ı := ν−1 being a linear isometry), are applied to a proper Rieman-
nian manifold (the metric being positively definite) which results to a new con-
struction of the particular Riemannian coordinates obtained by G. D. Birkhoff [50]
(see p. 48). These coordinates appear in [8, § 3.8, (ii)] under the name Riemannian
normal coordinates.

3. The case along paths without self-intersections

The first proof of existence of coordinates normal along curve without self-inter-
sections on (C∞) Riemannian manifold was given by E. Fermi in 1922 [52]. The
explicit formula for transition to the coordinates discovered by E. Fermi was
given by Levi-Civita in 1926 [81]. Analogous result on (C∞) manifold with ar-
bitrary symmetric (C∞) connection was originally published by L. P. Eisenhart
in 1927 [53, p. 64].1 These special types of coordinates are widely known as Fermi
coordinates [19, Chapter III, § 8], [8, § 3.8, (ii)]. Sometimes they are referred as
Fermi geodesic coordinates [12, p. 327]2 and very rarely as geodesic (along a curve)
coordinates [25, § 91], [44].

Since all of the proofs, known to the author, of the existence of such coordi-
nates are more or less identical at a level of ideas, i.e., a construction of particular
class of coordinates with the property required, we suggest to call Fermi coor-
dinates the special kind of coordinates normal along a path described below in
Subsection 3.1, thus reserving the term ‘coordinates normal along a path’ for a
particular realization of Definition I.5.2.

1For other original papers on this topic, see [19, p. 166].
2More precisely, in [12, p. 327] is done the following. Let γ : J → M be without self-

intersections and for some s0 ∈ J a basis {E0
i } in Tγ(s0)(M) be fixed. Define along γ a frame

{Ei} such that Ei|γ(s0) = E0
i and (∇γ̇Ei)|γ(J) = 0, i.e., {Ei} is obtained from {E0

i } by means
of parallel propagation along γ. Notice, {Ei} is defined only on γ(J); outside γ(J) it can be
extended arbitrarily. The Fermi geodesic coordinates with domain U , U ∩ γ(J) �= ∅, are local
coordinates {xi} such that ∂

∂xi |p = Ei|p for p ∈ U ∩ γ(J). Generally these coordinates are not
normal along γ in U .
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One must be aware of the fact that as ‘Fermi coordinates’ can be found coor-
dinate systems entirely different from the ones we are dealing with. For instance, in
the literature on general relativity under the name ‘Fermi coordinates’ are known
completely different coordinates which generally are not normal at all but along
a geodesic in a Riemannian manifold they are normal at their origin [62, Chap-
ter II, § 10]. More precisely, in the last case the coordinates mentioned, as defined
in [62, Chapter II, § 10], coincide with the normal coordinates introduced by
Birkhoff (see p. 48). The cause for this is that these coordinates are defined by
means of the Fermi-Walker transport [62, Chapter I, § 4] which along a geodesic
coincides with the parallel transport along it. Another example of ‘Fermi coordi-
nates’, which generally are not normal, may be found in [28, pp. 133–134]. In [55]
the term ‘Fermi coordinates’ is a synonym of our notion of ‘coordinates normal on
a submanifold’.

There are two basic methods for proving the existence of coordinates normal
along paths without self-intersections. The first one is to construct a specific co-
ordinate system in a neighborhood of the path and then, by explicit calculation,
to show that along the path given the coordinates constructed are normal. The
second one consist in finding a particular (class of) solution of equation (I.5.4′) on
page 41 along a given path. A typical example of the former method is given in
Subsection 3.1, while a modification of the latter method is presented in Subsec-
tion 3.2

Below in this section, the manifold M will be considered as real one, i.e., if
it is complex, it will be regarded as real one of dimension 2 dimM = 2 dimC M =
dimR M (see page 7).3 Formally we shall reflect this by writing dimR M(= dim M
if M is real and = 2 dimC M if M is complex) instead of dimM for the dimension
of M ; respectively, all Latin indices, whose range is not specified, run from 1 to
dimR M and the values of the coordinate homeomorphisms will be in RdimR M .

3.1. Fermi coordinates

Below, following [19, pp. 166–169], we shall prove the existence of coordinates
normal along a (part of a given) path without self-intersections by explicit con-
struction of concrete such coordinates. Regardless of the technical difficulties, the
idea of the proof is quite simple and consists in the following. In a neighbor-
hood of the path γ : J → M , the manifold M is (locally) represented as a direct
sum of suitable (dimR M − 1)-dimensional submanifolds Vs, one for each point
γ(s), s ∈ J . So, every point p of this neighborhood belongs to a single Vs(p) for
some unique s(p) ∈ J . Then the Fermi coordinates of p are (s(p), ξ2, . . . , ξdimR M )
where (ξ2, . . . , ξdimR M ) are the Riemannian normal coordinates of p with respect

3In this way we avoid some completely technical problems connected with the fact that the
domain of every path is a real interval by definition. Roughly speaking, if γ : J → M is C1 regular
injective path in a complex manifold M , the set γ(J) is a submanifold of M with real dimension
dimR γ(J) = 1 and complex one dimC γ(J) = 1/2, the last case, of non-integer dimension, being
out of the range of our work.
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to γ(s(p)) in Vs(p) considered as a (dimR M − 1)-dimensional submanifold of M .
The details of this construction are presented below and their aim is the formula-
tion and proof of Proposition 3.1 below and of other results presented after it. If
the reader is not interested in the technical details that follow below, he/she can
jump to the definition of Fermi coordinates, given just after equation (3.9′) below,
and next to proceed with Proposition 3.1 and the text after it.

Let γ : J → M be a C1 regular4 path without self-intersections5 in a C∞

manifold M endowed with C∞ connection ∇. Let s0 ∈ J be arbitrarily fixed
inner, i.e., not boundary, if any,6 point and (U, x) be a chart in whose domain is
γ(s0), U � γ(s0). Let X ∈ X(γ(J)) be a vector field parallel along γ with zero
component along γ̇(s0) at γ(s0), i.e.,

∇γ̇X = 0, Xγ(s0) ∈ Tγ(s0)(M)\{aγ̇(s0)|a ∈ R\{0}}
or, equivalently, we can write Xγ(s0) =

∑dimR M
i=2 X i

γ(s0)
E0

i for every basis {E0
i } in

Tγ(s0)(M) with E0
1 = γ̇(s0).

At every point γ(s) ∈ γ(J) ∩ U , s ∈ JU := {u|u ∈ J, γ(u) ∈ U}, we
consider the geodesics βs : JX → U with initial conditions βs(t0) = γ(s) and
β̇s(t0) = Xγ(s) for s ∈ JU , some fixed t0 ∈ JX , and arbitrary X as defined above
(i.e., for arbitrary its value Xγ(s0) ∈ Tγ(s0)(M)\{aγ̇(s0)|a ∈ R\{0}}). According
to (2.1), the expansion

βi
s(t) = γi(s) + X i

γ(s)(t − t0) −
∞∑

n=2

1
n!

Γi
i1...in

(γ(s))X i1
γ(s) . . . X in

γ(s)(t − t0)n (3.1)

is valid in the associated to (U, x) local coordinates {xi}. Here βi
s := xi ◦ βs,

γi := xi ◦ γ, X = X i ∂
∂xi

∣∣
γ(J)

, Γi
jk are the coefficients of ∇ in {xi}, and Γi

i1...in

for n ≥ 3 are defined via (I.6.5).
Let {E0

i } be a basis in Tγ(s0)(M) with E0
1 = γ̇(s0) and {E′

i} be a frame along
γ obtained from {E0

i } by parallel transportation along γ:

∇γ̇E′
i = 0 E′

i

∣∣
γ(s0)

= E0
i , E0

1 = γ̇(s0).

4A C1 path γ : J → M is regular if γ̇(s) �= 0,∞ for all s ∈ J (see p. 14).
5A point p ∈ γ(J) is called self-intersection point of γ : J → M if there exist s1, s2 ∈ J such

that s1 �= s2 and γ(s1) = γ(s2) = p. Given s0 ∈ J , the number k(p) of the different values s ∈ J
with s �= s0 and γ(s) = γ(s0) = p is called self-intersection number of γ at p = γ(s0); we also
say that γ self-intersects (itself) k(p) times at p. If k(p) = 0 for all p ∈ γ(J), the path γ is said
to be without self-intersections, i.e., γ is without self-intersections if for every s1 ∈ J there does
not exist s2 ∈ J , s1 �= s2 with γ(s1) = γ(s2). In other words, γ is without self-intersections if γ
is an injective mapping.

6If J has left or/and right end (boundary) point(s) and s0 happens to be its left or right
end, some complications arise; e.g., with the definition of γ̇(s0) as a corresponding one-sided
(left or right) limit, the implicit function theorem [77, Chapter III, § 8] can not be applied in a
neighborhood of (s0, γ(s0)), etc. Generally this is not a typical situation and we exclude it for a
moment from our investigation. Later we will drop this assumption. These complications are due
to the fact that if J is closed from one or both ends, the set γ(J) is a manifold with boundary
(see Remark I.2.1 on page 6) which we treat with methods for manifolds without boundary. They
will not appear if from the beginning one starts with manifolds with boundary.
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By construction, we have (see Subsection I.3.3) X = X ′ iE′
i =

∑dimR M
i=2 X ′ iE′

i

where X ′ i are constants, X ′ i ∈ R, and X ′ 1 = 0.
In U ∩ γ(J) the expansion E′

i = Aj
i

∂
∂xi is valid for some non-degenerate

matrix-valued function A = [Aj
i ], Aj

i : U ∩ γ(J) → R. Applying (I.2.12), we get
X i = Ai

jX
′ j with X ′ 1 = 0, so (3.1) can be rewritten as

βi
s(t) = γi(s) +

dimR M∑
j=2

Ai
j(γ(s))X ′ j(t − t0)

−
∞∑

n=2

1
n!

dimR M∑
i1,...,in=2

Aj1
i1

(γ(s)) · · ·Ajn

in
(γ(s))Γi

j1...jn
(γ(s))

× X ′ i1
γ(s) . . .X ′ in

γ(s)(t − t0)n. (3.2)

Now the idea is in (a subneighborhood of) U to be constructed local co-
ordinates {x′ i} such that ∂

∂x′ i

∣∣
p

= E′
i|p and Γ′ i

jk(p) = 0 for p in (a subset of)

U ∩ γ(J). As E′
i|p = Aj

i (p) ∂
∂xj

∣∣
p
, p ∈ U ∩ γ(J), the only restriction on the con-

nection x′ i = x′ i(x1, . . . , xdimR M ) is ∂xj

∂x′ i

∣∣
p

= Aj
i (p), p ∈ U ∩ γ(J). Below we will

construct a particular realization of this link.
Let f i : JU → R, with s ∈ JU := {u|u ∈ J, γ(u) ∈ U}, be C1 functions

and f1 be C1 diffeomorphism from JU on the image f1(JU ). We shall find these
functions from the requirement that7

x′ 1(βs(t)
)

:= f1(s), x′ i(βs(t)
)

:= f i(s) + (t − t0)X ′ i, i ≥ 2 (3.3)

which is a special realization of the above general connection between {xi} and
{x′ i}.
Remark 3.1. Here and below we implicitly suppose that the family of geodesic paths
{βs} forms (for different X) an (dimR M − 1)-dimensional foliation along the path γ,
i.e., that the sets Vs := {βs(JX) where X, as defined above, is arbitrary} are such that:⋃

γ(s)∈U Vs = U , Vs ∩ Vs′ = ∅ for s �= s′, s, s′ ∈ J and Vs ∩ γ(J) = γ(s). Then for every

p ∈ U there exists only one s ∈ J such that p ∈ Vs. Equations (3.3) mean that at first
we define the coordinates of p with respect to γ(s) in Vs and then of γ(s) along γ. The
existence of such a foliation {Vs} along γ, which is overlooked in [19], is natural but not
trivial and requires corresponding proof. Rigorously we have to do the following. Let {yi}
be any coordinate system in U . In Subsection 3.2 (see the text preceding equation (3.12))
will be proved that there exist an interval J1 ⊆ J and neighborhood U1 ⊆ U such
that γ̇1

y |J1 �= 0 and γ1
y |J1 : J1 → γ1

y(J1) is diffeomorphism (γk
y := yk ◦ γ). Now, in a

neighborhood U ′
1 of γ(J1) in U1, choose {yi} such that ∂

∂yi

∣∣
γ(s)

= E′
i

∣∣
γ(s)

for s ∈ J1

and define Vs :=
{
p ∈ U ′

1|y1(p) = γ1(s)
}
.8 Then we have U ′

1 =
⋃

s∈J1
Vs, Vs ∩ Vs′ = ∅

7Generally the last condition on f1 can not be satisfied on the whole interval JU if equa-
tions (3.3) hold (see below the comment after (3.5)). If this happens to be the case, the interval
JU must be replaced by some open subinterval J ′

U ⊂ JU containing the initial point s0, J ′
U � s0.

8Such coordinates {yi} always exist – see [76, Lemma 4.1] or Lemma 5.2 on page 116 for
dimR N = 1.
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for s �= s′, s, s′ ∈ J1 and Vs ∩ γ(J1) = γ(s) for s ∈ J1. The sets Vs are (dimR M − 1)-
dimensional submanifolds of M . At last, in each Vs we take a normal neighborhood V 0

s

of γ(s) ∈ Vs and put U0
1 :=

⋃
s∈j1

V 0
s . It is evident that U0

1 is a neighborhood of γ(J1)

and for every p ∈ U0
1 there exists a unique s(p) ∈ J1 such that there is unique geodesic

βs(p) joining p and γ(s(p)) in V 0
s(p). Thus, generally, we are forced to consider instead of

U and J smaller sets U0
1 ⊆ U and J1 ⊆ J , respectively, on which the foliation mentioned

exists. Hence, to be quite precise, below we have to replace U with U0
1 and J with J1

where U0
1 and J1 are defined above. Since these ‘details’ do not change the main ideas

and formulae, we leave them and follow [19] directly.

As βs(t0) = γ(s), now the equation of γ is x′ i(γ(s)) = f i(g(ξ)), i ≥ 2, where
g :=

(
f1

)−1 and ξ := x′ 1(βs(t)) = x′ 1(γ(s)). Hence along γ the A’s and Γ’s may
be considered as functions of ξ = f1(s) as s = (f1)−1(ξ) =: g(ξ). Consequently,
using (3.3), we transform (3.2) into

βi
s(t) = γi(g(ξ)) +

dimR M∑
j=2

Ai
j

(
γ(g(ξ))

)[
x′ j(βs(t)) − f j(g(ξ))

]
−

∞∑
n=2

1
n!

dimR M∑
i1,...,in=2

Aj1
i1

(
γ(g(ξ))

) · · ·Ajn

in

(
γ(g(ξ))

)
× Γi

j1...jn
(γ(g(ξ)))

[
x′ i1(βs(t)) − f i1(g(ξ))

] · · · [x′ in(βs(t)) − f in(g(ξ))
]
. (3.4)

We will find the functions f i from the condition E′
i|p = ∂

∂x′ i

∣∣
p

for p ∈ U ∩γ(J). In

this case ∂
∂x′ i

∣∣
p

= Aj
i (p) ∂

∂xj

∣∣
p
, so that Aj

i (p) = ∂xj

∂x′ i

∣∣
p
. Taking this into account,

by differentiating (3.4) with respect to ξ = x′ 1 and x′ i, i ≥ 2, and restricting the
results on γ(JU ) = U ∩ γ(J), we obtain:

Ai
1 =

df i

ds

(
df1

ds

)−1

−
∑
j≥2

Ai
j

df j

ds

(
df1

ds

)−1

, i = 1, . . . ,dimR M

and the identities Aj
i = Aj

i for i ≥ 2, j ≥ 1. Hence the functions f i must be
chosen such that γ̇i(s) = Ai

j(γ(s))dfj(s)
ds , i, j ≥ 1. Since in

{
E′

i = Aj
i

∂
∂xj = ∂

∂x′ i

}
and

{
∂

∂xi

}
the tangent vector field γ̇ has the expansions γ̇(s) = γ̇′ i(s)E′

i|γ(s) =

γ̇i(s) ∂
∂xi |γ(s) = Ai

j(γ(s))dfj

ds

∣∣
s

∂
∂xi |γ(s), we find dfi(s)

ds = γ̇′ i(s), i.e.,

f i(s) =

s∫
s0

γ̇′ i(σ) dσ + ci = γ′ i(s) − γ′ i(s0) + ci (3.5)

with ci ∈ R being constants. In particular, if γ is geodesic, then γ̇′ i(s) = γ̇′ i(s0) =
δ1
0 as now E′

1|γ(s) = γ̇(s), so that f i(s) = δi
1(s − s0) + ci.

In (3.5) f1 : JU → f1(JU ) ⊆ R is C1 (and also C∞) diffeomorphism but
this is not the typical situation. Generally the invertability and differentiability
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of f1(s) = γ′ 1(s) − γ′ 1(s0) + c1, s ∈ JU may be a problem. If we can find some
i0 ∈ {1, . . . ,dimR M} for which f i0 : JU → f i0(JU ), given by (3.5), is C1 diffeo-
morphism, we can simply renumber the coordinates and take f i0 for f1. But this
is also an exception. In the most general case, we, on the base of the implicit
function theorem,9 can only assert that if γ′ 1 
= 0, s ∈ JU , then there exists an
open interval J ′

U ⊆ JU such that the restriction f1|J′
U

: J ′
U → f1(J ′

U ) is a C1 dif-
feomorphism.10 Thereof the special coordinates {x′ i}, given via (3.3), are defined
only for s ∈ J ′

U with f i given by (3.5).
Let us summarize the above discussion. We started with some s0 ∈ J and a

chart (U, x) with U � γ(s0). Then a parallel frame {E′
i} along γ was constructed,

∇γ̇E′
i = 0, with E′

1|γ(s0) = γ̇(s0), and coordinates {x′ i} in U such that E′
i|p =

∂
∂x′ i

∣∣
p

for p ∈ U ∩ γ(J) = γ(JU ) and for which (3.3) holds with f i given by (3.5).
Below we are going to prove that there exists a neighborhood of γ(s0) in

which the coordinates {x′ i} are normal along γ.
As the coordinate system {xi} is completely arbitrary, we can take {x′ i} for

it, xi = x′ i. This results in A(p) = [Aj
i (p)] = 1, with 1 = [δj

i ] being the dimR M ×
dimR M identity (called also unit) matrix, and ∂

∂x′ i = ∂
∂xi = E′

i. Inserting these
equalities into (3.4) and omitting the primes, we get

βi
s(t) = γi(g(ξ)) +

dimR M∑
j=2

δi
j

[
xj(βs(t)) − f j(g(ξ))

]
−

∞∑
n=2

1
n!

dimR M∑
i1,...,in=2

Γi
i1...in

(γ(g(ξ)))

× [
xi1(βs(t)) − f i1(g(ξ))

] · · · [xin(βs(t)) − f in(g(ξ))
]
. (3.6)

From the last equation, we get, by differentiation with respect to βi
s(t), i ≥ 2, and

restricting the result to γ (i.e., putting t = t0), the equation

dimR M∑
k=2

Γi
(jk)(γ(s))[xk(γ(s)) − fk(g(ξ))] = 0

for i ≥ 1, j ≥ 2 and every γ(s). Hence

Γi
(jk)(γ(s)) = 0 for i ≥ 1, j, k ≥ 2, and s ∈ J ′

U . (3.7)

Moreover, by construction

0 = ∇γ̇E′
i|γ(s) = γ̇j(s)∇E′

j
E′

i = γ̇j(s)Γk
ij(γ(s))E′

k|γ(s)

9For instance, see: [77, Chapter III, § 8], [7, Sections 1.37 and 1.38], [78, Chapter 10, Section 2],
[79, Theorem 9.18]. Notice, at that precise place, the assumption that s0 is not an end point of
J , if any, is explicitly used. Also the assumption of regularity of γ at (every) s0 is essential here.

10Here we suppose γ′ 1(s) �= 0 for all s ∈ J ′
U . Below we point out that this may not be the

case, but there always exist intervals Jδ � s0, Jδ ⊆ JU such that γ′ 1|Jδ
�= 0. One can define J ′

U
as the union of all such intervals, i.e., to take the maximal such interval for it.
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or γ̇j(s)Γk
ij(γ(s)) ≡ 0, s ∈ J . Consequently, for symmetric connection ∇, we find

γ̇1(s)Γk
11(γ(s)) +

dimR M∑
j=2

γ̇j(s)Γk
1j(γ(s)) = 0, γ̇1(s)Γk

1j(γ(s)) = 0, j ≥ 2 (3.8)

where equation (3.7) was used, i.e., Γk
ij = Γk

(ij) = 0 for i, j ≥ 2 and k ≥ 1. From
the last equations, we conclude that Γk

1j(s) = 0 for j ≥ 1 if γ̇1(s) 
= 0. (If γ is a
geodesic, then E′

1|γ(s) = γ̇(s) and hence γ̇1(s) = γ̇′ 1(s) = 1 for all s ∈ J , but this is
not the general case.) Now it is time to use the choice E′

1|γ(s0) = γ̇(s0) again: from
this it follows γ̇1(s0) = 1 and γ̇j(s0) = 0 for j ≥ 2, as now ∂

∂xi

∣∣
p

= ∂
∂x′ i

∣∣
p

= E′
i|p,.

Since γ : J → M is supposed to be of class C1, the function γ̇1 : J → R is of class
C0, i.e., continuous. Thereof for every ε ∈ R with ε > 0 there exists δ ∈ R, δ > 0
(δ may depend on ε) such that |γ̇1(s)− γ̇1(s0)| < ε for s ∈ J and |s− s0| < δ. So,
in the interval Jδ := {s ∈ J, |s − s0| < δ} ⊆ J is fulfilled 1− ε < γ̇1(s) < 1 + ε as
γ̇1(s0) = 1.

At the end, we choose some ε ∈ R, 0 < ε < 1 and fix corresponding δ ∈ R,
δ > 0. Then for s ∈ J0 := J ′

U ∩Jδ, we have 0 < 1− ε < γ̇1(s) and hence γ̇1(s) 
= 0.
So equations (3.8) imply Γk

1j(s) = 0 for all j ≥ 1. Combining this with (3.7) and
taking into account that now the connection considered is symmetric, we finally
obtain

Γk
ij(γ(s)) ≡ 0 for s ∈ J0 := J ′

U ∩ Jδ (3.9)

or, equivalently,
Γk

ij

∣∣
γ(J0)

= 0, J0 := J ′
U ∩ Jδ � s0. (3.9′)

The so-constructed coordinates {x′ i} are called Fermi coordinates along γ
(with a reference path γ). By definition, their domain is a subneighborhood U ⊆ U
such that U ∩ γ(J) ⊆ γ(J0) as we supposed that s0 is not a boundary point of J ,
if any.

Now a few words are in order for the case when the interval J is closed from
one or both ends and s0 is its end point. In such a case, the above investigation can
be modified as follows. Let s0 be the left (or, resp., right) end of J . Define γ̇(s0) =
γ̇+(s0) (resp. γ̇(s0) = γ̇−(s0)) via (cf. (I.2.3)) (γ̇±(s0))(f) := limε→±0

1
ε [f(γ(s0 +

ε))− f(γ(s0))], f ∈ F(γ(s0)) where ε → +0 (resp. ε → −0) means that ε tends to
0 ∈ R with values greater (resp. less) than zero. Now take some interval J ′ ⊃ J for
which s0 is inner, not boundary, point and certain regular C1 path γ′ : J ′ → M
without self-intersections such that γ′|J = γ and γ̇′(s0) = γ̇(s0).11 All of the above
results and conclusions are completely valid for γ′ at s = s0 ∈ J ′. Consequently,
applying them to γ′ and restricting the results to γ = γ′|J , we obtain their true
versions for any point along γ, including the one(s) corresponding to the end(s) of

11The choice of J ′ and γ′ can be made in infinitely many ways. The procedure just described is
actually the definition of γi (or of γ) as C1 mappings on a manifold with boundary, the interval
J in the particular case, according to the definition in Footnote I.5 on page 7.
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J . Of course, the construction of the Fermi coordinates at the end point(s) of J
depends on the particular choice of γ′ : J ′ → M but this is not essential as we are
interested only in their existence, not in their concrete properties.

Generally the Fermi coordinates are local and are not defined along the whole
path γ. Since the point s0 is arbitrarily fixed in the above considerations, the main
moral from them is:

Proposition 3.1. Let γ : J → M be regular C1 path without self-intersections in
C∞ manifold endowed with C∞ linear connection. For every point p ∈ γ(J) there
is its neighborhood on which Fermi coordinates exist.

Proposition 3.2. In Fermi coordinates, the coefficients of a symmetric linear con-
nection vanish along the part of their reference path lying in their domain.

Corollary 3.1. If γ : J → M is a regular C1 path without self-intersections in C∞

manifold endowed with C∞ symmetric linear connection, then for every s ∈ J
exists a neighborhood U of γ(s) and coordinates in it, in which the connection
coefficients vanish on γ(J) ∩ U .

Remark 3.2. When proving the existence of the Fermi coordinates, we have used
implicitly several times the absence of self-intersection points of γ. This is most
evident in (3.3): if γ has self-intersection points, at them x′ i(βs)) and xi(βs)) are
not injective functions of s and, hence, f1 can not be a diffeomorphism from J on
f1(J). It is evident that the above considerations hold on any ‘part’ of γ without
self-intersections, if any.
Remark 3.3. Our construction of the Fermi coordinates is essentially more precise
and, correspondingly, longer than the one in [19, pp. 166–169]. In this reference
a number of implicit conditions are presupposed. For example: γ is regular and
without self-intersections, γ is contained in a single coordinate neighborhood (one
and the same for {xi} and {x′ i}), γ̇1(s) 
= 0 for all s ∈ J , etc.
Remark 3.4. Often, especially in the physical literature, the Fermi coordinates
are referred as ones in which the coefficients of a symmetric linear connection
vanish along the whole path γ. This is true if γ is geodesic (or a path ‘near’ to
geodesic), contained in a single coordinate neighborhood, but in the general case
this is a wrong assertion. Generally along γ we can construct a family of Fermi
coordinates such that γ(J) is contained in the union of their domains and the
connection coefficients in them vanish along the corresponding pieces of γ. Said in
other words, as a rule there is not a single Fermi system of coordinates in whose
domain γ(J) is contained and in which the connection coefficients vanish on the
whole set γ(J).
Remark 3.5. If the connection is non-symmetric, in the constructed Fermi coordi-
nates vanish the symmetric parts of some, but generally not all, of its coefficients
– see (3.7) and (3.8). As the symmetrized connection coefficients are coefficients
of a symmetric linear connection (see (I.3.9) and the comments before it), we can
construct Fermi coordinates for this symmetric connection. In these particular co-
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ordinates, the symmetric parts of the initial connection coefficients vanish along
their reference path.

For torsionless linear connection, in the Fermi coordinates, hold not only
equations (3.7), but we also have (cf. (I.6.11))

Γi
i1...in+1

(p) = 0 n ∈ N, p ∈ γ(J ′
U ), i ≥ 1, i1, . . . , in+1 ≥ 2 (3.10a)

∂

∂x(i1
Γi

i2...in+2)
(p) = 0 n ∈ N, p ∈ γ(J ′

U ), i ≥ 1, i1, . . . , in+2 ≥ 2 (3.10b)

which equalities are obtained from (3.6) by repeated differentiation.
From the construction of the Fermi coordinates, a conclusion can be made

that these coordinates are not the only ones (locally) normal along pieces of a
given path. For instance, one can construct some analogue of the geodesic nor-
mal coordinates at a given point (see page 48) by replacing in (3.1) and in the
next formulae Γi

i1,...,in
by some constants ci

i1,...,in
. We are not going to describe

here such modifications because further a complete description of the coordinates
normal along a path will be presented.

On the contrary to the Fermi coordinates along γ, which are essentially local,
one can construct global frames along γ which are normal along the whole path
γ. Actually, let γ : J → M , J being open R-interval, be regular C1 path without
self-intersections and {Jα

0 |α ∈ A}, A being a non-empty set, be an open cover of
J such that for every p ∈ γ(J) the set Ap := {α|α ∈ A, γ(Jα

0 ) � p} consists of one
or two elements and for each α ∈ N exist Fermi coordinates {xi

α} with domain
Uα such that Uα ∩γ(J) = γ(Jα

0 ). Define along γ a frame {Ei} such that, for every
p ∈ γ(J), Ei|p = ∂

∂xi
α

∣∣
p

if γ(Jα
0 ) ∈ p for a single α ∈ A and if the set Ap consists

of two elements, we arbitrarily choose some β ∈ Ap and set Ei|p = ∂
∂xi

β

∣∣
p
. The so-

obtained frame {Ei} is normal along γ but generally it is not smooth, even it may
not be continuous, along the whole path γ. Hence the holonomicity problem for
this frame is globally ill-posed.12 All other frames normal along γ can be obtained
from {Ei} according to the recipe of Proposition I.5.2.

At the end, we want to mention one special type of Fermi coordinates in a
neighborhood of (injective normal) geodesic in Riemannian manifold.

Example 3.1. Let γ : J → M be geodesic in a Riemannian manifold M with metric
g. Let {Ei} be a parallel frame along γ with E1 = γ̇, i.e., ∇γ̇Ei = 0 and E1 = γ̇;
we can also say that {Ei|γ(s)}, s ∈ J is obtained from some fixed basis {ei} in
Tγ(s0)(M), with s0 ∈ J and e1 = γ̇(s0), by a parallel transporting it from γ(s0)
to the other points in γ(J). For (s, t) = (s, t2, . . . , tdimR M ) ∈ J × RdimR M−1, we
define ı : (s, t) �→ ∑

i≥2 tiEi|γ(s) ∈ Tγ(s)(M). If γ is injective, i.e., without self-
intersections, and normal, i.e., g(γ̇, γ̇) = 1, in [8, § 3.8 (ii)] it is proved that there

12With a little attention, one can see that locally {Ei} is smooth and holonomic on the part
of γ corresponding to a single interval Jα

0 , but in the regions of intersections of such intervals
the smoothness of the frame may be lost.



3. The case along paths 93

exists a neighborhood V0 of the zero vector in RdimR M−1 and a neighborhood U of
γ(J) in M such that the mapping y := (exp ◦ı|J×V0)−1 : U → J ×V0 ⊆ RdimR M−1

is diffeomorphism. The associated to the chart (U, y) coordinates {yi} are called
in [8, § 3.8 (ii)] Fermi coordinates. In the same reference it is proved that the
coordinates {yi} so-defined are normal along γ, Γi

jk ◦ γ = 0, and orthonormal,
gij(γ(s)) = ±δij , s ∈ J , at the same time. Thereof we conclude, the Fermi co-
ordinates along injective (without self-intersections) normal geodesic are similar
to the orthonormal Riemannian coordinates found by Birkhoff (see page 48), but
when the latter are considered ‘along paths’.

Exercise 3.1. Prove that the coordinates of Example 3.1 agree with our definition
of ‘Fermi coordinates’. (Hint: βs(t) = x−1(s, t̂) where one of the components of
t̂ ∈ RdimR M−1 is equal to t, the others being constants.)

3.2. Complete description

As we said earlier, the second method for proving the existence of coordinates or
frames normal along a path γ : J → M is via direct solving of the equation (I.5.4)
along γ: (

ΓkA + Ek(A)
)∣∣

γ(J)
= 0 (3.11)

or
Γk(γ(s))A(γ(s)) +

(
Ek(A)

)∣∣
γ(s)

= 0. (3.11′)

Let us recall the notation here. The coefficients of a linear connection ∇ are Γi
jk

and Γk :=
[
Γi

jk

]dimR M

i,j=1
are their matrices in an arbitrarily chosen frame {Ei} in

a neighborhood of γ(J). We want to find a C1 matrix-valued function A := [Aj
i ]

such that the frame(s) {E′
i = Aj

i Ej} is (are) normal along γ, i.e., on γ(J). A
necessary and sufficient condition for this is A to be a solution of (3.11).

Now we pose a problem: given a C2 manifold M endowed with symmetric C0

connection ∇ and a regular C1 path γ : J → M without self-intersection, describe
all frames and local coordinates normal respectively along γ and on (some part(s)
of) γ(J). Below we describe the general solution of this problem by adapting the
method of [76, Section 3] to the particular situation just outlined; we also employ
the initial idea underlying the construction of coordinates normal along a path
in [25, pp. 428–431]. We shall see that the solution in terms of frames is easier and
more simple than the one in terms of local coordinates.13 This is not occasional: to
a coordinate system {xi} corresponds the frame {∂/∂xi}, but to obtain the local
coordinates corresponding to a holonomic frame {Aj

i∂/∂xj}, one has to solve a
system of first-order partial differential equations. Said differently, the normal
frames are obtained by solving a first-order system of partial differential equations

13The same situation will be met in Chapters III–V for much more general problems.
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(see (I.5.4)) while the corresponding system for the normal coordinates is of second
order (see (I.5.4′) on page 41).14

Below we are going to prove the existence of solutions of (3.11) and to find
its general solution, which results in a complete description of all frames normal
along a regular C1 path. The main results are formulated below as Theorem 3.1 on
page 97 to which theorem the reader can jump right now if he/she is not interested
in the details of its proof.

To begin with, we shall construct local coordinates in a neighborhood of a
point in γ(J) such that a point in their domain has the path’s parameter as its
first coordinate.

Lemma 3.1. Let γ : J → M be a regular C1 injective path in a C3 manifold M .
For every s0 ∈ J , there exists a chart (U1, x) of M such that γ(s0) ∈ U1, x : U1 →
J1 × RdimR M−1 for some open subinterval J1 ⊆ J , s0 ∈ J1 and x(γ(s)) = (s, t0)
for all s ∈ J1 and some fixed t0 ∈ RdimR M−1.

Proof. Let s0 ∈ J be a point in J which is not an end point of J , if any, and (U, y)
be a chart with γ(s0) in its domain, U � γ(s0), and y : U → RdimR M . From the reg-
ularity of γ, γ̇ 
= 0, follows that at least one of the numbers γ̇1

y(s0), . . . , γ̇dimR M
y (s0),

where γi
y := yi ◦ γ, is non-zero. We, without lost of generality, choose this non-

vanishing component to be γ̇1
y(s0).15 Then, due to the continuity of γ̇ (γ is of class

C1) and according to the implicit function Theorem [77, Chapter III, § 8], [7, Sec-
tions 1.37 and 1.38], [78, Chapter 10, Section 2], there exists an open subinterval
J1 ⊆ J containing s0, J1 � s0, and such that γ̇1|J1 
= 0 and the restricted mapping
γ1

y |J1 : J1 → γ1
y(J1) is a C1 diffeomorphism on its image. Define a neighborhood

U1 :=
{
p|p ∈ U, y1(p) ∈ γ1

y(J1)
}

= y−1
(
γ1

y(J1) × R
dimR M−1

) � γ(s0)

and a chart (U1, x) with local coordinate functions

x1 :=
(
γ1

y |J1

)−1 ◦ y1

xk := yk − γk
y ◦ x1 + tk0 k = 2, . . . ,dimR M

(3.12)

where tk0 ∈ R are arbitrarily fixed constant numbers. Since ∂x1

∂yj = 1
γ̇1

y
δ1
j , ∂xk

∂y1 = − γ̇k
y

γ̇1
y

for k ≥ 2, and ∂xk

∂yl = δk
l for k, l ≥ 2, the Jacobian of the change {yi} → {xi} at

p ∈ U1 is 1
γ̇1(p) 
= 0,∞. Consequently x : U1 → J1×RdimR M−1 is really a coordinate

homeomorphism with coordinate functions xi.
14This is realized implicitly in [25, p. 429] in the method developed in this work for finding a

class of coordinates normal along a path.
15If it happens that γ̇1

y(s0) = 0 and γ̇i0
y (s0) �= 0 for some i0 �= 1, we have simply to renumber

the local coordinates to get γ̇1
y(s0) �= 0. Practically this is a transition to new coordinates

{yi} → {zi} with z1 = yi0 and, for instance, zi0 = y1 and zi = yi for i �= 1, i0, in which the first
component of γ̇ is non-zero. We suppose that, if required, this coordinate change is already done.
If occasionally it happens that γ̇j0

y (s) �= 0 for all s ∈ J and fixed j0, it is extremely convenient
to take this particular component of γ̇ as γ̇1

y – see the next sentence.



3. The case along paths 95

In the new chart (U1, x), the coordinates of γ(s), s ∈ J1 are

γ1(s) := (x1 ◦ γ)(s) = s, γk(s) := (xk ◦ γ)(s) = tk0 , k ≥ 2, (3.13)

i.e.,

x(γ(s)) = (s, t0)

for some t0 = (t20, . . . , t
dimR M
0 ) ∈ RdimR M−1 and all s ∈ J1. �

Lemma 3.1 means that the chart (U1, x) is so luckily chosen that the first
coordinate in it of a point along γ coincides with the value of the correspond-
ing path’s parameter, the other coordinates being constant (along γ) numbers.
Moreover, in U1 the path γ can be considered as a representative of a family
of paths η( · , t) : J1 → M , t ∈ RdimR M−1, defined by η(s, t) := x−1(s, t) for
(s, t) ∈ J1 × RdimR M−1; indeed, γ = η( · , t0) or γ(s) = η(s, t0), s ∈ J1 ⊆ J .

Remark 3.6. In this way we have obtained a natural foliation of U1 along γ:
putting Vs := {x−1(s, t)|t ∈ RdimR M−1}, we see that

⋃
s∈J1

Vs = U1, Vs ∩ Vs′ = ∅

for s 
= s′, s, s′ ∈ J1, and Vs ∩ γ(J1) = γ(s) for s ∈ J1. Having this in mind, the
main idea of the next considerations in this subsection is in each (dimR M − 1)-
dimensional submanifolds Vs (see p. 7) to be constructed frames or coordinates
normal at the single point γ(s) (as a point of Vs) and then to joint them smoothly
along γ. We shall see in Section 5 below that this is possible due to the one-
dimensionality of γ(J1) considered as a submanifold of M .

Remark 3.7. The vector field γ̇ tangent to γ has in the coordinates {xi}, associ-
ated with the chart (U1, x) provided by Lemma 3.1, the components (1, 0, . . . , 0).
Consequently, if γ is a geodesic path (see Subsection I.3.4), the geodesic equa-
tion (I.3.23) reduces to

Γi
11 ◦ γ = 0. (3.14)

Hence {xi} is generally not normal along a geodesic path, but along such a path
the last equation holds.

Remark 3.8. We have met examples of concrete kinds of coordinates systems {xi}
in Examples I.7.3, I.7.4 and I.7.5 in which they happen to be normal along the
paths considered in them.

Now we are ready to solve equation (3.11) in the neighborhood U1. Let us take
an arbitrary point p ∈ U1 with coordinates (s, t) ∈ J1 ×RdimR M−1 in (U1, x), i.e.,
x(p) = (s, t) or p = η(s, t) = x−1(s, t). The mapping p �→ p0 := γ(x1(p)) ∈ γ(J1)
defines a useful for our purposes ‘projection’ of p on γ (or on γ(J)) along the family
η; in coordinates, if p = η(s, t), then p0 = γ(s) = η(s, t0), i.e., x(p0) = (s, t0) for
x(p) = (s, t).

Suppose A is of class C3. Then [57, Section 4.10-5] there exist C1 matrix-
valued functions Bkl on U1 such that they and their partial derivatives are bounded
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on γ(J1) and the following Taylor formula holds:

A(η(s, t)) = A(η(s, t0)) +
dimR M∑

k=2

∂A(η(s, t))
∂tk

∣∣∣
t=t0

(tk − tk0)

+
dimR M∑
k,l=2

Bkl(η(s, t))(tk − tk0)(tl − tl0). (3.15)

In (3.11) we choose Ej |p = ∂
∂xj

∣∣
p
, p ∈ U1, so that E1(A)|γ(s) = dA(γ(s))

ds and

Ek(A)|γ(s) = ∂A(η(s,t))
∂tk

∣∣
t=t0

, k =≥ 2 as γ(s) = η(s, t0). Substituting (3.15)
into (3.11′), we split (3.11′) into equivalent to it system of equations

dA(γ(s))
ds

= −Γ1(γ(s))A(γ(s)), (3.16a)

∂A(η(s, t))
∂tk

∣∣∣
t=t0

= −Γk(γ(s))A(γ(s)), k ≥ 2. (3.16b)

Lemma 3.2. Let J be R-interval, s0 ∈ J be fixed, and Z be continuous, square
matrix-valued, and non-zero function on J . On J exists a unique (square) non-
degenerate matrix-valued function Y satisfying the initial-valued problem:

dY

ds
= ZY, Y |s=s0 = 1, Y = Y (s, s0; Z) (3.17)

where s ∈ J and 1 is the identity (unit ) matrix of the corresponding size.

Proof. See [34, Chapter IV, Section 1] or [82, pp.125–127].16 �

Remark 3.9. This lemma and its multidimensional version (see Lemma 4.1) play
a crucial role in our general approach for investigating normal frames. They are
simple corollaries of the theorems of existence and uniqueness for normal systems
of ordinary or partial differential equations of first order. By means of Y , we can
express every solution of the matrix equation

dX

ds
= ZX (3.18)

with the C1 matrix-valued function X being of the same size (order) as Z in (3.17).
The general solution of (3.18) is

X = Y (s, s0; Z) (3.19)

with arbitrary s0 ∈ J , or
X = Y (s, s0; Z)X0 (3.20)

16The solution of (3.17) is called matricant.
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with fixed s0 ∈ J and arbitrary X0. The particular solution of (3.18) satisfying
the initial condition

X |s=s0 = X0 (3.21)

for some s0 ∈ J and X0 is given by (3.20). At present, special properties of Y ,
such as Y −1(s, s0; Z) = Y −1(s0, s; Z) or Y (s, s1; Z)Y (s1, s0; Z) = Y (s, s0; Z), will
not be needed.
Remark 3.10. If the order of the matrices in (3.17) is important, we write 1n for 1
with 1n being the n×n, n ∈ N, identity matrix; respective labels may be attached
to Y and Z if required.

The general solution of equation (3.16a), which immediately follows from
Lemma 3.2 and Remark 3.9, is

A(γ(s)) = Y (s, s0;−Γ1 ◦ γ)B (3.22)

where Y is defined by the initial-value problem (3.17), with 1 = 1dimR M , and B
is constant non-degenerate dimR M × dimR M matrix. Inserting (3.16b) in (3.15)
and using (3.22), we find:

A(p) =
{
1− Γk(p0)[xk(p) − xk(p0)]

}
Y (x1(p), s0;−Γ1 ◦ γ)B

+ Bkl(p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (3.23)

where we have used p = η(s, t), η = x−1, and p0 := γ(x1(p)) = γ(s). Note,
in (3.23) the terms corresponding to k = 1 and/or l = 1 vanish due to x1(p0) =
x1(γ(x1(p))) = (x1 ◦ γ)(x1(p)) = x1(p) = s.17

In the above investigation we have supposed s0 not to be an end-point of
J , if any. This restriction is completely inessential for the final results, like (3.22)
and (3.23). Actually, if J has end point(s), we, analogously to the scheme described
on page 90, can proceed as follows. If s0 is the left/right end of J , we define γ̇(s0)
such that (γ̇f)(s0), f ∈ F(γ(s0)) is the left/right derivative of f ◦ γ at s = s0.
Take an open interval J ′ ⊃ J and let γ′ : J ′ → M be such that γ′|J = γ and
γ̇′|J = γ̇. Applying all of the above considerations for γ′ instead of γ and restrict-
ing the results to γ (or to γ(J)), we see that all of the above investigation remain
valid with the only changes that now the interval J1 (after the restriction) may
turn to be closed from its left/right end and correspondingly U1 may be neigh-
borhood with boundary, i.e., a (dimR M)-dimensional submanifold with boundary
(see Remark I.2.1 and Footnote I.5 on page 7).

Let us explicitly formulate the results obtained.

Theorem 3.1. Let γ : J → M be a C1 regular path without self-intersections in C3

manifold M endowed with (arbitrary) C0 linear connection ∇. For every s0 ∈ J ,
there exist a neighborhood U1 of γ(s0) and a frame {E′

i} on U1 which is normal for
17If we would have started with some i0 �= 1, for which γ̇i0 �= 0, the result will be (3.22)

and (3.23) with Γi0 instead of Γ1. In the intermediary steps, e.g., starting from (3.12), the index
1 must be replace with i0. For instance, p0 will be defined by p0 := γ(xi0 (p)), so xi0(p0) = xi0 (p)
and the corresponding terms with k = i0 and/or l = i0 in (3.23) will vanish.
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∇ along γ, i.e., it is normal on U1 ∩ γ(J). Moreover, in U1 exist coordinates {xi}
such that γ1(s) = s and γi(s) = const, for i ≥ 2 and s ∈ J1, with J1 ⊆ J being a
subinterval of J and γ(J1) ⊂ U1. All such normal frames are

{
E′

i

∣∣
p

= Aj
i (p) ∂

∂xj

∣∣
p

}
,

p ∈ U1, where the C3 non-degenerate matrix-valued function A = [Aj
i ] is given

via (3.23).

Remark 3.11. This result is considerably more general than we expected at the
beginning: it concerns all linear connections, with or without torsion.

Proof. The first part of the theorem follows from the above-constructed solu-
tions (3.22) for every s0 ∈ J and arbitrary, symmetric or not, connection ∇, as
we did not use any assumption on the symmetry of its coefficients. The second
assertion is a consequence of the fact that (3.22), with arbitrary B, is the general
solution of (3.11) in the coordinates {xi} in U1 defined by (3.12). �

Remark 3.12. If we replace the C3 differentiability of A with C1 differentiability,
then (3.23) will be a solution of (3.11) but we cannot assert that it will be the gen-
eral one. So, if M is of class C2 and A is of class C1, then Theorem 3.1 remains valid
with an exception that there may exist matrices of class C1 but not C3 that are so-
lutions of (3.11) and cannot be obtained by (3.23) for suitable choice of B and Bkl.

Said in a more free language, Theorem 3.1 asserts that along a path with-
out self-intersections there exist frames locally normal for any linear connection.
The assumption for the absence of points of self-intersections is important at the
moment: at such points, if any, the coordinates {xi} given via (3.12) do not exist
and, correspondingly, our proof fails. It is easily seen, this is a general feature, not
one characterizing our particular proof: since the mapping γ : J → M is at least
two-to-one at the points of self-intersections, there do not exist normal coordinates
in their neighborhoods along γ. But, if we restrict γ to any subinterval of J on
which it is injective, Theorem 3.1 is completely valid to the obtained path.

The constancy of B in (3.22) agrees with Proposition I.5.2. For, e.g., B = 1,
we obtain a particular frame locally normal along γ, say {Ei}. Any other normal
frame, say {E′

i}, is given by E′
i = Aj

iEj with (EiA)|γ(J) = 0, A = [Aj
i ], according

to Proposition I.5.2. Combining this with (3.22) for some B, we get A|γ(J) = B.
Let us turn now our attention to (3.23). Its meaning is that in U1 we have

constructed a frame
{
E′

i|p = Aj
i (p)E ∂

∂xj

∣∣
p

}
which is normal along γ, i.e., on

γ(J)∩U1. By virtue of Proposition I.5.2, every frame on U1 which is normal along
γ is of the form {Cj

i E′
j} where C = [Cj

i ] is C1 non-degenerate matrix valued
function on U1 such that E′

i(C)|γ(J) = 0. The holonomicity of these frames on
U1\(γ(J) ∩ U1) may be completely arbitrary (see Remark I.5.1 on page 40), even
it may change from point to point, but on γ(J) ∩ U1 part of them are holonomic
if the connection is torsion free on this set (Corollary I.5.3);18 one can check this
directly, if required, by using (3.23).

18As γ(J) is 1-dimensional submanifold of M , the condition in Corollary I.5.3 is identically
satisfied.
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Proposition 3.3. Let γ : J → M be C1 regular injective path in a C2 manifold M
endowed with C1 linear connection ∇. There exist frames normal along the whole
path γ for ∇.

Proof. If it happens that γ(J) lies entirely in U1, the frame normal along γ con-
structed above is global, i.e., defined on the whole set γ(J). But this may not
be the case. Generally, we can only build an open cover {Jα

1 |α ∈ A} of J and
neighborhoods Uα

1 ⊃ γ(Jα
1 ) on which frames {Eα

i } normal along γ exist. From
these frames can be constructed global frames {Ei}, normal along γ, as follows.
If for s ∈ J exists a unique α ∈ A with Jα

1 � s, we put Ei|γ(s) = Eα
i |γ(s); if the

set Ps := {α|α ∈ A, γ(s) ∈ γ(Jα
1 )} consists of more than one element, we choose

some β ∈ Ps and put Ei|γ(s) = Eβ
i |γ(s). �

Generally the frames {Ei} will not be differentiable, or even not continuous,
in the regions of intersection of two or more neighborhoods Uα

1 . Since on every
Uα

1 Theorem 3.1 gives a complete description of the frames (locally) normal along
γ, we can combine this with the just described construction of a frame along the
whole path γ to obtain a full description of all frames globally normal along γ.

At that moment, without any effort, we can make one generalization by
partially omitting the assumption of the lack of self-intersection points of γ.

Theorem 3.2. Let γ : J → M be locally injective C1 regular path in a C2 manifold
M with C0 linear connection ∇. There exists (global, on γ(J)) frames normal
along the whole path γ for ∇. Locally these frames are of class C1 but globally
they need not to be such. The frames are (locally) holonomic iff ∇ is torsionless
on γ(J).

Proof. Let γ : J → M be locally injective path, i.e., for every s ∈ J there is a
subinterval J ′ ⊆ J such that the restricted path γ|J′ : J ′ → M is injective (without
self-intersections). Let JI := {s|s ∈ J, γ(s) is self-intersection point} ⊂ J. From
our assumption follows that JI has no condensation points. Hence, if JI 
= ∅, for
every s ∈ J there are three possibilities: (i) there exist s′, s′′ ∈ JI , s′ < s′′ such
that s′ < s ≤ s′′; (ii) there is s′ ∈ JI such that s ≤ s′ and if s′′ ∈ JI , then s′′ ≥ s′;
(iii) there is s′′ ∈ JI such that s > s′′ and if s′ ∈ JI , then s′ ≤ s′′. Therefore, in any
case, for s ∈ J there exists a maximal (in J) interval Js ⊆ J containing s and such
that Js∩JI is the empty set or consists of only one element; in the above notation,
we, respectively, have Js = {s1|s1 ∈ J, s′ < s1 ≤ s′′}, Js = {s2|s2 ∈ J, s2 ≤ s′},
Js = {s3|s3 ∈ J, s3 > s′′}. Evidently, Js = Jt iff s ∈ Jt or t ∈ Js. Therefore J can
be represented as J =

⋃
λ∈Λ Jλ where Λ 
= ∅ for JI 
= ∅ and the intervals Jλ are

such that Jλ∩JI is the empty set or contains only one element and if s ∈ Jλ, then
Jλ = Js. Consequently, the above construction of a global frame normal along a
path without self-intersections is applicable to every restricted path γ|Jλ , viz., for
every λ ∈ Λ, along γ|Jλ there is a (global) normal frame {Eλ

i }. At the end, for
every p ∈ γ(J) we define a basis {Ei|p} such that Ei|p = Eλ

i |p if p ∈ γ(Jλ) for
some (unique) λ ∈ Λ. The bases {Ei|p|p ∈ γ(J)} form a frame along the whole
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path γ which is normal by construction. Obviously, any global frame normal along
the whole path γ can be obtained in this way. �

Notice, all frames normal along γ can be constructed in the pointed way or
from a single such frame according to the rule reflected in Proposition I.5.2.

Now we turn our attention to the coordinates normal along a given path
which, as we know from Proposition I.5.4, could exist only for connections that
are torsion free along γ. Our main result is formulated below as Theorem 3.3 on
page 103 and the reader who is not interested in its proof and the construction of
coordinates (locally) normal along γ can skip the text till it.

Let M be a C3 manifold endowed with symmetric linear connection and
γ : J → M be a regular C1 path without self-intersections in it. The problem is to
be found coordinates {zi} (locally) normal along γ. Such coordinates exist due to
the symmetry of the connection and Corollary 3.1.

We start with the already employed chart (U1, x) with coordinate functions
xi given by (3.12). Let (Uz, z) be a chart with Uz∩U1 ⊃ γ(J1). Since the transition
functions z−1 ◦ x and x−1 ◦ z on Uz ∩ U1 are of class C3, for p ∈ Uz ∩ U1, we can
write the expansion (cf. (2.7))

zi(p) = zi(p0)+ai
j(p0)[xj(p)−xj(p0)]+ai

jk(p)[xj(p)−xj(p0)][xk(p)−xk(p0)].
(3.24)

Here: p = η(s, t), p0 = γ(x1(p)) = η(s, t0) = γ(s), ai
j : γ(J1) → R are C1 functions,

and ai
jk : Uz ∩ U1 → R are of class C1 and together with their partial derivatives

they are bounded. Now we invert the situation: we shall try to find ai
j and ai

jk

such that the functions zi given by (3.24) generate a normal frame {E′
i},

∂

∂zi

∣∣∣
γ(s)

= E′
i|γ(s) := Aj

i (γ(s))
∂

∂xj

∣∣∣
γ(s)

with A given by (3.22).19 So, ∂zi

∂xj

∣∣
p0

=
(
A−1(p0)

)i

j
as, for p = x−1(s, t), we have

p0 = γ(s). Inserting here (3.24), we get

∂zi(p0)
∂x1

=
∂zi

∂x1

∣∣∣
p0

=
∂zi

∂x1

∣∣∣
γ(s)

=
(
A−1(p0)

)i

1
=

(
A−1(γ(s))

)i

1

⇐⇒ zi(p0) =

x1(p0)∫
s0

(
A−1(γ(σ))

)i

1
dσ + ai

ai
j(p0) =

∂zi(p)
∂xj

∣∣∣
p0

=
∂zi

∂xj

∣∣∣
γ(s)

=
∂zi

∂tj

∣∣∣
t=t0

=
(
A−1(p0)

)i

j
, for j ≥ 2

19The idea is to restrict a frame normal along γ to γ(J) and then to extend the resulting
frame, defined solely on γ(J), in a neighborhood of γ(J) in a holonomic way. (For a general
result regarding such extensions – see Lemma III.10.1 on page 194.)
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where ai ∈ R are constants representing the coordinates of γ(s0) in {zi}. Therefore,
by virtue of (3.22) and (3.24), the looked for functions zi have the form

zi(p) = ai +

x1(p)∫
s0

(
A−1(γ(σ))

)i

1
dσ +

(
A−1(γ(x1(p)))

)i

j
[xj(p) − xj(p0)]

+ ai
jk(p)[xj(p) − xj(p0)][xk(p) − xk(p0)], A(γ(s)) = Y (s, s0;−Γ1 ◦ γ)B,

(3.25)

where p0 = γ(x1(p)) and ai
jk : U1 → R are C1 functions which together with their

partial derivatives are bounded on U1. Notice, in (3.25) the terms with j, k = 1
vanish as x1(p) = x1(p0) = s. Since the Jacobian of the change {xi} → {zi} along
γ is det

[
∂zi

∂xj |γ(s)

]
=

(
det

[
∂xi

∂zj |γ(s)

])−1 = det
(
Y (s, s0;−Γ1 ◦ γ)B

)−1 
= 0,∞ for
every s ∈ J1, there is a neighborhood Uz ⊆ U1 of γ(J), Uz ⊃ γ(J), such that
(Uz, z) is a chart of M with coordinate functions zi.

At the moment we can not assert that the chart (Uz, z) is normal along γ:
we proved that ∂

∂zi

∣∣
γ(J1)

= E′
i|γ(J1) where {E′

i} is normal on γ(J1) from where

it generally does not follow that
{

∂
∂zi

}
is normal on γ(J1), but from here the

conclusion can be made that every coordinate system {zi} normal along γ has the
form (3.25). We shall try to choose the functions ai

jk : Uz → R so that to make
{zi} normal coordinates system. For this purpose, the equation (I.5.4′) on page 41
with Uz for U ∩ V must be satisfied:(

∂2xi

∂zj∂zk
+

∂xr

∂zj

∂xn

∂zk
Γi

rn

)∣∣∣∣
γ(s)

= 0 s ∈ J1. (3.26)

Multiplying this equality with ∂zj

∂xl
∂zk

∂xm

∣∣
γ(s)

, summing over j and k, and using

∂2xi

∂zjzk

∂zj

∂xl

∂zk

∂xm
+

∂xi

∂zj

∂2zj

∂xlxm
= 0,

which can be obtained from ∂xi

∂zk
∂zk

∂xm = δi
m by differentiation with respect to xl,

we, after some simple algebra, find an equivalent to (3.26) equation

∂zi

∂xl

∣∣∣
γ(s)

Γl
jk(γ(s)) =

∂2zi

∂xjxk

∣∣∣
γ(s)

, s ∈ J1 (3.26′)

since ∂2zi

∂xjxk is symmetric in j and k (the manifold is of class C3). From here
an immediate observation follows: normal along γ coordinates (may) exist only
for symmetric (torsionless) along γ connections. This is in a full agreement with
Corollary I.5.3. Correspondingly, below we deal with the symmetric case as until
now the symmetry of the connection was not used.
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From (3.25), the derivatives in (3.26′) can easily be calculated:

∂zi

∂xl

∣∣∣
γ(s)

=
(
A−1(γ(s))

)i

l
,

∂2zi

∂x1xk

∣∣∣
γ(s)

=
(

dA−1(γ(s))
ds

)i

k

,
∂2zi

∂xmxn

∣∣∣
γ(s)

= 2ai
(mn)(γ(s)), m, n ≥ 2

with A given by (3.22). Since d
dsA−1 = −A−1 dA

ds A−1 = A−1Γ1 on γ(J), where
equation (3.16a) was used, the substitution of the above equalities into (3.26′)
results in (

A−1(γ(s))
)i

l
Γl

1m(γ(s)) =
(
A−1(γ(s))Γ1(γ(s))

)i

m(
A−1(γ(s))

)i

l
Γl

jk(γ(s)) = 2ai
(jk)(γ(s)), j, k ≥ 2.

As (Γ1)n
m := Γn

m1 = Γn
1m, the first of these equalities is an identity. This reflects

the vanishment of the terms with j, k = 1 in (3.25). The second equation expresses
ai
(jk) along γ through known quantities. For p ∈ U1\γ(J1), the values of ai

(jk)(p)
can not be determined from (3.26), so they are left completely arbitrary from the
requirement {zi} to be normal along γ. Since we supposed M to be of class C3,
there are C0 bounded functions ai

jkl(p) : Uz → R such that

ai
jk(p) = ai

jk(p0) + ai
jkl(p)[xl(p) − xl(p0)]

where p = x−1(s, t) ∈ Uz ⊆ U1 and p0 = γ(s) = x−1(s, t0). Inserting this expan-
sion in (3.25) and using the above ones for ai

(jk), j, k ≥ 2, we finally get:

zi(p) = ai +

x1(p)∫
s0

(
A−1(γ(σ))

)i

1
dσ +

(
A−1(γ(x1(p)))

)i

j
[xj(p) − xj(p0)]

+
(
A−1(γ(x1(p)))

)i

l
Γl

jk(γ(x1(p)))[xj(p) − xj(p0)][xk(p) − xk(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)] (3.27)

where

ai ∈ R, A(γ(s)) = Y (s, s0;−Γ1 ◦ γ)B, s ∈ J1,

p = x−1(s, t) ∈ U1, p0 = x−1(s, t0) = γ(s),
(3.28)

B is constant non-degenerate matrix, and Y and x are defined via (3.17) and (3.12),
respectively. Recall, the coordinates {xi} have been defined via (3.12).

In this way, after long and tedious computation, we have almost proved the
following theorem.
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Theorem 3.3. Let γ : J → M be a regular C1 path without self-intersections in a C3

manifold endowed with C0 symmetric linear connection. For every s0 ∈ J , there
exist an interval J1 ⊆ J containing s0 and chart (Uz, z) such that γ(J1) ⊂ Uz and
the associated with it local coordinates {zi} are normal along γ, or, more precisely,
on γ(J1). All such local coordinates, which are normal along γ in Uz, are given
via (3.27).

Remark 3.13. The theorem remains true if γ is fixed and the connection is sym-
metric only on γ(J), i.e., for a fixed path the symmetry on the whole manifold is
not necessary, it is required only along γ.

Proof. Since in the derivation of (3.27) the point s0 ∈ J was completely arbitrary,
the theorem is proved when J is an open R-interval. If J is closed from one or
both ends, one should proceed exactly as was pointed before the formulation of
Theorem 3.1 (see page 97). Take some regular C1 path γ′ : J ′ → M without self-
intersections such that J ′ ⊃ J is open, γ′|J = γ and the tangent vectors to γ′ and
γ coincide on J (at the end point(s) γ̇ is defined as one-sided derivative). Since
for γ′ the assertions of the theorem are valid, the restriction of them to γ, i.e., to
J ⊂ J ′, completes the proof. �

Remark 3.14. The assumption of absence of self-intersection points is important.
If such points exist, at them the theorem fails as the mapping γ : s �→ γ(s) is at
least two-to-one at them and in no way the parameter s ∈ J can be taken as one
of the local coordinates in their neighborhood. Generally, normal frames can be
introduced on any piece of γ without self-intersections, but at these points, if any,
the normal coordinates can not be joint smoothly.
Remark 3.15. If we have started with some fixed i0 
= 1 for which γ̇i0

y (s0) 
= 0
instead of our choice γ̇1

y(s0) 
= 0, the result will be given again via (3.27) and (3.28)
in which the index 1 (not in the power −1 of A−1!) must be replaced with i0.
Correspondingly, the terms with j, k = i0 will vanish.

Corollary 3.2. Let γ : J → M be regular C1 path without self-intersections in a C3

manifold endowed with C0 symmetric linear connection. Let {Ei} be a frame on
U , with U ∩ γ(J) 
= ∅, normal along γ|J1 for some subinterval J1 ⊆ J . Then all
frames {E′

i = Aj
iEj} normal along γ|J1 are such that

A(p) = B + Bkl(p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (3.29)

for a constant matrix B and C1 matrix-valued functions Bkl which together with
their partial derivatives are bounded on U . Besides, the normal holonomic frames
{E′

i} are such that E′
i = ∂

∂zi , where the coordinates zi are normal along γ|J1 and

zi(p) = ai + δi
1[x

1(p) − s0] + [xi(p) − xi(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)]. (3.30)

Proof. Apply Theorems 3.1 and 3.3 for Γi
jk ◦ γ|J1 = 0 (and hence Y (s, s0;−Γ1) =

1) and A ◦ γ|J1 = 1 as {xi} and
{
Ei = ∂

∂xi

}
are normal on γ(J1). �
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Exercise 3.2. Prove Corollary 3.2 by applying only Theorem 3.1. Hint: use (3.23)
and follow the scheme outlined in Remark 2.1.

Example 3.2. We want to emphasize once again that the coordinates normal along
a path are local by their essence. Globally, i.e., on the whole path, they exist only
as an exception. Such a rare case is when the path γ is a geodesic lying entirely
in a normal neighborhood in which Riemannian coordinates exist and their origin
lies on the given geodesic path. In this case, taking the Riemannian coordinates
for {yi}, the equation of γ is (see Section I.6) γi(s) = (yi ◦γ)(s) = X i(s−s0) with
X = γ̇(s0) 
= 0. Letting X1 
= 0, we get γ̇1(s) 
= 0, s ∈ J and J1 = J which results
in γ(J) ∈ U1 = U , and, at the end, that {zi} are defined in a neighborhood of
γ(J), i.e., {zi} are globally normal along γ.

Example 3.3. Now we can look back on the Fermi coordinates constructed in
the previous subsection. At first, choose the initial coordinates {yi} as pointed in
Remark 3.1 on page 87. Then, comparing (3.2) with (3.24) or (3.4) with (3.27), we
see that these particular coordinates correspond along a given path to the choice
βs(t) = η(s, t̂) = expγ(s),X(t − t0), where one of the components of t̂ is equal to
t ∈ JX , the others being constants, i.e., the paths βs : JX → M are geodesics.
Besides, in the case of Fermi coordinates, by virtue of the assumption that all
structures are of class C∞, the appearing in (3.27) functions are expanded into
power series with respect to xk(p) − xk(p0) = tk − tk0 = (t − t0)δk

i0
for some fixed

i0. (Note, the matrix A has completely different meanings in (3.27) and in (3.2)
or (3.4)!)

4. The case in a neighborhood

The flat linear connections are usually associated with the path-independence of
the parallel transport assigned to them (see p. 29 and especially Remark I.3.5)
rather than with the normal coordinates or frames [8, § 2.6 (iii)], [11, Chapter II,
§ 9 and Chapter V, § 4], [1, Section 6.10].1 Below we shall see that these are
different sides of one and the same problem.

Theorem 4.1. Let M be a C3 manifold endowed with C1 linear connection ∇ and
U be (dimM)-dimensional submanifold of M . Frames normal for ∇ on U exist if
and only if ∇ is flat on U , R|U = 0.

Remark 4.1. Notice, the theorem covers equally well the cases without and with
torsion.
Remark 4.2. In particular, the submanifold U can be a neighborhood, possibly
coordinate one, or the whole manifold M .

1For the special case of Riemannian manifolds, see [12, p. 286 and p. 303] where, equivalently,
a manifold is called (locally) flat if it is (locally) isometric to Rn with a metric a, b �→ ∑

i εia
ibi

for a, b ∈ Rn and εi = ±1.
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Proof. Let {Ei} be a frame on U . To save some writing, we introduce the matrices
Γk and Rkl of, respectively, the coefficients and curvature of ∇:2

Γk :=
[
Γi

jk

]dim M

i,j=1
, Rkl :=

[
Ri

jkl

]dim M

i,j=1
.

In this notation, equation (I.3.13) reads

Rkl = −2Γ[k,l] + 2Γ[kΓl] − Cm
kl Γm (4.1)

where Γk,l := El(Γk) and Cm
kl are defined via (I.3.15).

Necessity. If ∇ admits a frame {E′
i} normal on U , there is a non-degenerate

C1 matrix-valued function A = [Aj
i ] such that E′

i = Aj
iEj and (see (I.5.4))

Γk = −A,kA−1 on U, k = 1, . . . ,dimU = dimM. (4.2)

The substitution of this equality into (4.1) results in R|U = 0, due to (I.3.15).

Sufficiency. As we know from the considerations in Section I.5 (p. 39), a
connection ∇ admits normal frames iff (I.5.4) has solutions with respect to the
matrix A in a given frame {Ei}. Rewriting (I.5.4) in the form

Ek(A)|p = −Γk(p)A(p), p ∈ U, (4.3)

we shall find its general solution, under the condition R|U = 0, by applying the
following lemma.

Lemma 4.1. Let N be a manifold and there be given C1 matrix-valued functions
Za : N → GL(m, K), a = 1, . . . ,dimN , GL(m, K) being the group of m × m
nondegenerate matrices on K for some m ∈ N. Suppose {ea|a = 1, . . . ,dimN} is
a (global ) frame on N and consider the initial-value problem

ea(Y )|q = Za(q)Y, q ∈ N, a = 1, . . . ,dimN, (4.4a)
Y |q=q0 = 1 (4.4b)

with respect to the m × m matrix-valued function Y on N . Here q0 ∈ N is fixed
and 1 = 1m. Then:

(i) The integrability conditions for (4.4a) are

ea(eb(Y )) − eb(ea(Y )) = cd
abed(Y ), a, b, d = 1, . . . ,dim N (4.5)

where [ea, eb]− =: cd
abed, or, equivalently,

Rab(Z1, . . . , Zdim N ) := eb(Za) − ea(Zb) + ZaZb − ZbZa + cd
abZd = 0, (4.6)

i.e., (4.4a) has solutions with respect to Y : N → GL(m, K) under these
conditions.

2Since the Ricci tensor will not appear in this book, the quantities Rkl can not be confused
with its components.
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(ii) The initial-value problem (4.4) has a solution, which is of class C2, unique
and smoothly depends on its arguments, if and only if the integrability con-
ditions (4.6) are valid. This solution will be denoted by

Y = Y (q, q0; Z1, . . . , Zdim N ).

Remark 4.3. In this section, Lemma 4.1 will be used only for N = U , U being
a neighborhood in M , resp. dim N = m = dimM . We formulate it in the above
general form because we shall need this generalization further. The proofs in the
both cases are practically identical.
Remark 4.4. The choice N = J , dimN = 1, q = s ∈ J , e1 = d

ds , and q0 = s0 ∈ J
returns us to Lemma 3.2. Moreover, for any N with dim N = 1 the integrability
conditions are identically valid, so the problem (4.4) always has a unique smooth
solution in the one-dimensional case.
Remark 4.5. It is easily seen that the general solution of the matrix system of
differential equations

ea(X) = ZaX (4.7)

with X ∈ GL(m, K) is

X = Y (q, q0; Z1, . . . , Zdim N ) (4.8)

for arbitrary q ∈ N , or, equivalently,

X = Y (q, q0; Z1, . . . , Zdim N )X0 (4.9)

for fixed q0 ∈ N and arbitrary X0 ∈ GL(m, K). Also, the particular solution
satisfying the initial condition

X |q=q0 = X0 (4.10)

for some q0 ∈ N and X0 ∈ GL(m, K) is given by (4.9).

Proof of Lemma 4.1. Let (V, z) be a chart of N and ea|V = Db
a

∂
∂zb for some

C1 non-degenerate matrix-valued function D = [Db
a]. In the coordinates {za},

the equation (4.4a) reads ∂Y
∂za =

(
B−1

)b

a
ZbY . The integrability conditions for the

last system are [34, Chapter VI, § 1] ∂2Y
∂za∂zb − ∂2Y

∂zb∂za = 0. Due to ea(eb(Y )) −
eb(ea(Y )) = Da′

a Db′
b

(
∂2Y

∂za′∂zb′ − ∂2Y
∂zb′∂za′

)
+ cd

abed(Y ), which is obtainable by di-
rect calculation (cf. equations (I.8.1)–(I.8.3) in Section I.8), these conditions are
equivalent to (4.5).

Expressing the derivatives ea(Y ) from (4.4a) and inserting the results into
equation (4.5), we get (4.6) (cf. [34, Chapter VI, equation (1.4)]). Reversing this
process, we can derive (4.5) from (4.6). Hence (4.5) and (4.6) are equivalent (pro-
vided (4.4a) is valid, as we supposed).

The second part of the lemma’s assertion is a corollary of its first part and the
corresponding theorems of existence and uniqueness in the theory of differential
equations; see, e.g., [34, Chapter VI, Theorem 6.1]. �
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Let us return now to equation (4.3). It corresponds to (4.7) with N = U ,
dimN = m = dimM , ei = Ei, and Zk = −Γk. So, the integrability conditions
for (4.3) are (4.6) with Zk = −Γk:

0 = Rkl(−Γ1, . . . ,−Γdim M ) = −2Γ[k,l] + 2Γ[kΓl] − Cm
kl Γm = Rkl

where (4.1) was used. These conditions are fulfilled due to the flatness of ∇ on U ,
R|U = 0. Consequently, according to Lemma 4.1 (ii) and Remark 4.5, the general
solution of (4.3) is

A(p) = Y (p, p0;−Γ1, . . . ,−ΓdimM )B (4.11)

where p ∈ U , p0 ∈ U is fixed point, B is non-degenerate constant matrix in
GL(dim M, K), and Y is the unique solution of the initial-value problem

Ei(Y )|p = −Γi(p)Y, Y |p=p0 = 1dim M . (4.12)

Thereof, by construction, the frames {E′
i = Aj

iEj}, with the matrices A given
via (4.11), are normal on U . �

Corollary 4.1. A C3 manifold with C1 linear connection admits a (global ) normal
frame on it iff it is flat.

Proof. See Theorem 4.1. �

Theorem 4.2. Given a C1 linear connection on C3 manifold M . If the connection
is flat on a (dim M)-dimensional submanifold U of M , then all frames normal on
U for it are {E′

i = Aj
iEj} where {Ei} is arbitrarily chosen frame on U and A is

given by (4.11) in which p ∈ U , p0 ∈ U is fixed, Γk are the connection’s matrices
in {Ei}, and B is constant non-degenerate matrix.

Proof. See the proof of the sufficiency of Theorem 4.1 in which is proved that (4.11)
is the general solution of (I.5.4) in U . �

Remark 4.6. The constancy of B in (4.11) agrees with Proposition I.5.2 and Corol-
lary I.5.1.

Corollary 4.2. Let M be C3 manifold endowed with a symmetric flat linear connec-
tion. On every (dim M)-dimensional submanifold of M , in particular on an open
set in M or on the whole M , exist normal frames whose general form is {E′

i =
Aj

iEj} with A = [Aj
i ] given by (4.11) and {Ei} being an arbitrary frame on it.

Proof. See Theorem 4.2 �
Theorems 4.1 and 4.2 give a complete description of the frames normal on

submanifolds of maximum dimensionality, in particular on neighborhoods or on the
whole manifold. On their base an analogous description for the normal coordinates
can be given.
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Let M be C3 manifold endowed with C1 symmetric (torsionless) linear con-
nection ∇ which is flat in the domain U of some local chart (U, x) of M , R|U = 0.
The problem is to be described all local coordinates normal on U for ∇. Its general
solution is given by the following result.

Theorem 4.3. Given a C3 manifold M endowed with C1 linear connection. If (U, x)
is a chart of M on whose domain the connection is flat and torsionless, R|U = 0
and T |U = 0, then on U exist coordinates {x′ i} normal for the connection given.
All such coordinates are obtained from {xi} according to equation (4.14) below.

Proof. According to Proposition I.5.3 and Theorem 4.1, coordinates {x′ i} normal
on U exist and they locally generate all frames normal on U . By Corollary I.5.2 and
Theorem 4.2, all coordinates normal on U are such that ∂

∂x′ i = Aj
i Ej with A =

[Aj
i ] given by (4.11) and {Ei} being arbitrary frame on U . Below, for simplicity, we

choose Ei = ∂
∂xi . So {x′ i} must be such that ∂

∂x′ i = Aj
i

∂
∂xj with A given by (4.11).

Consequently they must be solutions of the following system of partial differential
equations

∂x′ i

∂xj
=

(
A−1

)i

j
, A(p) = Y (p, p0;−Γ1, . . . ,−Γdim M )B, (4.13)

where p ∈ U , p0 ∈ U is fixed, Γk are the connection coefficients’ matrices in{
∂

∂xi

}
, and B is constant non-degenerate matrix. The integrability conditions for

this system are [34, Chapter VI, §§ 1–6]

0 =
∂2x′ i

∂x[j∂xk]
=

∂

∂x[j

(
A−1

)i

k]
=

( ∂

∂x[j
A−1

)i

k]
=

(
A−1 ∂A

∂x[j
A−1

)i

k]

=
(
A−1Γ[j

)i

k]
=

(
A−1

)i

l
Γl

[kj] ,

where (4.13) and (4.3) were used, which equations are identically satisfied, due to
the symmetry of the connection. Hence the system (4.13) is completely integrable
and defines x′ i as C3 functions of xi (as A is of class C2).3 The general solution
of (4.13) can be written as

x′ i(p) = ai +

p∫
p0

(
B−1Y −1(q, p0;−Γ1, . . . ,−Γdim M )

)i

k
dqk (4.14)

or

x′ i(p) = ai +

s∫
s0

(
B−1Y −1(γ(t), p0;−Γ1, . . . ,−Γdim M )

)i

k
γ̇k(t) dt (4.14′)

3The same result follows from the Poincaré Lemma [13, p. 121], [2, p. 55]: writing (4.13)
as dx′ i = (A−1)i

jdxj , a necessary and sufficient condition for the existence of x′ i is 0 =

d[(A−1)i
jdxj ] = 2(A−1)i

[j,k]
dxj ∧ dxk. For details concerning Pfaff systems, see, e.g., [12, Chap-

ter IV, Section C].
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Here: p ∈ U , p0 ∈ U is fixed, ai ∈ K are constants representing the coordinates of
p0 in x′ i, Γk are the matrices of the connection coefficients in

{
∂

∂xi

}
, the integrals

are taken along paths lying entirely in U , γ : J → U is a C1 path such that
γ(s0) = p0 and γ(s) = p for some s0, s ∈ J , B is constant non-degenerate matrix,
and Y is the solution of (4.4) with N = U , m = dimM , and ek = ∂

∂xk . i.e.,

∂Y

∂xk
= −ΓkY, Y |p=p0 = 1, Y = Y (p.p0;−Γ1, . . . ,−ΓdimM ). (4.15)

Since the connection is supposed flat in U , R|U = 0, it is a simple exercise to
be shown that the integrals in (4.14) and (4.14′) are well-defined, i.e., independent
of the concrete paths, like γ, lying in U along which the integration is performed.
This ends the proof of Theorem 4.3. �

Exercise 4.1. Show that the choice Ei = ∂
∂xi in the proof of Theorem 4.3 does not

restrict the generality of our constructions. For the purpose, prove that the choice
Ei = Dj

i
∂

∂xj , with a C1 non-degenerate matrix-valued function D = [Dj
i ], does

not influence the final results expressed by Theorem 4.3. (Hint: The matrix (4.11),
which is a solution of (4.3), transforms {Ei} into {E′

i} and Γk, appearing in (4.3)
and (4.11), are the connection’s matrices in {Ei}; so, the particular form (and
meaning) of A and Γk is different for arbitrary Ei and for Ei = ∂

∂xi .)

Corollary 4.3. Let M be a C3 manifold and ∇ be a C1 flat torsionless linear
connection on it. On every coordinate neighborhood of M exist coordinates normal
for ∇ whose general form is given via (4.14).

Proof. See Theorem 4.3. �

Theorem 4.3 and its Corollary 4.3 give a complete description of the normal
coordinates on a C3 manifold with C1 (flat torsionless) linear connection.

If the manifold and the connection considered are of class C∞, the integral
in (4.14) (or (4.14′)) can be calculated explicitly in terms of the connection coeffi-
cients (in

{
∂

∂xi

}
) as a power series in some neighborhood of a fixed point p0 ∈ U .

Indeed, in this case we can write

Y −1(p, p0;−Γ1, . . . ,−Γdim M ) = Y −1(p0, p0;−Γ1, . . . ,−ΓdimM )

+
∞∑

n=1

1
n!

dim M∑
i1,...,in=1

∂nY −1(p, p0;−Γ1, . . . ,−Γdim M )
∂pi1 · · · ∂pin

∣∣∣
p=p0

× [pi1 − pi1
0 ] · · · [pin − pin

0 ]

where pk := xk(p), pk
0 := xk(p0), and the series is convergent in some neighborhood

V ⊆ U of p0.
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The values of Y −1 and its derivatives in the right-hand side of the last equa-
tion can be evaluated by means of (4.15) as it is equivalent to

∂Y −1

∂xk
= Y −1Γk (4.16a)

Y −1|p=p0 = 1, Y −1 =
(
Y (p, p0;−Γ1, . . . ,−Γdim M )

)−1
. (4.16b)

In fact, by successive differentiation of equation (4.16a), we get ∂nY −1

∂x(i1 ···∂xin) =
Y −1Gi1,...,in where the matrices Gi1,...,in are symmetric in the subscripts and are
defined through the relation

Gi1,...,in+1 := Γ(i1Gi2,...,in+1) +
∂

∂x(i1
Gi2,...,in+1), n ∈ N, Gk := Γk. (4.17)

Hence the expansion of Y −1 takes the form

Y −1(p, p0;−Γ1, . . . ,−Γdim M ) = 1 + Γk(p0)[xk(p) − xk(p0)]

+
∞∑

n=1

1
n!

dim M∑
i1,...,in=1

Gi1,...,in(p0)[xi1 (p) − xi1
0 (p0)] · · · [xin(p) − xin

0 (p0)].

Substituting this into (4.14) and taking into account that

p∫
p0

[qi1−pi1
0 ] · · · [qin−pin

0 ] dqj =
(
1+

n∑
a=1

δiaj
)−1

[pi1−pi1
0 ] · · · [pin−pin

0 ][pj−pj
0],

we get

x′ i = ai +
(
B−1

)i

j

{
xj(p) − xj(p0) +

dim M∑
k,l=1

1
1 + δkl

Γj
kl

× [xk(p) − xk(p0)][xl(p) − xl(p0)]

+
∞∑

n=1

1
n!

dim M∑
k,i1,...,in=1

1
1 +

∑n
a=1 δiak

(
Gi1,...,in(p0)

)j

k

× [xi1 (p) − xi1(p0)] · · · [xin(p) − xin(p0)][xk(p) − xk(p0)]
}

. (4.18)

Since ∂x′ i

∂xj

∣∣
p0

=
(
B−1

)i

j
and B = [Bj

i ] is non-degenerate, this series is convergent
in some neighborhood V ⊆ U of p0 ∈ U and, consequently, the transition {xi} →
{x′ i} is (C∞) well-defined and (C∞) invertible.
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Now we want to say a few words on the links between the normal frames/coor-
dinates and parallel transport on manifolds with flat linear connection. (For sim-
plicity and brevity, we consider only the global case below.)

It is a classical result that the parallel transport is (locally) path-independent
iff the manifold M (or the connection) is (locally) flat [3,8,11]. Sometimes for such
manifolds is said that they possess teleparallelism or absolute parallelism [19,
p. 142], admit distant parallelism [55], or that they are parallelizable [28, p. 68].
A parallelization of M is called the choice of a covariantly-constant frame {Ei}
on M , i.e., ∇XEi = 0 for all X ∈ X(M). Hence {Ei} is a parallelization of M iff
∇Ej Ei = 0 which is equivalent to Γk

ij = 0 (see (I.3.1)), i.e., iff {Ei} is normal.
Thereof, the parallelization is simply a concrete choice of some normal frame and
the manifold is parallelizable iff it admits normal frames or, equivalently (see
Theorem 4.1 and Corollary 4.1), iff it is flat. The following result, which agrees
with Proposition I.5.5, expresses the same in another form.

Proposition 4.1. A C3 manifold endowed with C1 linear connection admits (global )
normal frames if and only if the parallel transport associated to the connection is
path-independent.

Proof. If M admits a normal frame {Ei}, in it the parallel transport is path-
independent according to Proposition I.5.5. Conversely, let the parallel transport
be path-independent and {E0

i } be a fixed basis at an arbitrarily chosen point
p ∈ M . Define a frame {Ei} on M such that E0

i |p → Ei|q is the result of the
parallel transport of E0

i from p to q for all q ∈ M . By construction, this frame is
path-independent and satisfies the equation (see (I.3.18)) ∇γ̇Ei = 0 for every path
γ joining p and q. So, choosing γ such that at q the tangent vector γ̇ coincides
with Ej |q, we get 0 = (∇Ej Ei)|q = (Γk

ijEk)|q, i.e., Γk
ij(q) = 0, q ∈ M which

means that {Ei} is normal on M . �

Remark 4.7. A trivial consequence of Corollary 4.1 and Proposition 4.1 is that
the parallel transport is path-independent iff the generating it connection is flat.
Conversely, if this result is proved by another way [3,11,28], from Proposition 4.1
immediately follows Corollary 4.1.

5. The case on arbitrary submanifolds

The problem for existence of coordinates normal on a submanifold of dimension
higher than one was first posed by J. A. Schouten and D. J. Struik in 1935 [43,
p. 106]. They showed that if N is n-dimensional submanifold of m-dimensional,
m ≥ n, manifold M endowed with symmetric linear connection, then on N exist
(in our terminology) normal coordinates provided on N exist n linearly indepen-
dent covariantly constant (with respect to every vector field) vector fields. In our
notation this is translated as: on N exist normal coordinates if on it the connec-
tion admits normal frames. The same result is quoted in [19, p. 169] where a new



112 Chapter II. Normal Frames for Connections

problem is put (in our terminology): if on N , considered as a manifold, a (global)
normal frame exists, are there coordinates on M which are normal on N consid-
ered as a submanifold of M? This problem was completely solved (for symmetric
linear connections) by L. O’Raifeartaigh in 1958 [55].

5.1. Conventional method

In this subsection, we shall review (in our notation) and partially generalize the
results of the paper [55]. Its idea [55, pp. 18 and 21, paragraphs 1 and 3] is
quite simple and analogous to the one of the construction of Fermi coordinates
(Subsection 3.1). If N is an n-dimensional submanifold of the m-dimensional,
m ≥ n, manifold M , in a neighborhood of N the manifold M can be represented
(locally) as a direct sum of suitable (m − n)-dimensional submanifolds Lq, one
for each q ∈ N , such that Lq is (m − n)-dimensional normal neighborhood of q
(see Definition I.3.6) and for every p in the mentioned neighborhood of N there is
unique p0 ∈ N such that Lp0 � p. If on N exist normal coordinates, such are the
coordinates (ϕ1, . . . , ϕn, ξ1, . . . , ξm−n) where ϕ1(p), . . . , ϕn(p) are the coordinates
of p0 in N (‘considered as a flat space’) and ξ1(p), . . . , ξm−n(p) are the Riemannian
normal coordinates of p with respect to p0 in Lp0 . Special cases of this construction,
corresponding to n = 0, 1, m, were investigated in Sections 2, 3, and 4, respectively.
As we shall see, for n ≥ 2 (if m ≥ 2) coordinates normal on N exist iff some
conditions, derived below, are satisfied.

Now the rigorous statement and solution of the problem outlined are in order.
Let M be C3 manifold provided with C1 torsionless linear connection and N

be submanifold of M (see Subsection I.2.1, p. 7). The problem, we are going to
investigate, is to find conditions under which on M exist local coordinates normal
on (an open subset of) N and, when they are valid, to construct a particular
example of such coordinates.

Lemma 5.1. Let N be a submanifold of a C3 manifold M endowed with C1 linear
connection ∇. The parallel transport with respect to ∇ along paths lying entirely
in N is path-independent if and only if

(R(X, Y ))|q = 0, Xq, Yq ∈ Tq(N), q ∈ N (5.1)

where R is the curvature tensor of ∇ in M and X and Y are vector fields tangent
to N (as a manifold ), X, Y ∈ X(N).

Remark 5.1. This lemma is true for arbitrary linear connections, without or with
torsion,1 and for N = M it reduces to the wide-known result that the parallel
transport is path-independent only for flat linear connections. Note, from (5.1)
one can not conclude R|N = 0 unless dimN = dimM . (In this context, see
Remark IV.10.2 on page 276 concerning the same problem on vector bundles.)

1In [55] it is proved in the torsionless case.
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Remark 5.2. The equation (5.1) does not concern separately M , N , or ∇. It
involves simultaneously all of them: the manifold M is a carrier of ∇ and a set
containing N and N is the set on which the parallel transport and the curvature
of ∇ are restricted.

Proof. Let (U, x) be a chart of M with Ū := U ∩ N 
= ∅. By definition of a
submanifold (page 7), the pair (Ū , x̄) with x̄(q) := (x1(q), . . . , xdim N (q)), q ∈ N ,
is a chart of N with {x̄a := xa|Ū |a = 1, . . . ,dimN} as associated coordinate
system. So

{
∂

∂x̄a = ∂
∂xa

∣∣
Ū

}
is a frame on Ū , i.e.,

{
∂

∂xa

∣∣
q

}
is a basis in Tq(N),

q ∈ N .
Let γ : J → N and Z ∈ X1(N) ⊆ X1(M) be C1 vector field tangent to M

over N and parallel along γ, viz. γ̇(s) ∈ Tγ(s)(N) and Zγ(s) ∈ Tγ(s)(M) for s ∈ J
and

0 = ∇γ̇Z = γ̇j
(∂Zk

∂xj
+ Γk

ljZ
l
) ∂

∂xk
.

Here and further in this proof, all components are with respect to
{

∂
∂xk

}
or

{
∂

∂x̄k

}
;

in particular Γk
lj are the coefficients of ∇ in the former frame. Since γ lies entirely

in N , we have γ̇(s) ∈ Tγ(s)(N) and hence γ̇j = 0 for j > dimN . The parallel
transport in N is path-independent if2 there is a vector field Z ∈ X(N) ⊆ X(M)
such that ∇γ̇Z = 0 for every path γ : J → N , which is equivalent to the existence
of a solution of the system of differential equations

∂Zk

∂xa
= −Γk

laZ l, a = 1, . . . ,dimN, k, l = 1, . . . ,dimM

with respect to Za (as γ̇j = 0 for j > dim N). The integrability conditions for this
system are [34, Chapter VI, § 1]

0 =
∂2Z

∂x[a∂xb]
=

∂

∂x[a

(
−Γk

|l|b]Z
l
)

=
(
−Z l ∂

∂xa
Γk

lb − Γk
jb

∂

∂xa
Zj

)
[ab]

=
(
− ∂

∂xa
Γk

lb + Γk
jbΓ

j
la

)
[ab]

Z l = −Rk
labZ

l

where (I.3.13) was used (with Ci
jk = 0 as

{
∂

∂xi

}
is a coordinate frame). By virtue

of the arbitrariness of (the initial value of) Z, these conditions are equivalent to

Rk
lab|N = 0, k, l = 1, . . . ,dimM, a, b = 1, . . . ,dimN (5.1′)

in every chart (U, x) of M with U ∩ N 
= ∅. If X and Y are vector fields tangent
to N , then Xq, Yq ∈ Tq(N) ⊆ Tq(M), q ∈ N , so that X i = Y i = 0 for i > dim N
and consequently (5.1′) is equivalent to (5.1). �

2However, see Remark I.3.5 on page 29.
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Remark 5.3. Using the notation of (4.6), we can rewrite (5.1′) in more compact
matrix form

Rab(−Γ1, . . . ,−ΓdimN )|p = 0, a, b = 1, . . . ,dimN, (5.1′′)

which is valid in every chart of N .

Proposition 5.1. Let N be a submanifold of a C3 manifold M provided with C1

linear connection ∇. If the connection ∇ admits frames normal on N , then (5.1)
holds, i.e., equation (5.1) is a necessary condition for the existence of frames nor-
mal on N .

Proof. If ∇ admits a normal frame on N , by Proposition I.5.5 the parallel transport
in N along paths in N is path-independent and, hence, according to Lemma 5.1,
equation (5.1) holds. �

We will prove in the next subsection (p. 120) that the condition (5.1) is also
sufficient for the existence to frames normal on N for arbitrary, torsionless or
not, linear connections. Below, following [55], we will prove only the existence of
particular coordinates which are normal on N in the torsionless case provided (5.1)
is valid.

Proposition 5.2. Given a submanifold N of a C3 manifold M endowed with C1

torsionless linear connection ∇ for which equation (5.1) holds. Then ∇ admits
frames and coordinates locally normal on N , i.e., for every q ∈ N there exists a
chart (U0, y) of M with q in its domain, U0 � q, such that the associated with it
coordinate system {yi} is normal on Ū := U0 ∩ N . A particular example of such
coordinate is provided by equation (5.5) below.

Proof. Let ∇ be torsion free, (U, x) be a chart of M such that Ū := U ∩ N 
= ∅

and q0 ∈ Ū . So (Ū , x̄) with x̄a = xa|N , a = 1, . . . ,dimN , is a chart of N in
a neighborhood of q0. Let {E0

i } be a basis in Tq0(M) such that E0
a ∈ Tq0(N),

a = 1, . . . ,dimN . Consequently, the (dim M −dimN)-dimensional space spanned
by {E0

i |i > dimN} does not contained vectors tangent to N except the zero
vector.3

Suppose the equation (5.1) holds. Since the parallel transport in N along
paths lying in N is path-independent (Lemma 5.1), the frame {Ei} on N obtained
from {E0

i } by parallel translation from q0 to every point q ∈ N along paths lying
entirely in N is uniquely defined: ∇XEi = 0, with X being tangent to N vector
field, and Ei|q0 = E0

i .
By means of the frame {Ei}, we shall define the looked for coordinates. For

the purpose, we write the expansion Ei = Dj
i

∂
∂xj . The non-degenerate matrix-

valued function D = [Di
j] can be obtained from the parallel character of {Ei}

on N . Since ∇XEi = 0 for all vector fields X tangent to N , for X = ∂
∂xa ,

3For example, we can put E0
i = ∂

∂xi

∣∣
q0

; see the definition of a submanifold on page 7.
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a = 1, . . . ,dimN , we get

0 = ∇∂/∂xaEj = ∇∂/∂xa

(
Dn

j

∂

∂xn

)
=

( ∂

∂xa
Dn

j + Γn
kaDk

j

) ∂

∂xn

⇐⇒ ∂D

∂xa
= −ΓaD.

As the integrability conditions for the last equation are (5.1′′), which are equivalent
to (5.1), in turn supposed to be valid, by Lemma 4.1 with m = dimM , we have
(see (4.4))

D(q) = Y (q, q0;−Γ1, . . . ,−Γdim N )D0 (5.2)

where the constant non-degenerate dim M×dimM matrix D0 is such that Ei|q0 =
E0

i = D0j
i

∂
∂xj |q0 , i.e., it represents the expansion of {E0

i } over { ∂
∂xi

∣∣
q0
}.4

Now we shall define new coordinates {yi} on the domain of the chart (U, x).
At first we define them only on Ū := U ∩ N (cf. (3.25)) by

yi(q) := ai +

q∫
q0

(
D−1(p)

)i

j
dpj , q ∈ Ū := U ∩ N ⊆ N (5.3)

where pj := xj(p) and the integration is performed along some path connecting q0

and q and lying entirely in N . The integral in this definition is path-independent
as the corresponding integrability conditions are identically satisfied on Ū :

∂2yi

∂x̄[ax̄b]
=

∂

x[a

(
D−1

)i

b]
=

(∂D−1

∂x[a

)i

b]
=

(
−D−1 ∂D

∂x[a
D−1

)i

b]
=

(
D−1Γ[a

)i

b]

=
(
D−1

)i

k
Γk

[ba] ≡ 0

where ∂
∂x̄a |Ū = ∂

∂xa |Ū , ∂D
∂xa = −ΓaD (see above), and the symmetry of the con-

nection coefficients were employed. The functions y1, . . . ydim N define a coordi-
nate system in a neighborhood of q0 in Ū . Indeed, the Jacobian of the change
{x̄a} → {ȳa = ya|Ū} on Ū is J(q) = det

[(
D−1(q)

)a

b

]
. Since D−1(q0) = D−1

0 and
E0

a ∈ Tq0(N), we have J(q0) = det
[(

D−1
0

)a

b

] 
= 0,∞ as D is continuous (and also
of class C1). Hence there is a neighborhood Ūq0 ⊆ Ū of q0 such that J(q) 
= 0 for
q ∈ Ūq0 .5 Therefore the functions yi given via (5.3) define a coordinate system
{ȳa} on Ūq0 .

4The choice E0
i = ∂

∂xi

∣∣
q0

results in D0 = 1; see Footnote3 on the preceding page.
5The choice E0

i = ∂
∂xi

∣∣
q0

results in D0 = 1 and J(q0) = 1. So, from the continuity of

J : Ū → K follows that for every ε ∈ R, 0 < ε < 1, there is a neighborhood Uε of q0 such that
0 < 1 − ε < |J(q)| < 1 + ε for q ∈ Uε. Thus J(q) �= 0 for q ∈ Uε.
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From (5.3), we derive:

∂

∂ȳa

∣∣∣
q

=
∂

∂ya

∣∣∣
q

=
∂xi

∂ya

∣∣∣
q

∂

∂xi

∣∣∣
q

=
([∂xk

∂yj

∣∣∣
q

])i

a

∂

∂xi

∣∣∣
q

=
([∂yk

∂yj

∣∣∣
q

]−1
)i

a

∂

∂xi

∣∣∣
q

=
(
(D(q)−1)−1

)i

a

∂

∂xi

∣∣∣
q

= Di
a(q)

∂

∂xi

∣∣∣
q

= Ea|q

for q ∈ Ūq0 . So, {E1, . . . , Edim M} is a frame holonomic on Ūq0 and it is generated
by the coordinate system {ȳa} of the chart (Ūq0 , y) of N .

At this point we shall need the following lemma.

Lemma 5.2. Let N be submanifold of a C3 manifold M endowed with C1 torsionless
linear connection whose curvature tensor satisfies (5.1). Every parallel frame {Ei}
defined on N (resp. in a neighborhood of N) can locally be expanded (resp. be
redefined ) outside N in a holonomic way, i.e., if the vector fields Ei are parallel
on N , for every point p0 ∈ N , there is a chart (V, z) of M with V � p0 such
that V̄ := V ∩ N is a coordinate neighborhood in N and the associated with it
coordinate system {zi} generates {Ei} on V̄ : Ei|q = ∂

∂zi

∣∣
q
, q ∈ V̄ . If dimN = 0

or if N is real and dim N = 1, the assertion is valid for any frame, parallel or not,
regardless of the existence of some connection on M , i.e., in the zero- and real
one-dimensional cases any frame defined solely at a single point or along a given
path can be (locally) generated by some local coordinates.

Remark 5.4. From this lemma, generally, does not follow that any (parallel) frame
is holonomic on N ! This is valid if dimN = dimM . The meaning of the lemma
is that any field of bases parallel on N , with respect to path-independent parallel
transport generated by a linear connection, can be generated (locally) by some
local coordinate system.
Remark 5.5. For dimN = 1, when (5.1) is identically valid, and K = R this lemma
reduces to [76, Lemma 4.1]. See also Lemma III.10.1 on page 194.
Remark 5.6. The lemma means that any continuous frame defined solely on a
submanifold and parallel on it can locally be extended to a holonomic frame on
its neighborhood provided equation (5.1) holds. Of course, if required, such an
extension can be done in an anholonomic way too (provided dimN < dimM).
Consequently, the holonomicity problem for a (parallel) frame defined only on N
(under the condition (5.1)) depends on the way this frame is extended outside the
set N .

Proof of Lemma 5.2. Let p0 ∈ N , (U, x) be a chart of M with U � p0, and (Ū , x̄)
be the associated chart of N , viz. Ū := U ∩ N , x̄(q) := (x1(q), . . . , xdim N (q)) for
x(q) := (x1(q), . . . , xdim N (q), b1, . . . , bdim M−dim N ) where q ∈ Ū and the b’s are
constants in K. Let UN := {p|p ∈ U, xa(p) = xa(q), a = 1, . . . ,dimN, q ∈ Ū} ⊆
U. This set is a neighborhood of Ū such that every p ∈ UN has a ‘projection p0 ∈ Ū
along x’: p0 := x̄−1(x1(p), . . . , xdim N (p)). Let the expansion Ei|q = Dj

i (q)
∂

∂xj

∣∣
q

in
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Ū be valid for some non-degenerate matrix-valued function D := [Dj
i ]. We define

zi : UN → K by (cf. (5.3))

zi(p) = ai +

p0∫
q0

(
D−1(p)

)i

j
dpj +

(
D−1(p0)

)i

j
[xj(p) − xj(p0)]

+ f i
jk(p)[xj(p) − xj(p0)][xk(p) − xk(p0)]. (5.4)

Here: p ∈ UN , ai ∈ K are constants, q0 ∈ Ū is fixed, p0 is the above-defined
‘projection’ of p on Ū , the integral is taken along some path lying entirely in Ū ,
and f i

jk : UN → K are of class C1 and they and their first partial derivatives are
bounded on Ū = UN ∩ N . As we saw above (see (5.3) and the lines below it), the
integral in (5.4) is path-independent due to the parallel character of {Ei} on N and
the symmetry of the connection. If N is real and dimN = 1, this integral is well-
defined for any initial frame {Ei}, regardless of the existence of some connection
on M .

Exercise 5.1. Prove the last assertion! (Hint: in this case, N has locally the form
γ(J) where J is open R-interval and γ : J → γ(J) is a diffeomorphism.)

For dimN = 0, we take for p0 some point in Ū and the above integral
identically vanishes. The Jacobian of the transformation {xi} → {zi} at p0 is
J(p0) = det

(
∂zi

∂xj

∣∣
p0

)
= det

(
D−1(p0)

)
= 1/ det(D(p0)) 
= 0,∞ for every p0 ∈ Ū .

Consequently {zi} is a coordinate system on some neighborhood V ⊆ UN of Ū .
At last, we calculate the basic vectors of the frame

{
∂

∂zj

}
, defined on V , at

p0 ∈ Ū = V ∩ N = UN ∩ N = U ∩ N :

∂

∂zi

∣∣∣
p0

=
∂xj

∂zi

∣∣∣
p0

∂

∂xj

∣∣∣
p0

=
([∂zk

∂xl

∣∣∣
p0

]−1)j

i

∂

∂xj

∣∣∣
p0

=
((

D−1(p0)
)−1

)j

i

∂

∂xj

∣∣∣
p0

= Dj
i (p0)

∂

∂xj

∣∣∣
p0

= Ei|p0 .

Hence the chart (V, z) with coordinates functions zi is the one we are looking for.
This conclusion ends the proof of Lemma 5.2 �

Exercise 5.2. Prove that equation (5.4) defines the most general local coordinates
generating locally a given (parallel) frame on a submanifold. From this view-point,
the coincidence of {zi} on Ū with {yi} given via (5.3) (as p = p0 for p ∈ Ū) is
evident as all such coordinate can differ only at points not lying in N .

Using the chart (V, z), V ∩N = Ū , provided by Lemma 5.2, we can construct
a foliation of V ‘along’ N : defining an (dimM − dimN)-dimensional manifolds
Vq by

Vq := {p|p ∈ V, za(p) = za(q), a = 1, . . . ,dimN}, q ∈ Ū ,
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we see that⋃
q∈Ū

Vq = V, Vq ∩ Vq′ = ∅ for q 
= q′, q, q′ ∈ Ū , and Vq ∩ Ū = q ∈ Ū .

Besides, by construction (see Lemma 5.2 and its proof), the tangent space Tp(Vq),
p ∈ Vq, does not contain vectors tangent to N ; in particular, we have the direct
decomposition Tq(M) = Tq(Vq) ⊕ Tq(N), q ∈ Ū ⊆ N .

Consequently, for every p ∈ V , there is a unique point p̄ ∈ Ū such that
p ∈ Vp̄.6

Now in each Vq we take a (dim M−dimN)-dimensional normal neighborhood
V 0

q of q (see Definition I.3.6 on page 33). The union V 0 :=
⋃

q∈Ū V 0
q ⊆ V forms

a neighborhood of Ū such that, for every p ∈ V 0 in the submanifold V 0
p̄ , there

exists a unique geodesic βp : J → Vp̄, J � 0 joining p̄ and p in Vp̄, i.e., more
precisely, p = expp̄(tXp) = βp(t) where βp(0) = p̄, β̇p(0) = Xp for some unique
Xp ∈ Tp̄(Vp̄) ⊆

{∑dim M
k=dim N+1 αkEk|p̄ : αdim N+1, . . . , αdim M ∈ K

}
and t ∈ J . Just

to prove the existence of this unique Xp corresponding to every p in a neighborhood
of Ū were needed all of the considerations after (5.3). With its help, we define the
coordinates {yi} on V 0 (cf. (5.4)) by

yi(p) = ai +

p̄∫
q0

(
D−1(p)

)i

j
dpj + t

(
D−1(p̄)

)i

j
Xj

p. (5.5)

Here: p ∈ V 0, ai ∈ K are constants, q0 ∈ Ū is fixed, p̄ is the unique element
in Ū for which Vp̄ � p, pi := xi(p), the integral is taken along some path in Ū ,
t is the increment of the parameter when passing from p̄ to p along the unique
geodesic connecting them in Vp̄, and Xp is the tangent vector to this geodesic at p̄

(corresponding to t = 0). The quantities yX i
p :=

(
D−1(p̄)

)i

j
Xj

p are the components
of Xp in {Ei|p̄} and, since Xp ∈ Tp̄(Vp̄), we have yXa

p = 0 for a = 1, . . . ,dimN .
Since (5.5) corresponds to (5.4) with p0 = p̄, xj(p) = xj(p0)+ t yXj

p, f i
jk = 0,

and V = V 0, from the considerations after (5.4) in the proof of Lemma 5.2, it
follows that there exist a neighborhood U0 ⊆ V 0 of Ū (= U0 ∩ N = V 0 ∩ N =
· · · ) on which the transformation {xi} → {yi}, given via (5.5), is a well-defined
diffeomorphism.7

Ending these long considerations, we will prove that the chart (U0, y) of M
is normal on N , i.e., on Ū = U0 ∩ N . Till now the chart (U, x) was complete
arbitrary. Choosing (U, x) = (U0, y), we get ∂

∂xi

∣∣
q

= ∂
∂yi

∣∣
q

= Ei|q = Dj
i (q)

∂
∂xj

∣∣
q
,

q ∈ Ū . Thus D|Ū = 1 or Dj
i (q) = δj

i for q ∈ Ū . From the parallel character of {Ei}
on N , we derive 0 = ∇∂/∂xaEj = ∇∂/∂xa

∂
∂xj = Γi

jaEi on Ū , so that Γi
ja

∣∣
Ū

= 0

6In [55] this assertion is mentioned and used but its rigorous proof, which is not trivial, is
only partially presented, the main details are missing.

7For another proof of this fact, see [55, pp. 21–22].
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for a = 1, . . . ,dimN . Since p ∈ U0 and p̄ ∈ Ū are situated on a geodesic, the
coordinates (5.5) must satisfy the geodesic equation (I.3.23) with p for γ(s), yj(p)
for γj(s), and t for s, which results in Γi

jk(p)Xj
pXk

p = 0. Taking into account that
p is arbitrary, Γi

jk = Γi
kj , and Xa = 0 for a = 1, . . . ,dimN as Xp ∈ Tp̄(Vp̄) and

Tp̄(Vp̄) ∩ Tp̄(N) = ∅, from here we find Γi
jk

∣∣
Ū

= 0 for j, k > dimN . Combining
this with Γi

ja

∣∣
Ū

= 0 for a < dim N , we, finally obtain Γi
jk

∣∣
Ū

= 0 for all values of
all indices.

Consequently the chart (U0, y) is normal on Ū , which ends the proof of
Proposition 5.2 �

The coordinates (5.5) are direct analogue and multidimensional generaliza-
tion of the Fermi coordinates along paths without self-intersections (see Subsec-
tion 3.1), to which they reduce in the one-dimensional case. For this reason, we
propose, as in [55], to call Fermi coordinates on a submanifold this special kind of
coordinates normal on a submanifold.

It should be emphasized, the Fermi coordinates on a submanifold are local
by their nature. Generally global such coordinates, i.e., on the whole submanifold,
do not exist. But, it is almost evident, we can construct a family of overlapping
such coordinate systems whose domains form a neighborhood of the submanifold
given.

From (5.5) (see also (5.4) for xi(p) = xi(p0)+
(
D−1(p0)

)i

j
Xj

p), one can derive
that the basic vector fields of the normal frames associated to the Fermi coordi-
nates are

∂

∂yi

∣∣∣
q

=
∂xj

∂yi

∣∣∣
q

∂

∂xj

∣∣∣
q

=
([∂xk

∂yl

∣∣∣
q

]−1)j

i

∂

∂xj

∣∣∣
q

= Dj
i (q)

∂

∂xj

∣∣∣
q

= Ei|q

for q ∈ Ū ⊆ N . Consequently
{

∂
∂yj

}
on Ū coincides with the initial frame {Ei} on

Ū . Since {Ei} is parallel by definition, so is
{

∂
∂yj

}
. This result completely agrees

with Proposition I.5.6.
Combining Propositions 5.1 and 5.2, we obtain the following fundamental

result.

Theorem 5.1. Let N be a submanifold of a C3 manifold M endowed with C1

torsionless linear connection. There exist coordinates (in M) normal on N for
the connection given if and only if the conditions (5.1) are valid. If (5.1) holds,
the above-constructed Fermi coordinates are normal on the intersection of their
domain with N .

If M admits Fermi coordinates on its submanifold N , we can easily describe
all frames normal on N . If (U0, y) is a chart normal on N , i.e., on Ū = U0 ∩ N ,
with {yi} being Fermi coordinates on U0, the frame

{
∂

∂yj

}
is, by Definition I.5.2,

normal on Ū . According to Proposition I.5.2, in U0 all frames normal on Ū have
the form

{
Ei = Aj

i
∂

∂yj

}
where the non-degenerate C2 matrix-valued function

A := [Aj
i ] on U0 is such that ∂A

∂yj

∣∣
Ū

= 0.
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Exercise 5.3. Prove that the general form of the matrix-valued function A is
(cf. (5.11) in Subsection 5.2)

A(p) = B(p0)− ∂B

∂yj

∣∣∣
p0

[yj(p)−yj(p0)]+Bjk(p)[yj(p)−yj(p0)][yk(p)−yk(p0)]

(5.6)

where p ∈ U0, B is non-degenerate C2 matrix-valued function on U0, p0 is the
‘projection’ of p on Ū as defined before (5.4), the matrix-valued functions Bjk on
Ū are of class C1, and B, ∂B

∂yi , and Bjk together with their partial derivatives are
bounded on Ū .

According to Theorem 5.1, between the normal frames exist holonomic ones.
The full local description of all coordinates normal on a submanifold will be given
in the next subsection. In the particular case considered, they are defined on U0

and normal on Ū = U0 ∩ N .
If we cover N with overlapping systems of Fermi coordinates (U0

λ, yλ), λ ∈
Λ 
= ∅, we can construct on N a global (on N) frame normal on the whole
submanifold N . Let {Eλ

i } be a frame defined on U0
λ and normal on Ūλ = U0

λ ∩N .
If q ∈ N is such that q ∈ Ūλ for a single λ ∈ Λ, we put Ei|p := Eλ

i |p, p ∈ U0
λ; if such

λ ∈ Λ are more than one, we arbitrarily choose some µ ∈ Λ and put Ei|p := Eµ
i |p,

p ∈ U0
µ. The so-obtained frame {Ei} is defined in the neighborhood

⋃
λ∈Λ U0

λ of N
and is normal on N . Obviously, in this way can be constructed all frames normal
on N . Generally these global on N normal frames are not smooth in the regions of
overlapping of two or more local Fermi coordinates but locally, on each particular
U0

λ, they can be constructed in a smooth way.

5.2. Complete description

Below, following the main ideas of Subsection 3.2 and [83], we are going to give a
full constructive description of the frames (resp. coordinates) normal on a subman-
ifold of manifold with arbitrary linear connection, if such frames (resp. coordinates)
exist.

Let M be C2 manifold endowed with C0 linear connection (of arbitrary
torsion) and N be its submanifold. The problem is to find necessary and sufficient
conditions for the existence of frames defined on a neighborhood of N and normal
on N . If such frames exist, we want to give their complete description. From
Proposition 5.1, we know that the conditions (5.1) are necessary for the existence
of frames normal on N . Our first goal now is to prove the sufficiency of these
conditions, which assertion is a part of the following theorem (cf. Theorem 3.1).

Theorem 5.2. Let N be submanifold of C3 manifold M provided with C1 linear
connection, with or without torsion. Then:

(i) The equation (5.1) is a necessary and sufficient condition for the existence
of frames normal on N .
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(ii) If (5.1) holds, every point q0 ∈ N has a neighborhood UN (in M) such that on
UN exist C1 frames normal on N , i.e., on Ū = UN∩N � q0. Moreover, on UN

exist coordinates {xi} such that every p = x−1(s, t′) ∈ UN , (s, t′) ∈ WN ×
W ′ ⊆ K

dim N × K
dim M−dim N , has a unique ‘projection’ p0 = x−1(s, t′0) ∈

Ū ⊆ N for fixed t′0 ∈ W ′ which depends on x but not on t′. In these local
coordinates, all frames defined on UN and normal on Ū = UN ∩N are

{
E′

i =
Aj

i
∂

∂xj

}
with A = [Aj

i ] given via equation (5.11) below in which s0 = x̄(q0) are
the coordinates of q0 in the chart (ŪN , x̄) of N induced by the chart (UN , x)
of M .

Proof. Let {Ei} be a frame defined in a neighborhood of N . From Section I.5, we
know that all frames {E′

i} defined on the same neighborhood and normal on N

are {E′
i = Aj

iEj} where the C1 non-degenerate matrix-valued function A := [Aj
i ]

is a solution of the normal frame equation (I.5.4) with N for U , viz.

Γk(q)A(q) + (Ek(A))|q = 0 (5.7)

where q ∈ N and Γk :=
[
Γi

jk

]dim M

i,j=1
are the matrices of the connection coefficients

in {Ei}. Hence, the finding of the general solution of (5.7) with respect to A is
equivalent to the complete description of all frames normal on N , if any.

Let q ∈ N and (U, x) be a chart of M with Ū := U ∩N � q. So x : U → W is
homeomorphism, which actually is a C1 diffeomorphism, for some open subset W
of KdimM . Representing W as a Cartesian product of two open sets W ′′ ⊆ Kdim N

and W ′ ⊆ Kdim M−dim N , i.e., W = W ′′×W ′, from the definition of a submanifold
(p. 7) follows the existence of t′0 = (t′ dim N+1

0 , . . . , t′ dim M
0 ) ∈ W ′ such that

x(q) =
(
x1(q), . . . , xdim N (q)

)× t′0 for all q ∈ N

and (Ū , x̄), with x̄(q) := (x1(q), . . . , xdim N (q)) for q ∈ N , provides a coordinate
system {x̄i} on Ū . Let WN := x̄(Ū) ⊆ W ′′, i.e., x̄ : Ū → WN is the local coordinate
homeomorphism from Ū on the open subset WN of Kdim N .

Consider the chart (UN , x) of M with UN := x−1(WN × W ′).8 Evidently
UN ∩ N = Ū � q and, for every p ∈ UN , we have x(p) = (s, t′) for some unique
s = (s1, . . . , sdim N ) ∈ WN ⊆ K

dimN and t′ = (t′(dim N+1, . . . , t′ dim M ) ∈ W ′ ⊆
Kdim M−dim N ; in particular, if q ∈ Ū , then x(q) = (s, t′0). These facts give us a
possibility to define a natural ‘projection’ π : UN → Ū such that if p = x−1(s, t′) ∈
UN , then π : p �→ p0 := π(p) := x−1(s, t′0), i.e., p0 is the unique point in Ū with
x̄(p0) = s.9

Suppose the matrix-valued function A is of class C3. There exist C1 matrix-
valued functions Bkl on UN such that they and their partial derivatives are

8Strictly speaking, x in (UN , x) has to be replace by the restriction xN := x|UN
; we ignore

this to save some writing.
9The triple (UN , π, Ū) is a fibre bundle with base Ū , (total) bundle space UN , and projection

π (see further Section IV.2). From here the name ‘projection’ for π comes from.
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bounded on Ū and (cf. (3.15))

A
(
x−1(s, t′)

)
= A

(
x−1(s, t′0)

)
+

dim M∑
k=dim N+1

∂A
(
x−1(s, t′)

)
∂t′ k

∣∣∣∣∣
t′=t′0

(t′ k − t′ k0 )

+
dim M∑

k,l=dim N+1

Bkl

(
x−1(s, t′)

)
(t′ k − t′ k0 )(t′ l − t′ l0 ) (5.8)

Choosing Ek|p = ∂
∂xk

∣∣
p

for p ∈ UN , we get

Ea(A)|π(p) =
∂A

(
x−1(s, t′)

)
∂sa

∣∣∣
t′=t′0

, Ek(A)|π(p) =
∂A

(
x−1(s, t′)

)
∂t′ k

∣∣∣
t′=t′0

,

where a = 1, . . . ,dimN , k = dimN + 1, . . . ,dimM , p = x−1(s, t′) for (s, t′) ∈
WN ×W ′. Taking this into account and substituting equation (5.8) into (5.7), we
find the equivalent to (5.7) system of equations for A on Ū :

∂A
(
x−1(s, t′0)

)
∂sa

= −Γa

(
x−1(s, t′0)

)
A
(
x−1(s, t′0)

)
(5.9a)

∂A
(
x−1(s, t′)

)
∂t′ k

∣∣∣
t′=t′0

= −Γk

(
x−1(s, t′0)

)
A
(
x−1(s, t′0)

)
, (5.9b)

where a = 1, . . . ,dimN and k = dimN + 1, . . . ,dim M . Since equation (5.9a)
corresponds to (4.4a) with WN for N , m = dimM , ea = ∂

∂sa , q = x−1(s, t′0),
and Za = −Γa, by Lemma 4.1, Assertion (i) it has solutions if and only if the
conditions (5.1′′) hold on UN . But as equation (5.1′′) is equivalent to (5.1) (see
Remark 5.3 on page 114), this means that (5.7) has solutions on N with respect
to A iff (5.1) is valid.

Now we suppose (5.1) to be true. Applying Lemma 4.1, Assertion (ii) and
taking into account Remark 4.5 on page 106, we find the general solution of (5.9a)
in the form (cf. (3.22))

A
(
x−1(s, t′0)

)
= Y

(
s, s0;−Γ1 ◦(x−1( · , t′0)), . . . ,−ΓdimN ◦(x−1( · , t′0))

)
B(t′0).

(5.10)

Here Y is the unique solution of (5.9a) with A = Y satisfying the initial conditions

Y |s=s0 = 1dim M (5.9c)

for some fixed s0 ∈ WN ⊆ Kdim N , and B is non-degenerate dim M × dim M
matrix-valued function on W ′ of class C1. Substituting (5.9b) into (5.8) and us-
ing (5.10), we get:

A(p) =
{
1− Γk(p0)[xk(p) − xk(p0)]

}
× Y

(
x̄(p0), s0;−Γ1 ◦ (x−1( · , t′0)), . . . ,−Γdim N ◦ (x−1( · , t′0))

)
B(t′0)

+ Bkl(p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (5.11)
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where s0 ∈ WN ⊆ Kdim N is fixed and we used p = x−1(s, t′) ∈ UN , p0 = π(p) =
x−1(s, t′0) ∈ Ū = UN ∩ N , and x̄(p0) = s. Notice, in this equality all terms
corresponding to k, l = 1, . . . ,dimN are zero as xa(p) = xa(p0) = x̄a(p0) = sa for
a = 1, . . . ,dimN . Since (5.11) is the general solution of (5.7) on Ū by construction,
the above results, together with Proposition 5.1 complete the proof of Theorem 5.2.

�

Remark 5.7. Since t′0 in (5.8) depends only on the choice of the initial coordinates
{xi}, the matrix B(t′0) is constant on N for every such particular choice. This
agrees with Proposition I.5.2 and Corollary I.5.1.
Remark 5.8. Notice, equation (5.11) corresponds to (5.6) for xi = yi ({yi} are
Fermi coordinates) and B(p) = Y (· · · ). The terms corresponding to the index
values from 1 to dim N are zero in the both equations.
Remark 5.9. Theorem 5.2 is a first in a group of similar Theorems III.7.1, III.8.1,
IV.6.1, and IV.9.1 generalizing it. (See also the comments after the proof of The-
orem IV.9.1 on page 269.)

Corollary 5.1. Let N be a submanifold of C3 manifold with C1 linear connection.
On N (locally) exist normal frames if and only if the parallel transport in N along
paths lying in N is path-independent.10

Proof. See Theorem 5.2 and Lemma 5.1 on page 112 �

Corollary 5.2. Let N be a submanifold of C3 manifold with C1 linear connection.
On N (locally) exist normal frames iff on N exists a parallel frame with respect to
the paths in N .

Proof. If {Ei} is frame normal on N , then it is also parallel on N , due to Propo-
sition I.5.6. Conversely, let {Ei} be parallel frame on N , i.e., (∇XEi)|N = 0 for
all X ∈ X(N). The parallel transport of some Y0 = Y i

0 Ei|p0 ∈ Tp0(M), p0 ∈ N ,
along γ : J → N from p0 = γ(s0) to every p = γ(s) for some s0, s ∈ J gives the
vector Yp = Yγ(s) where Y is such that (see Definition I.3.2) (∇γ̇Y )|γ(s) = 0 and
Yp0 = Y0. But ∇γ̇Y |γ(s) =

(
γ̇k∇Ek

(Y jEj)
)|γ(s) = γ̇k(s)(∇Ek

Y j)|γ(s)Ej |γ(s) =
γ̇(s)(Y j

γ(s))Ej |γ(s), so that γ̇(s)(Y j
γ(s)) = 0, i.e., Y j

γ(s) = Y j
0 = const. Hence the

parallel transport of Y0 from p0 to p along any path connecting them in N gives
the vector Y j

0 Ej |p and, consequently, it is path-independent in N . Now Corol-
lary 5.1 implies the existence of frames normal on N . �

Theorem 5.2 gives a complete local description of the frames normal on a
submanifold. On this base a complete global description of all frames normal on a
submanifold can be given. Indeed, let {Ūλ|λ ∈ Λ}, Λ 
= ∅, be an open cover of N
such that for every λ ∈ Λ there is a neighborhood Uλ

N in M such that Ūλ = Uλ
N ∩N

and on Uλ
N exist frames {Eλ

i } normal on Ūλ, like the ones constructed above.
In the neighborhood VN :=

⋃
λ∈Λ Uλ

N of N we define a frame {Ei} by putting

10If M is multiply connected, see Remark I.3.5 on page 29.
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Ei|p = Eλ
i |p, p ∈ VN for some λ ∈ Λ for which p ∈ Uλ

N ; if there are more than one
such λ, we arbitrary choose some of them. By construction {Ei} is a global frame
which is normal on the whole submanifold N . Generally {Ei} is not smooth, even
not continuous, on the sets (neighborhoods) of intersection (overlapping) of two
or more neighborhoods Uλ

N . Relying on Theorem 5.2 (ii), we conclude that in this
way can be constructed all frames (globally) normal on any submanifold.

Now we have at our disposal the full machinery required for the complete
description of all local coordinates normal on a given submanifold. Meanwhile we
shall find a necessary and sufficient condition for the existence of coordinates
normal on a submanifold.

The following theorem provides a complete constructive description of all
local coordinates normal on a submanifold.

Theorem 5.3. Let N be submanifold of C3 manifold M endowed with C1 torsion
free linear connection for which the condition (5.1) holds. Then for every point
q ∈ N exists a chart (Uz, z) of M with Uz � q which is normal on Uz ∩ N . The
coordinate functions zi : Uz → K of all such charts normal on N are given via
equation (5.16) below.

Proof. Suppose M is a C3 manifold endowed with C0 torsionless linear connection
∇ for which the (integrability) conditions (5.1) are valid on some submanifold N
of M . Theorem 5.1 ensures the existence of coordinates normal on N , the Fermi
coordinates providing an example. The problem is to find all such coordinates.
For its solution we shall follow the scheme of Subsection 3.2 for the complete
description of the local coordinates normal along a path (see p. 100 and further).

Consider the chart (UN , x) of M , defined in the proof of Theorem 5.2, for
which each point p = x−1(s, t′) ∈ UN has a unique projection p0 := π(p) =
x−1(s, t′0) on N . By Theorem 5.2, Assertion (ii) on UN all frames normal on
Ū = UN ∩ N are

{
E′

i = Aj
i

∂
∂xj

}
with A = [Aj

i ] given via (5.11). Therefore if local
coordinates {zi}, defined in a neighborhood Uz of Ū in UN , Uz ∩ N = Ū and
normal on Ū , exist, then they must satisfy the conditions

∂

∂zi

∣∣∣
q

= E′
i|q = Aj

i (q)
∂

∂xj

∣∣∣
q
⇐⇒ ∂zi

∂xj

∣∣∣
q

=
(
A−1(q)

)i

j
. (5.12)

Here q = x−1(s, t′0) ∈ Ū and A is some matrix-valued function given by equa-
tion (5.11). Since the manifold is of class C3, the Taylor expansion

zi(p) = zi(p0)+ai
j(p0)[xj(p)−xj(p0)]+ai

jk(p)[xj(p)−xj(p0)][xk(p)−xk(p0)]
(5.13)

is valid for every p ∈ Uz, p0 = π(p). Here ai
j : Ū → K are of class C1 and the C1

functions ai
jk : Ū → K and their first partial derivatives are bounded on Ū . Notice,

due to p0 = π(p), we have xa(p) = xa(p0) = sa for a = 1, . . . ,dimN ; so in (5.13)
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the terms with j, k = 1, . . . ,dimN are zero. From (5.12) and (5.13), we derive:

∂zi(p0)
∂xa

=
∂zi

∂xa

∣∣∣
p0

=
(
A−1(p0)

)i

a
, a = 1, . . . ,dimN

⇐⇒ zi(p0) = ai +

p0∫
q0

dim N∑
a=1

(
A−1(q)

)i

a
dqa

ai
j(p0) =

∂zi(p)
∂xj

∣∣∣
p0

=
∂zi

∂xj

∣∣∣
p0

=
∂zi

∂t′ j

∣∣∣
t′=t′0

=
(
A−1(p0)

)i

j
,

where j = dimN+1, . . . ,dimM , ai ∈ K are constants representing the coordinates
of p0 in {zi} with respect to some fixed point q0 ∈ Ū , and the integral is taken
along some path lying entirely in Ū . The integral in the above equality is path-
independent. This can be proved in the same way we proved the path-independence
of the integral in (5.3). As

{
Ei = Aj

i
∂

∂xj

}
is normal, by Proposition I.5.6 it is

also parallel in U which, in particular, means that ∇∂/∂xaEk = 0. This equation
is equivalent to ∂A

∂xa = −ΓaA or ∂A−1

∂xa = A−1Γa, by virtue of which and the
torsionless of the connection the integrability conditions for the path-independence
of the above integral are identically valid on Ū :

∂2zi

∂x[axb]
=

∂

x[a

(
A−1

)i

b]
=

(∂A−1

∂x[a

)i

b]
=

(
A−1Γ[a

)i

b]
=

(
A−1

)i

k
Γk

[ba] ≡ 0.

Substituting the values of zi(p0) and ai
j(p0) obtained above in (5.13), we

derive the following general form of the coordinates {zi}:

zi(p) = ai +

p0∫
q0

dim N∑
a=1

(
A−1(q)

)i

a
dqa +

(
A−1(p0)

)i

j
[xj(p) − xj(p0)]

+ ai
jk(p)[xj(p) − xj(p0)][xk(p) − xk(p0)], (5.14)

with A given by (5.11). Since the Jacobian of the transformation {xi} → {zi} at
q ∈ Ū is

det
[∂xi

∂zj

∣∣∣
q

]
=

(
det

[ ∂zi

∂xj

∣∣∣
q

])−1

=
(
det(A−1(q))

)−1 = det
(
A(q)

) 
= 0,∞,

there exists a neighborhood Uz of Ū in UN such that Uz ∩N = Ū and (Uz, z) is a
chart of M with coordinate functions zi.

The charts (Uz , z) (locally) generate the restrictions to N of all frames normal
on Uz but generally these charts are not normal on N , i.e., on Ū . To make them
such, we are going to choose the functions ai

jk : Uz → K in such a way as to
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satisfy equation (I.5.4′) on page 41 with Uz for U ∩ V and z for x. Repeating the
arguments leading from (3.26) to (3.26′) with q ∈ Ū for γ(s), we get11

∂zi

∂xl

∣∣∣
q
Γl

jk(q) =
∂2zi

∂xjxk

∣∣∣
q
, q ∈ Ū . (5.15)

The derivatives entering here can be calculated from (5.14):

∂zi

∂xl

∣∣∣
q

=
(
A−1(q)

)i

l
,

∂2zi

∂xaxk

∣∣∣
q

=
(

∂A−1

∂xa

∣∣∣
q

)i

k

,
∂2zi

∂xmxn

∣∣∣
q

= 2ai
(mn)(q)

where q ∈ Ū , a = 1, . . . ,dimN , m, n = dimN + 1, . . . ,dimM , and A is provided
by (5.11). (Notice, in (5.14) the terms with j, k = 1, . . . ,dimN vanish as p0 =
π(p), so that xa(p) = x̄a(p) = x̄a(p0) for a = 1, . . . ,dimN .) Substituting these
expressions into (5.15) and using ∂A−1

∂xa = A−1Γa (see the paragraph preceding the
one containing equation (5.14)), we find:(

A−1(q)
)i

l
Γl

ak(q) =
(
A−1(q)Γa(q)

)i

k
, q ∈ Ū , a = 1, . . . ,dimN(

A−1(q)
)i

l
Γl

mn(q) = 2ai
(mn)(q), m, n = dimN + 1, . . . ,dim M.

The first of these equalities is an identity as (Γa)l
k := Γl

ka = Γl
ak (the connection

is symmetric); this reflects the vanishment of the terms with j, k = 1, . . . ,dim N
in (5.14). The second equation determines ai

(mn) on Ū ; on Uz\Ū the values of
ai
(mn), as well as ai

[mn], are left arbitrary from the condition that {zi} is normal
on Ū . Since M is supposed to be of class C3, there exist continuous bounded
functions ai

jkl : Ū → K such that

ai
jk(p) = ai

jk(p0) + ai
jkl(p)[xl(p) − xl(p0)].

At last, inserting in this expansion the obtained expressions for ai
jk(p0) and the

result into (5.14), we, finally, get:

zi(p) = ai +

p0∫
q0

dim N∑
a=1

(
A−1(q)

)i

a
dqa +

(
A−1(p0)

)i

j
[xj(p) − xj(p0)]

+
(
A−1(p0)

)i

l
Γl

jk(p0)[xj(p) − xj(p0)][xk(p) − xk(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)]. (5.16)

Here:

p = x−1(s, t′) ∈ Uz, p0 = x−1(s, t′0) ∈ Ū = Uz ∩ N,

ai ∈ K, x̄(p0) = s, q0 ∈ Ū is fixed,
(5.17)

11From (5.15), once again, follows that normal coordinates exist only for torsion free linear
connections.
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and the matrix-valued C1 function A : Uz → GL(dimM, K) is given by (5.11) in
which B is dim M × dim M non-degenerate matrix-valued function, the matrix-
valued functions Blk on Uz are of class C1 and they and their first partial deriva-
tives are bounded on Ū , and Y is the unique solution of the initial-value prob-
lem (4.4) with ∂

∂sa , −Γa, x̄(p0), s0 = x̄(q0), and s for ea, Za, p, p0, and q0,
respectively. This ends the proof of Theorem 5.3. �

Remark 5.10. Theorem 5.3 remains valid if N is fixed and the connection is tor-
sionless only on N (see Proposition 5.3).
Remark 5.11. Generally, under the conditions of Theorem 5.3, not all of the normal
frames provided by Theorem 5.2, point (ii), are holonomic.

Proposition 5.3. Let N be submanifold of a C3 manifold endowed with C1 linear
connection ∇ admitting frames normal on N . Holonomic frames normal on N or,
equivalently, coordinates normal on N for ∇ exist if and only if the torsion T of
∇ vanishes on N ,

(T (X, Y, ))|q = 0, Xq, Yq ∈ Tq(N), q ∈ N (5.18)

where X and Y are vector fields on N , X, Y ∈ X(N) ⊆ X(M).

Proof. The result follows from Proposition I.5.4 and the observation that in the
proof of Theorem 5.3, as well as in the one of Theorem 5.1, only the torsionless
on N of the connection was used. �

Now, we leave to the reader as exercises the next four problems:

Exercise 5.4. Show by explicit calculation that the normal frame
{

∂
∂zi

}
induced

by {zi} (see (5.16)) is parallel on Ū . (Hint: prove that ∂
∂zi = Aj

i
∂

∂xj on Ū .) This
agrees with Proposition I.5.6.

Exercise 5.5. Give a description of the Fermi coordinates on N in the framework
of Theorem 5.3. (Hint: compare (5.5) with (5.16) and construct the submanifolds
Vq using the chart (Uz, z) provided by (5.16).)

Exercise 5.6. Obtain the results of Section 4 from the ones of the present subsec-
tion. (Hint: for dimN = dimM , we have p = p0 = π(p).)

Exercise 5.7. Find the explicit formula expressing the initial coordinates {xi} via
the normal coordinates {zi} on N , i.e., invert equation (5.16) with respect to xi.
(Hint: use (5.16) or repeat the procedure of constructing {zi} but starting with
expansion of {xi} with respect to {zi} analogous to (5.13).)

Once again, we would like to notice that the coordinates normal on a sub-
manifold N of M are local by their essence, they can be global, i.e., defined on a
neighborhood of the whole N , only as an exception. But, generally, we can con-
struct a family of overlapping coordinates normal on N such that the union of
their domains forms a neighborhood of N in M .
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At the end, going rather ahead, we want to mention that the condition (5.1),
ensuring the existence of frames normal on a submanifold N , has a quite natural
interpretation in the theory of linear transports along paths (see Chapter IV, in
particular Proposition IV.11.2 on page 282): it expresses the flatness on N of the
parallel transport assigned to the linear connection under consideration.

6. Examples of normal frames and coordinates

Similarly to Section I.7, the present one contains different examples of frames
and/or coordinates that are normal for some concrete connections on some sets.
Their role is to illustrate the general theory presented in the preceding sections of
this chapter.

Since the complete and explicit description of all coordinates normal at a
point is expressible in a simple way via the coefficients of a symmetric linear
connection (see Theorem 2.1), the reader can easily obtain (by means of (2.11′))
as exercise this description for the Riemannian connections considered in Exam-
ples I.7.3–I.7.11 in which the coefficients of the corresponding connections are
explicitly written.

Unfortunately, a ‘more realistic’ example is, the more difficult are the con-
crete calculations; besides, the problems of finding explicitly frames/coordinates
normal on (sub)sets different from a single point cannot be solved completely in
closed form (in elementary functions or in radicals); for instance, to find a frame
or coordinate system (locally) normal along a path, one needs the solution of the
initial-value problem (3.17) (for concrete Z) and the coordinates constructed in
Lemma 3.1.

Example 6.1 (Coordinates normal at a point in S
2). Consider the 2-sphere S2,

investigated in Example I.7.3, and a point p ∈ S2. Choose spherical coordinates
(θ, ϕ) on S2 such that θ(p) = π

2 and ϕ(p) = 0; so p will be in the great equatorial
circle of S2. The coordinates (θ, ϕ) are normal at p (as well as at any point in the
equatorial circle) for the Riemannian ∇ according to Example I.7.3 in which ∇ is
defined. Taking into account Remark 2.1, we can assert that all coordinate systems
{z1, z2} on S

2, which are normal at p, are given via the equations (see (2.13))

z1(q) =
π

2
+ a1

1

[
θ(q) − π

2

]
+ a1

2ϕ(q)

+
∑

j,k,l=1,2

b1
jkl[y

j(q) − yj(p)][yk(q) − yk(p)][yl(q) − yl(p)]
∣∣
y1=θ
y2=ϕ

z2(q) = a2
1

[
θ(q) − π

2

]
+ a2

2ϕ(q)

+
∑

j,k,l=1,2

b2
jkl[y

j(q) − yj(p)][yk(q) − yk(p)][yl(q) − yl(p)]
∣∣
y1=θ
y2=ϕ

,

(6.1)

where the point q belongs to some open subset containing the point p.
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Example 6.2 (Frames/coordinates normal along a great circle on S2). Let us sup-
pose that the path γ : [0, 2π) → S2 is a great circle on the 2-sphere S2 (see Ex-
ample I.7.3) and (θ, ϕ) are spherical coordinates on S2 such that γ lies on the
equatorial plane, i.e., θ ◦ γ = π

2 and ϕ ◦ γ = id[0,2π). We know from Example I.7.3
that the coordinates system {θ, ϕ} is normal along the whole path γ for the Rie-
mannian connection ∇ describe in the example mentioned.

Due to Corollary 3.2 on page 103, all frames {E′
1, E

′
2} normal for ∇ along γ

are given by (see (3.29))

E′
1 = B1

1

∂

∂ϕ
+ B2

1

∂

∂θ
+

∑
j,k,l=1,2

Bj
1kl

{
[yk − yk(p0)][yl − yl(p0)]

∂

∂yj

}∣∣∣y1=θ
y2=ϕ

E′
2 = B1

2

∂

∂ϕ
+ B2

2

∂

∂θ
+

∑
j,k,l=1,2

Bj
2kl

{
[yk − yk(p0)][yl − yl(p0)]

∂

∂yj

}∣∣∣y1=θ
y2=ϕ

,

(6.2)

where Bi
j are real constants, Bi

jkl are C1 functions that together with their partial
derivatives are bounded, and p0 ∈ γ([0, 2π)) is fixed and hence θ(p0) = π

2 and
ϕ(p0) is a fixed number in [0, 2π). By the same corollary, all coordinate systems
{z1, z2} on S2, which are normal for ∇ along γ, have the representation (see (3.30))

z1 = a1 − s0 − ϕ(p0) + 2ϕ

+
∑

j,k,l=1,2

a1
jkl

{
[yj − yj(p0)][yk − yk(p0)][yl − yl(p0)]

}∣∣∣y1=θ
y2=ϕ

z2 = a2 − θ(p0) + θ

+
∑

j,k,l=1,2

a2
jkl

{
[yj − yj(p0)][yk − yk(p0)][yl − yl(p0)]

}∣∣∣y1=θ
y2=ϕ

,

(6.3)

where a1 and a2 are real constants and ai
jkl are C1 functions that together with

their partial derivatives are bounded.

Example 6.3 (Weyl connections: general considerations). Recall (see Footnote I.5
on page 35), if M is a Riemannian manifold with metric g and ∇ is a Weyl
connection on M characterized by a 1-form ω, the coefficients of ∇ in an arbitrary
(local) frame {Ei} are (see (I.4.7))

Γi
jk =

{
i

jk

}
+

1
2
(
gimCl

mjglk + gimCl
mkglj − Ci

jk

)
+

1
2
(gjkgilωl − δi

jωk − δi
kωj)

= RΓi
jk + W i

jk,

(6.4)

where the Christoffel symbols
{

i
jk

}
are given by (I.4.14), the functions

RΓi
jk =

{
i

jk

}
+

1
2
(
gimCl

mjglk + gimCl
mkglj − Ci

jk

)
(6.5)
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are the coefficients in {Ei} of the Riemannian connection ∇R induced by g, and
the functions

W i
jk = W i

kj =
1
2
(gjkgilωl − δi

jωk − δi
kωj) (6.6)

are the components in {Ei} of a tensor field W of type (1, 2), which field charac-
terizes the concrete Weyl connection relative to the Riemannian one with coeffi-
cients (6.5).

Suppose the components gij of g in {Ei} form a diagonal matrix

[gij ] = diag(g1, . . . , gdim M ). (6.7)

Then the Christoffel symbols can be calculated via equation (I.4.15) and the com-
ponents (6.6) of the tensor W reduce to (do not sum over i!)

W i
jk =

1
2

(
δjk

gk

gi
ωi − δi

jωk − δi
kωj

)
(6.8)

as [gij ] = [gij ]−1 = diag(1/g1, . . . , 1/gdimM ). An elementary calculations shows
that the non-vanishing components of W are

W i
ik = W i

ki = −1
2
ωk for all i, k = 1, . . . ,dimM

W i
kk|k 	=i =

1
2

gk

gi
ωi.

(6.9)

Applying the identity (do not sum over i, j and k!)

W i
jk ≡ W i

jkδij + W i
jk(1 − δij)δjk + W i

jk(1 − δij)(1 − δjk)

and (6.9), we get

Wk := [W i
jk] = −1

2
ωk1+

1
2
gk

[ 1
gi

ωi(1−δij)δjk

]
− 1

2
[(1−δij)(1−δjk)δikωj]. (6.10)

In particular, for dimM = 2, the last equation reduces to

W1 = [W i
j1] =

1
2

(−ω1 −ω2
g1
g2

ω2 −ω1

)
W2 = [W i

j2] =
1
2

(−ω2
g2
g1

ω1

−ω1 −ω2

)
. (6.11)

Below in this and in the next two examples, we shall consider some problems
concerning frames normal for Weyl connections.

First of all, we notice that, if a frame {Ei} on V ⊆ M is normal on U ⊆ V
for the Riemannian connection ∇R (with coefficients (6.5)), then it is normal for
the Weyl connection ∇ on the set

UW := {p ∈ U : ωi|p = 0 for i = 1, . . . ,dimM} = {p ∈ U : ω|p = 0} (6.12)

which may be empty. This is a consequence from (6.9) and

Γi
jk|U = W i

jk |U (6.13)



6. Examples of normal frames and coordinates 131

due to (6.4), (6.5) and RΓi
jk|U = 0 as the frame {Ei} is normal for ∇R on U . As

a result of the simplification (6.13), a frame like {Ei} can be used as an initial one
from which frames normal for ∇ on subset(s) U may be constructed.

Example 6.4 (Weyl connections on S2). Let ∇R be the Riemannian connection on
the 2-sphere S2 investigated in Example I.7.3. Its coefficients in spherical coordi-
nates (x1 = θ, x2 = ϕ) are given by (I.7.11). The coordinate system {x1, x2} is nor-
mal along the equatorial circle γ : [0, 2π) → S2 with x1◦γ = π

2 and x2◦γ = id[0,2π).
Suppose ∇ is a Weyl connection on S2 whose Riemannian part is ∇R. Then,

due to (6.13), we have (i, j = 1, 2)

Γi
jk ◦ γ = W i

jk ◦ γ (6.14)

with Wk = [W i
jk] given by (6.11). Thus, if there exist p ∈ γ([0, 2π)) such that

ω|p = 0, then {x1, x2} is normal for ∇ at p. From here immediately follows that,
if ω|p = 0 for some p ∈ S2, then one can construct spherical coordinates (with p
in their equatorial plane) which are normal at p for ∇.

In the general case, frames/coordinates normal for ∇ at an arbitrarily fixed
point p ∈ S2 can be constructed as follows. Take spherical coordinates (x1 =
θ, x2 = ϕ) on S2 such that p is in their equatorial plane, e.g., we can choose them
in such a way that θ(p) = π

2 and ϕ(p) = 0. Then {x1, x2} is normal for ∇R along
the equatorial circle and, in particular, at p.

According to Theorem 2.3, all frames normal at p for ∇ (but not for ∇R)
are {Ei = Aj

i
∂

∂xj } with A = [Ai
j ] given by (2.14) in which one should put Γ1(p) =

W1(p) and Γ2(p) = W2(p) (see (6.13)), where W1 and W2 are given by (6.11) with
ω1 = ω

(
∂

∂x1

)
and ω2 = ω

(
∂

∂x2

)
, viz.

A(q) =
{
1−1

2
[x1(q)−x1(p)]

(−ω1 −ω2
g1
g2

ω2 −ω1

)
−1

2
[x2(q)−x2(p)]

(−ω2
g2
g1

ω1

−ω1 −ω2

)}
A0

+ Ajk(q)[xj(q) − xj(p)][xk(q) − xk(p)]. (6.15)

Similarly, to obtain all coordinates normal at p, one has to substitute the equality
Γi

(jk)(p)=W i
jk(p), with W i

jk given by (6.11), in (2.11′). The reader may wish to
write as an exercise the explicit form of the so-obtained coordinates normal at p.

Example 6.5 (Weyl connection on Minkowski spacetime). Let now ∇ be a Weyl
connection on the Minkowski spacetime R4

3 and γ : J → R4
3 be a straight line; e.g.,

it may be a trajectory of a photon, γ̇ = 0, and hence lying on the light cone (see
Example I.7.12). We shall look for a coordinate system normal for ∇ along γ.

From the standard coordinate system {ui : i = 1, . . . , 4}, we can obtain via a
pseudo-orthogonal transformation, which preserves the components of the metric
e4
3 of R4

3, a new coordinates system {xi} such that x1 ◦ γ = idR, i.e., the x1-axis to
coincide with the line γ. 1 The coordinate system {xi} is of the type constructed
in Lemma 3.1; it corresponds to U1 = R4

3 and t0 = (0, 0, 0).
1Here we shall not discuss the physical possibilities for realization of the coordinate system

{xi}.
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Since in {xi} the components of e4
3 form the matrix diag(1,−1,−1,−1), in

it the coefficients of ∇ are
Γi

jk = W i
jk

with W i
jk given by (6.9) (or (6.10)). Consequently, by Theorem 3.1 (resp. 3.3),

all frames
{
Ei = Aj

i
∂

∂xj

}
(resp. coordinate systems {zi}) on R4

3 normal along the
(whole) path γ are given via (3.23) (resp. (3.27)–(3.28)) in which the matrix Γ1

has the form (see (6.10))

Γ1 = W1 := [W i
j1] = −1

2
ω11 +

1
2
g1

[ 1
gi

ωi(1 − δij)δj1

]
− 1

2
[(1 − δij)(1 − δj1)δi1ωj ].

The matrix-valued function Y (s, s0;−Γ1◦γ) is now the solution of the initial-value
problem (s ∈ R)

dY

ds
= −(W1 ◦ γ)Y Y |s=s0 = 1.

Unfortunately, an explicit and finite expression for Y can be obtained only in some
exceptional cases. For instance, if ωi = ω

(
∂

∂xi

)
are constant functions, then W1 is

a constant matrix. This immediately implies

Y (s, s0;−Γ1 ◦ γ) = e−(s−s0)W1◦γ .

Exercise 6.1. Generalize the above results for Rn
q , 0 ≤ q ≤ n ∈ N, and when γ is

a straight line in Rn
q .

Example 6.6 (Flat Riemannian connections). Example I.7.1 will be re-considered
below from the view-point of the results of Section 4.

Let M be a C3 Riemannian manifold with C2 metric g and ∇ be the Rie-
mannian connection generated by g. Suppose ∇ is flat on an open set U ⊆ M . By
Theorem 4.3, there exist normal coordinates xi with domain V ⊆ U for ∇. The
coefficients of ∇ in these coordinates are Γi

jk =
{

i
ji

}
= 0, which implies gij,k = 0

in them (see (I.4.16)). Consequently, the components gij of g in {xi} are constant
on V . In this way we have inverted the implication/conclusions of Example I.7.1.

The coordinates xi can be calculated by means of (4.14), but the finding of
their explicit form may turn to be a difficult problem. However, if one finds a
coordinate system {xi} on V ⊆ U in which the metric components are constant,
then it will be also normal for ∇ on V (see (I.4.16)). For instance, such are the
standard coordinates on the Euclidean space E

n and on the pseudo-Euclidean
space Rn

q (see Example I.7.1 and (I.7.16)). In particular, the standard (Cartesian)
coordinates on the Minkowski spacetime M4 = R4

3 (or R4
1) are normal on M4 for

the flat Riemannian connection on it induced by the metric e4
3.

Example 6.7 (One-dimensional real manifolds). There are at lest two reasons for
the global (local) existence of normal frames (coordinates) on 1-dimensional C3

real manifolds endowed with a linear connection ∇, viz.:
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(i) The curvature and torsion tensors identically vanish in the 1-dimensional
case (see (I.3.13) and (I.3.14) with all indices taking the sole value 1). We
can rephrase this by saying that any linear connection on 1-dimensional man-
ifold is flat and torsionless. Consequently Theorems 4.1 and 4.3 imply the
above result. Respectively, Theorem 4.2 and Theorem 4.3 give a complete
description of all normal frames and coordinates.

(ii) A chart (U, x) on 1-dimensional manifold M consists of an open set U ⊆ M
and homomorphism x : U → J with J being an open real interval. Thus
x−1 : J → M is a path for which the results of Section 3 are applicable. In
particular, Theorems 3.1 and 3.2 (resp. Theorem 3.3) describe(s) all frames
(resp. coordinates) normal along x−1. Besides, since M can be represented
as a union of curves like x−1(J), frames globally normal on M for ∇ can be
constructed in a way similar to the one described in the proof of Theorem 3.2.

Let us now write some explicit formulae regarding coordinates/frames normal
for a C1 connection ∇ on a C3 1-dimensional real manifold M . Let (U, x) be a
chart of M with x : U → J ⊆ R and {x1} be the corresponding coordinate system
consisting of the sole coordinate function x1 = u1◦x = idR◦x = x. The connection
∇ has in {x1} a sole coefficient Γ1

11 coinciding with the matrix Γ1 = [Γ1
11] = Γ1

11.
To construct coordinates/frames normal for ∇, we need, according to the

scheme describe in Section 4, the solution Y (p, p0;−Γ1), for fixed p0 ∈ U and any
p ∈ U , of the initial-value problem

dY

dx1
= −Γ1Y Yp=p0 = 11 = 1.

This solution is

Y (p, p0;−Γ1) = exp
(
−

p∫
p0

Γ1(q) dq

)
= exp

(
−

s∫
s0

Γ1(γ(s))γ̇1(s) ds

)
(6.16)

where γ : J ′ → U is any path in U such that γ(s0) = p0 and γ(s) = p for some
s0, s ∈ J ; in particular, one can set γ = x−1 and J ′ = J .

According to Theorem 4.3, all coordinate systems {x′1} on U which are
normal for ∇ on U are such that

x′1(p) = a1 +
1
B

p∫
p0

Y −1(q, p0;−Γ1) dq1

= a1 +
1
B

p∫
p0

exp
( q∫

p0

Γ1(r) dr

)
dq

= a1 +
1
B

s∫
s0

exp
( t∫

s0

Γ1(γ(u))γ̇1(u) du

)
γ̇1(t) dt

(6.17)
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where ai are constant numbers (representing the coordinates of p0 in {x1}) and
B is a non-zero constant.

Exercise 6.2. If ∇ is a Riemannian connection, derive the results of Example I.7.2
from (6.17). (Hint: use equation (I.7.5).)

Similarly, by Theorem 4.2, all frames {E′
1} normal on U for ∇ are such that

E′
1|p = B exp

( p∫
p0

Γ1(q) dq

)
∂

∂x1

∣∣∣
p

= B exp
( s∫

s0

Γ1(γ(t))γ̇1(t) dt

)
∂

∂x1

∣∣∣
p

.

(6.18)

Comparing (6.18) and (6.17), we get

E′
1 =

∂

∂x′1 (6.19)

which means that any normal frame is holonomic as it should be in 1-dimensional
manifolds.2

Exercise 6.3. Derive equations (6.17)–(6.19) by applying the results of subsec-
tion 3.2. Hint: use Theorems 3.3 and 3.1.

Example 6.8 (Frames/coordinates normal along geodesic in 2-manifold). This ex-
ample demonstrates that frames/coordinates normal along geodesic paths in a
2-dimensional manifold can always be found explicitly via quadratures.

Suppose M is a C3 2-dimensional manifold, ∇ is a C0 connection on M and
γ : J → M is a geodesic. Due to Remark 3.7 on page 95, the equations Γ1

11 ◦γ = 0
and Γ2

11◦γ = 0 hold in the coordinates {x1, x2} provided by Lemma 3.1. Therefore
the matrix Γ1 along γ is

Γ1 ◦ γ = [Γi
j1 ◦ γ]i,j=1,2 =

(
0 Γ1

21 ◦ γ
0 Γ2

21 ◦ γ

)
. (6.20)

The matrix-valued function Y (s, s0;−Γ1 ◦ γ), entering into the main results of
Subsection 3.2, is the solution of the matrix initial-value problem

dY

ds
= −(Γ1 ◦ γ(s))Y Ys=s0 = 1

2It is an elementary exercise to be proved that all C0 frames on C1 1-dimensional manifold
are (locally) holonomic.
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which in an expanded form reads (see (6.20); Y = [Yij ]):

dY11(s)
ds

= −Γ1
21(γ(s))Y21 Y11|s=s0 = 1

dY12(s)
ds

= −Γ1
21(γ(s))Y22 Y12|s=s0 = 0

dY21(s)
ds

= −Γ2
21(γ(s))Y21 Y21|s=s0 = 0

dY22(s)
ds

= −Γ2
21(γ(s))Y22 Y22|s=s0 = 1.

The solutions of the last two initial-value problems are

Y21 = 0 Y22 = exp
(
−

s∫
s0

Γ2
21(γ(t)) dt

)
.

Inserting these functions into the previous two initial-value problems, we get

Y11 = 1 Y12 = 0

and consequently

Y (s, s0;−Γ1 ◦ γ) = diag
(

1, exp
(
−

s∫
s0

Γ2
21(γ(t)) dt

))
. (6.21)

According to Theorem 3.1, all frames {E′
i} normal for ∇ along the geodesic

path γ are such that E′
i(p) = Aj

i (p) ∂
∂xj

∣∣
p
, where p ∈ U1 and the matrix-valued

function A = [Aj
i ] is given by (3.23) and (6.21), i.e.,

A(p) =
{
1−

∑
k=1,2

Γk(p0)[xk(p)−xk(p0)]
}

diag
(

1, exp
(
−

x1(p)∫
s0

Γ2
21(γ(t)) dt

))
B

+
∑

k,l=1,2

Bkl(p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (6.22)

with Γ1(p0) given via (6.20) (as p0 = γ(s)).

Similarly, by Theorem 3.3, all coordinate systems {zI : i = 1, 2} normal for
a symmetric connection ∇ on some subset Uz ⊆ U1 are given via (3.27), (3.28),
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(6.20) and (6.21), that is we have the explicit expression (i = 1, 2).

zi(p) = ai + (B−1)i
1[x

1(p) − s0]

+ (B−1)i
1[x

1(p) − x1(p0)] + (B−1)i
2 exp

(
−

x1(p)∫
s0

Γ2
21(γ(t)) dt

)
[x2(p) − x2(p0)]

+ (B−1)i
1[x

2(p) − x2(p0)]
∑

j=1,2

Γ1
j2(γ(x1(p)))[xj(p) − xj(p0)]

+ (B−1)i
2[x

2(p) − x2(p0)] exp
(
−

x1(p)∫
s0

Γ2
21(γ(t)) dt

)
×

∑
j=1,2

Γ2
j2(γ(x1(p)))[xj(p) − xj(p0)]

+
∑

j,k,l=1,2

ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)]. (6.23)

The formula (6.22) (resp. (6.23)) gives a complete local description of all
frames (resp. coordinates) normal along a geodesic path γ for arbitrary (resp.
symmetric) linear connection ∇ on a 2-dimensional manifold. If one needs frames
globally normal along γ, the scheme proposed in the proof of Theorem 3.2 can be
applied for their construction and/or complete description.

Example 6.9 (Open Einstein-de Sitter Universe). The (open) Einstein-de Sitter
Universe is a concrete type of non-static homogeneous cosmological model (see [58]
and Example I.7.11). Its geometrical base is the Einstein-de Sitter manifold which
is a 4-dimensional Riemannian manifold with Riemannian metric g which in a
suitable coordinate system {x1 = x, x2 = y, x3 = z, x4 = ct} has components gij ,
i, j = 1, . . . , 4, forming the diagonal matrix [58, § 164]

[gij ] = diag
(−ef(x4),−ef(x4),−ef(x4), 1

)
(6.24)

for some C1 function f ; the range of xi is R. The metric g induces a Riemannian
connection ∇ whose non-zero coefficients in {xi} are (see (I.4.13) and (I.4.15))

Γi
i4 = Γi

4i =
1
2
f ′(x4) for i = 1, 2, 3

Γ4
kk =

1
2
f ′(x4)ef(x4) for k = 1, 2, 3

(6.25)

where f ′(x4) = df(x4)
dx4 .
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These equations yield the following coefficients’ matrices

Γk = [Γi
jk] =

1
2
f ′(x4)

⎛⎜⎜⎝
0 0 0 δ1k

0 0 0 δ2k

0 0 0 δ3k

δ1kef(x4) δ2kef(x4) δ3kef(x4) 0

⎞⎟⎟⎠ for k = 1, 2, 3

Γ4 = [Γi
j4] =

1
2
f ′(x4) diag(1, 1, 1, 0). (6.26)

Consequently, the coordinate system {xi} is normal on the set {p : f ′(x4(p)) =
0}, which may be empty if f ′ is nowhere vanishing function. However, if, for
instance, there is a point p0 such that f ′(x4(p0)) = 0, then {xi} is normal on the
3-dimensional submanifold {p : x4(p) = x4(p0)}.

Due to Theorem 2.1, all coordinates yi normal for ∇ at an arbitrarily chosen
point p are given by (2.11′). So, substituting (6.25) into (2.11′), we get their explicit
form as:

yi(q) = yi(p) + bi
j[x

j(q) − xj(p)] +
1
2
f ′(x4)[x4(q) − x4(p)]

3∑
l=1

bi
l [x

l(q) − xl(p)]

+
1
2
f ′(x4)ef(x4)bi

4

3∑
l=1

[xl(q) − xl(p)]2

+ bi
jkl(q)[x

j(q) − xj(p)][xk(q) − xk(p)][xl(q) − xl(p)]. (6.27)

Similarly, all frames normal at a point p are described via Theorem 2.3.
Thus, to obtain an explicit expression for them, one simply has to substitute (6.26)
into (2.14).

Exercise 6.4. Investigate frames/coordinates normal along a C1 path in the Ein-
stein-de Sitter spacetime. For the purpose, the coefficients of ∇ should be calcu-
lated in the coordinates provided by Lemma 3.1 (see (I.3.6), (3.12) and (6.25))
and then Theorems 3.1 and 3.3 should be applied.

7. Conclusion

The main subject of this chapter was the existence and (non-)uniqueness of normal
frames and coordinates for linear connections on differentiable manifolds. The
existing literature on the problem was reviewed (in modern notation). It deals
only with normal coordinates which exist only for torsionless connections. The
few works investigating the asymmetric case do not add nothing new as they
treat the symmetric part of the connection, thus transferring the problem to the
exploration of some other torsion free linear connection.

The major classical results concerning the normal coordinates for linear con-
nections are summarized in the Table 7.1 on the next page.
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Table 7.1: Main contributions in the theory of normal coordinates for torsionless
linear connections.

Year Person Result and original reference

1854 B. Riemann Existence and construction of (‘Riemannian’) coordinates
in a Riemannian manifold which are normal at a single
point. [48]

1922 O. Veblen Existence and construction of (‘Riemannian normal’) coordi-
nates in a manifold with torsionless linear connection which
are normal at a single point. [72]

1922 E. Fermi Existence of (‘Fermi’) coordinates in a Riemannian manifold
which are normal along a path without self-intersections. [52]

1926 T. Levi-Civita Explicit transformation to the Fermi coordinates along paths
without self-intersections. [81]

1927 L.P. Eisenhart Existence and construction of particular kind of (‘Fermi’)
coordinates on a manifold with torsionless linear connection
which are normal along a path without self-intersections. [53]

1958 L. O’Raifeartaigh Necessary and sufficient conditions for existence of coordi-
nates normal on submanifold of a manifold with torsionless
linear connection. If such coordinates exist, a particular ex-
ample of them (‘Fermi coordinates’) is constructed. [55]

Besides the detailed review of these results, we have presented a number
of their generalizations and wide discussion of related topics and methods, most
of which seem to be new ones and appearing in the present book for the first
time.1 They include mainly: (i) Description of all frames normal for symmetric
connections; (ii) Complete description of all coordinates normal for torsionless
linear connections (cases at a given point, along paths, and on submanifolds); (iii)
Existence and complete constructive description of all frames normal at a single
point, along (locally injective) paths, and on submanifolds for arbitrary linear con-
nections, with or without torsion. Moreover, with respect to the references cited,
we have made a number of improvements of the existing proofs of known results,
a lot of facts are formulated more precisely, and some assertions are (partially)
generalized. The reader interested in what exactly is new in Subsections 2.1, 3.1,
and 5.1 and in Section 4 may wish to compare them with the references given
at their beginnings and the ones of Sections 2–5. Subsections 2.2, 3.2, and 5.2,
entitled ‘Complete description’ contain original material.

Here we want to emphasize on the following facts. First, normal coordinates
(may) exist only for torsionless linear connections while normal frames (may) exist
for arbitrary connections; the normal frames for connections with non-zero (resp.

1Preliminary (implicit) versions of some of these results are contained in the author’s pa-
pers [80], [76, Section 6], and [83, Section 5].
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zero) torsion are with necessity anholonomic (resp. holonomic). Second, at a single
point or along a path normal coordinates (resp. frames) always exist for torsionless
(resp. arbitrary) linear connections; on submanifolds of dimension greater than one
they exist if and only if the parallel transport on it along paths lying entirely in it is
path-independent; in particular on the whole manifold normal coordinates/frames
exist iff it is flat. Third, the normal coordinates, if any, are essentially local; globally
they exist only as an exception. If local normal frames exist, then global normal
frames always exist but they are smooth generally only locally.

Looking over the Riemannian coordinates, Riemannian normal coordinates,
and Fermi coordinates (along a path or on submanifold, if any in the last case),
we see that they are constructed in a uniform common way by employing the
(local) existence of geodesics. From this point of view, the above coordinates are
realization of one special kind of normal coordinates on submanifolds of zero, one,
or higher dimension respectively.



Chapter III

Normal Frames and
Coordinates for Derivations on
Differentiable Manifolds

The existence, uniqueness, and
construction of frames and coor-

dinates normal for derivations (along
vector fields, fixed vector field, paths, and

fixed path) of the tensor algebra over a
manifold are explored in details. For arbitrary

vector fields or paths, normal frames (resp.
coordinates) exist always (resp. if the

torsion vanishes); on other subman-
ifolds or along more general map-

pings necessary and sufficient conditions
for such existence are derived. For

derivations along fixed vector field
or path normal frames and coordi-

nates exist always. With a few ex-
ceptions, a complete constructive descrip-

tion of the normal frames and coordinates, if any,
is presented. Frames simultaneously normal for

two derivations are studied. With respect
to the normal frames, the unique role

of the linear connections amongst the
other derivations is pointed out.
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1. Introduction

The aim of this chapter is the investigation of frames and coordinates normal for
different kinds of derivations of the tensor algebra over a differentiable manifold.
Since the linear connections are a particular example of such derivations, the
presented here material is a direct continuation and generalization of the one in
Chapter II. But, as we shall see, a number of problems concerning normal frames
and charts for general derivations are ‘locally’ reduced to the same problems for
linear connections and, consequently, their (local) solutions could be found, in
more or less ready form, in Chapter II.

Some of the results in the present chapter are partially based on the ones in
the series of works [76,80,83–87] and are completely revised and generalized their
versions. But most of the material is new and original.

Section 2 has an introductory character. The concepts of derivations and
derivations along vector fields of the tensor algebra over a manifold are intro-
duced. Their components, coefficients (if they are linear), curvature, and torsion
are defined. Next, in Section 3, the normal frames and coordinates are defined as
ones in which the components of a derivation along vector fields vanish (on some
set). The equations describing the transition to normal frames or coordinates are
derived and the linearity of a derivation along vector fields is pointed as a necessary
conditions for their existence.

In Section 4 (resp. Section 5) is proved that at a single point (resp. along a
(locally injective) path) frames normal for a linear at it (resp. along it) derivation
along vector fields always exist and their complete descriptions are given. Besides,
if the derivation is torsionless, all normal coordinates are found. In Sections 6–8,
the problems of existence, uniqueness, and complete description of frames and local
charts (or coordinates) on neighborhoods, on submanifolds, and along (injective
or locally injective) mappings, respectively, for derivations along vector fields are
studied in details and solved.

To the problems concerning frames or coordinates normal for derivations
along fixed vector field is devoted Section 9. The existence of normal frames and
coordinates in this case is proved. A complete description of the frames normal at
a single point, along a path, and on the whole manifold are presented. The local
charts (or coordinates) normal at a point are completely described. Along a path
the explicit system of differential equations, which the normal coordinates must
satisfy and which always have (local) solutions, is derived. A method for obtaining
the coordinates (locally) normal on the whole manifold is pointed in the C∞ case.

Normal frames for derivations along paths are investigated in Section 10.
After the introduction of the basic definitions and notation, it is proved that frames
normal for a derivation along a given (fixed) path always exist and their general
form is found. A (local) holonomic extension of such frames, as well as of any other
frame defined only along a path, is constructed. For derivations along arbitrary
paths is proved that they admit normal frames iff they are covariant derivatives
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along paths induced by linear connections for which normal frames exist. Since
the normal frames for the derivations and connections turn to be identical, all
problems for these frames are transferred to similar ones considered in Chapter II.

Section 11 deals with problems connected with frames simultaneously nor-
mal for two derivations along arbitrary/fixed vector field or path. Necessary and
sufficient conditions for the existence of such frames are found. In particular, in
the case of arbitrary vector field or path, they exist iff the two derivations coin-
cide. Normal frames for mixed linear connections are explored. It is shown that
this range of problems is completely and equivalently reduced to similar one for
two, possibly identical, linear connections, the contra- and co-variant ‘parts’ of the
initial mixed connection.

In Section 12 are collected and commented some results concerning linear
connections obtained in the preceding sections of this chapter.

Section 13 illustrates the theory of the preceding sections with concrete
examples.

Section 14 contains a discussion of some terminological problems linked to
the normal frames or coordinates.

The chapter ends with certain general remarks in Section 15.

2. Derivations of the tensor algebra over a manifold

The idea of a derivation of the algebra T (M) of tensor fields over a manifold M
is in T 1(M) to be introduced an operator analogous to the (ordinary or partial)
derivative of scalar functions and ‘compatible’ with the tensor structure of T 1(M).
The covariant derivative (along vector fields), introduced via Definition I.3.1 is, as
we shall see below, a particular example of a derivation of the tensor algebra over
a differentiable manifold. The analysis of the system of axioms in Definition I.3.1
reveals that not all of them are equally important for an abstract definition of
derivation and leads to the following definition (see [11, Chapter I, § 3] and [12,88]).

Definition 2.1. A derivation of the tensor algebra T 1(U) (or of T (U)), U being
an open set in M , is a mapping D : T 1(U) → T 0(U) possessing the following
properties:

(i) Linearity,

D(aK + bL) = aD(K) + bD(L), a, b ∈ K, K, L ∈ Tr;1
s (U).

(ii) Leibnitz rule (relative to tensor multiplication),

D(K ⊗ L) = (D(K)) ⊗ L + K ⊗ D(L) K, L ∈ T 1(U).

(iii) Type preservation,
D : Tr;1

s (U) → Tr;0
s (U).
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(iv) Commutativity with every contraction operator,

[D, C] := D ◦ C − C ◦ D = 0.

Example 2.1. The comparison of Definitions I.3.1 and 2.1 (see also comments I.3.1)
shows that every covariant derivative ∇X along X ∈ X(U) is a derivation of
T 1(U). Other examples of derivations are provided by the Lie derivative LX along
X ∈ X(U) and by arbitrary tensor field S ∈ T1

1 of type (1, 1) [11]. This is easily seen
from the following local expansions in the tensor frame with basic fields (I.2.41)
induced by a frame {Ei} on U [11, 19, 89]:

(LX(K))i1...ir

j1...js
= X

(
Ki1...ir

j1...js

)
+

r∑
a=1

[−Ek(X ia) + Cia

lk X l]Ki1...ia−1kia+1...ir

j1...js

−
s∑

b=1

[−Ejb
(Xk) + Ck

ljb
X l]Ki1...ir

j1...jb−1kjb+1...js
,

(2.1)

(S(K))i1...ir

j1...js
=

r∑
a=1

Sia

k K
i1...ia−1kia+1...ir

j1...js
−

s∑
b=1

Sk
jb

Ki1...ir

j1...jb−1kjb+1...js
, (2.2)

where K ∈ Tr;1
s (U) is arbitrary C1 tensor field of type (r, s) on U .

The following proposition describes the general structures of the derivations
of T 1(U) [11, Chapter I, Proposition 3.3].

Proposition 2.1. For every derivation D of T 1(U), there exist unique vector field
X ∈ X1(U) and tensor field SX ∈ T1

1(U), generally depending on X, such that

D = LX + SX , (2.3)

i.e., every derivation admits a unique decomposition (2.3).

Proof. See [11, Chapter I, proof of Proposition 3.3]. �

Example 2.2. In particular, a covariant derivative ∇X along X ∈ X(U) has a
representation (2.3) with SX given via

SX(Y ) = ΣX(Y ) := ∇XY − [X, Y ] = ∇Y X + T (X, Y ) (2.4)

where Y ∈ X(U) and T is the torsion of ∇ (see (I.3.12)).

Evidently, every pair (X, S) with X ∈ X(U) and S : X(U) → T1
1(U), S : X �→

SX , defines a unique derivation of T 1(U) by (2.3). There is a one-to-one onto
correspondence, given via (2.3), between the sets of derivations of T 1(U) and the
set of pairs (X, S). If some derivation D has a decomposition (2.3), we shall write
DS

X instead of D; if the dependence on X is essential and the one on S is not, we
reduce DS

X to DX . We say that DX is a derivation along X .
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Using (2.1)–(2.3), we find the local components of DX(K), K ∈ Tr;1
s , in some

local frame as

(DX(K))i1...ir

j1...js
= X

(
Ki1...ir

j1...js

)
+

r∑
a=1

ΓX
ia

kK
i1...ia−1kia+1...ir

j1...js

−
s∑

b=1

ΓX
k
jb

Ki1...ir

j1...jb−1kjb+1...js
.

(2.5)

Here the functions ΓX
i
j ∈ F(U) are defined via the expansion

DX(Ek) =: ΓX
i
kEi (2.6)

and their explicit form is

ΓX
i
j = (SX)i

j − Ej(X i) + Ci
kjX

k (2.7)

where Ci
jk ∈ F(U) define the commutators of the basic vector fields according

to (I.3.15). We call ΓX
i
j the (local) components of DX in {Ei}; respectively, we

call ΓX :=
[
ΓX

i
j

]
matrix (of the components) or components’ matrix of DX .

An important result follows from the comparison of equations (2.6) and (I.3.1)
(or (2.5) and (I.3.2) and taking into account (I.3.3)).

Proposition 2.2. A derivation DX of T 1(U) with local components ΓX
i
j in a frame

{Ei} is a covariant derivative along X iff

ΓX
i
j = Γi

jkXk (2.8)

for some functions Γi
jk : U →K, which are coefficients of a linear connection on U .

Hence the covariant derivatives are derivations whose components depend
linearly on the generating them via (2.3) vector field X .

Definition 2.2. A derivation DX of T 1(M) is said to be linear on (in) a set U ⊆ M
or along a mapping η : Q → M for a set Q 
= ∅, if in some frame (and hence in
all frames) {Ei} the relation

ΓX(p) = [ΓX
i
j(p)] = Γk(p)Xk(p) (2.9)

holds for some matrix-valued functions Γ1, . . . , Γdim M on U or on η(Q) and every
p ∈ U or p ∈ η(Q), respectively.

According to Proposition 2.2, the covariant derivatives are derivations which
are linear at every point.

If we transform the frame {Ei} on U into a frame {E′
i = Aj

iEj} by means
of a C1 non-degenerate matrix-valued function A = [Aj

i ], we see from (2.6) and
Definition 2.1 that the components ΓX

i
j of DX transform as (cf. (I.3.5))

ΓX
i
j �→ Γ′

X
i
j = (A−1)i

k[ΓX
k
mAm

j + X(Ak
j )]. (2.10)
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Introducing the matrix ΓX := [ΓX
i
j ]dim M

i,j=1 of the components of the derivation
DX , we rewrite (2.10) in the form (cf. (I.5.3))

ΓX �→ Γ′
X = A−1[ΓXA + X(A)] (2.11)

where X(A) := [X(Ai
j)]

dim M
i,j=1 .

Definition 2.3. A derivation D along vector fields of the tensor algebra T 1(U),
U ⊆ M , is a mapping assigning to every X ∈ X(U) a derivation DX of T 1(U)
with decomposition DX = LX + SX for some S : X(U) → T1

1(U), S : X �→ SX .

The concept of a derivation along vector fields1 generalizes the one of a linear
connection (see Definition I.3.1) to which it reduces if the derivative DX along X
is a covariant one. In a given frame {Ei}, the main difference between the linear
connections and derivations along vector fields is expressed by equations (I.3.1)
and (2.6). The former one defines the coefficients Γi

jk : U → K of a linear con-
nection ∇ irrespectively of some vector fields, while the latter one defines the
components Γi

j : U → K of a derivation D along vector fields only with respect to
some vector field X and, generally, one can not get rid of the dependence on X
unless DX is linear in X .

Definition 2.4. A derivation D along vector fields is linear on (in) a set U ⊆ M
or along a mapping η : Q → M , Q 
= ∅, if in some frame (and hence in all frames)
{Ei} the matrix ΓX :=

[
Γi

j

]dim M

i,j=1
of the components of D along every X ∈ X(M)

admits a decomposition (2.9) for some matrix-valued functions Γ1, . . . ,Γdim M on
U or on η(Q) and every p ∈ U or p ∈ η(Q), respectively.

Example 2.3. It is trivial to verify that the linear connections are derivation along
vector fields linear at every point. Conversely, a derivation D along vector fields
linear on U is a linear connection on U . In fact, equation (2.8) holds for the
components of such a derivation2 and, by Proposition 2.2, DX is a covariant
derivative along X . So, by Definition I.3.1, D is a linear connection on U .

The elements Γi
jk of the matrices Γk, corresponding via (2.9) to a linear

derivation D along vector fields, will be called coefficients of D on U . It is clear,
the coefficients of D exist only on sets on which D is linear and they transform
as coefficients of a linear connection by (I.3.5). The matrices Γk =

[
Γi

jk

]dim M

i,j=1

will be called matrices of the derivation coefficients, or derivation’s matrices, or
coefficients’ matrices of the derivation.

The definition of a Cr derivation along vector fields (on Ck manifold with
k ≥ r) is similar to the one of Cr linear connection (see Subsection I.3.2) and it
is based on the transformation law (2.11). Given a class of frames connected via
linear transformations whose matrices are Cr′

, r′ ≥ 1, matrix-valued functions, a
1In the series of papers [76, 80, 83] the name S-derivation is used instead of derivation along

vector fields.
2If (2.8) is valid, the equality (2.5) is equivalent on U to (I.3.2) and (I.3.3) with ∇ = D.



2. Derivations on differentiable manifolds 147

derivation along vector fields is said to be of class Cr, r ≤ r′−1 with respect to it if
its local components in one (and hence in all) frame(s) in the above set of frames are
of class Cr. In what follows, we shall suppose by default that a given class of Cr′

,
r′ ≤ k−1, frames is fixed on a Ck, k ≥ 2, manifold M and it consists of all frames
associated to one (or all) systems of local coordinates on M or its open subsets
and all frames obtainable from them by means of linear transformations with Cr′

matrices. For instance, by a C1 derivation along vector fields we understand one
on a C3 manifold whose local components are C1 functions in any frame which is
coordinate or is obtainable from such by means of C2 transformations.

Analogously to the case of linear connections (see the end of Subsection I.3.2),
the concepts of curvature and torsion can be defined for derivations along vector
fields.

The (operators of) curvature RD and torsion T D of a C1 or arbitrary, re-
spectively, derivation D along vector fields on C3 or C2 manifold M , resp., are
mappings

RD : X(M) × X(M) × T (M) → T (M)

T D : X1(M) × X1(M) → X0(M)

such that

RD : (X, Y ) �→ RD(X, Y ) := DX ◦ DY − DY ◦ DX − D[X,Y ] (2.12)

T D : (X, Y ) �→ T D(X, Y ) := DX(Y ) − DY (X) − [X, Y ] (2.13)

for all vector fields X, Y ∈ X(M). By abuse of the language, the quantities
RD(X, Y ) and T D(X, Y ) will also be called (operators of) curvature and tor-
sion, respectively, of D (along the pair (X, Y )). The mapping R : D �→ RD (resp.
T : D �→ T D), assigning to a derivation D along vector fields its curvature (resp.
torsion), will be called curvature (resp. torsion) operator, or simply curvature
(resp. torsion).

Using (2.5), it is a simple exercise to verify that RD(X, Y ) is a tensor field
of type (1, 1), which we consider as a derivation, while T D(X, Y ) is a vector field
and their components in a local frame {Ei} are given respectively by[(

RD(X, Y )
)i

j

]
= X(ΓY ) − Y (ΓX) + ΓXΓY − ΓY ΓX − Γ[X,Y ] , (2.14)(

T D(X, Y )
)i = ΓX

i
jY

j − ΓY
i
jX

j − Ci
jkXjY k (2.15)

where ΓX :=
[
ΓX

i
j

]
is the matrix of the components of the derivation D along a

vector field X in {Ei} (see (2.6)) and the functions Ci
jk are defined via [Ei, Ej ] =:

Ck
ijEk.

Since the equivalent equations (2.8) and (2.9) hold on U for a linear on
U ⊆ M derivation D along vector fields, the equations (2.14) and (2.15) take
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respectively the forms3 (
RD(X, Y )

)i

j
= Ri

jklX
kY l (2.16)(

T D(X, Y )
)i = T i

jkXjY k. (2.17)

Here Ri
jkl and T i

jk are given by (I.3.13) and (I.3.14), respectively, i.e., they are the
components of the ordinary curvature and torsion tensors of a linear connection
∇ on U with coefficients coinciding with the ones of D on U .

A derivation along vector fields with vanishing curvature (resp. torsion) on
a set U ⊆ M will be called flat, or curvature free, or integrable (resp. torsionless
or torsion free) on U . For U = M , we call it simply flat (resp. torsionless).

Details on part of the above material, as well as other general results concern-
ing derivations of the tensor algebra over a manifold, the reader can find in [11].

The symmetry of the coefficients,

Γi
jk = Γi

kj , (2.18)

of a torsion free derivation in coordinate frames on the set(s) on which it is linear
is a trivial corollary from (2.15) and (2.9).

3. General overview

The heuristic arguments at the beginning of Section I.5, concerning linear connec-
tions, are completely applicable to the derivations along vector fields. According
to them, one can expect the existence of (local) frames in which all terms except
the first one in the right-hand side of (2.5) vanish. Obviously, this is equivalent to
the vanishment of the local components of a given derivation along vector fields
in some frame. Further in this chapter, we shall investigate at length when such
special frames exist. Below in the present section, some general properties of these
frames will be found provided they exist.

Definition 3.1. Given a manifold M , a subset U ⊆ M and a derivation D along
vector fields of the tensor algebra T 1(M). A frame {Ei}, defined on an open
subset of M containing U or equal to it, is called normal on U for D if in it
the components of D along every vector field X ∈ X(M), i.e., of DX , vanish
everywhere on U . Respectively, if g : Q → M , Q being non-empty set, a frame
{Ei}, defined on an open subset of M containing g(Q) or equal to it, is called
normal for D along g if it is normal on g(Q).

Similarly to (I.5.1), we can rewrite the first part of this definition as

{Ei} is normal on U ⇐⇒ ΓX
i
j |U = 0 in {Ei}. (3.1)

3It should be emphasized, equations (2.16) and (2.17) are valid only on the set(s) on which
the derivation D is linear.
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Consequently, in a normal frame {Ei}, due to (2.5), the components of DXK,
K ∈ Tr;1

s (U), are

(DX(K))i1...ir

j1...js
= X

(
Ki1...ir

j1...js

)
= X lEl

(
Ki1...ir

j1...js

)
. (3.2)

If {Ei} is an arbitrary frame on (a neighborhood of) U ⊆ M , then on U
exists a normal frame {E′

i} if and only if there is a C1 non-degenerate matrix-
valued function A = [Ai

j ] transforming {Ei} into {E′
i}, E′

i = Aj
i Ej , and such that,

according to (3.1) and (2.11), satisfies the normal frame equation

(ΓXA + X(A))|U = 0 (3.3)

which in component form reads (see (2.10))

(ΓX
i
mAm

j + XmEm(Ai
j))|U = 0. (3.3′)

Therefore a derivation D along vector fields admits normal frames on U iff (3.3)
has solutions with respect to A in some frame {Ei} and every vector field X . Prac-
tically all properties, including the existence, of the normal frames are, explicitly or
implicitly, related to the equation (3.3). Below we shall make some simple general
conclusions from it provided it has (non-degenerate) solution(s).

Proposition 3.1. Let a derivation D along vector fields of T 1(M) admits a frame
normal on U ⊆ M . Then the derivation D is linear on U , i.e., equation (2.9)
(or (2.8) in component form) holds for every p ∈ U .

Proof. Let {E′
i} be a frame normal for D on U and {Ei} be arbitrary frame

on U . There is a C1 non-degenerate matrix-valued function A = [Ai
j ] such that

E′
i = Aj

iEj for which (3.3) is valid. Hence, we have ΓX |U = −[(X(A))A−1]|U =
−[Xk(Ek(A))A−1]|U , i.e., equation (2.9) holds for

Γk(p) = −[Ek(A)A−1]|p, p ∈ U, (3.4)

and hence, by Definition 2.4, the derivation D is linear on U . �

Thus the linearity on U of a derivation D along vector fields is a necessary
condition for the existence of frames normal for D on U . As we shall see in the
next sections, this condition is generally not sufficient, exceptions being the zero-
and one-dimensional cases.

Proposition 3.1 allows an essential simplification of equation (3.3) and its
equivalent version (3.3′): the dependence on the arbitrary vector field X can
be removed. Indeed, if D admits normal frame(s), then ΓX = ΓlX

l on U for
some matrix-valued functions Γ1, . . . ,Γdim M which, when inserted into (3.3), re-
duces (3.3) to

(ΓlA + El(A))|U = 0 (3.5)
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due to the arbitrariness of X1, . . . , XdimM . Correspondingly (3.3′) takes the form

Γi
mkAm

j + Ek(Ai
j))|U = 0. (3.5′)

where Γi
jk : U → K are the components of Γk, Γk = [Γi

jk]dim M
i,j=1 , i.e., they are the

coefficients of the initial derivation.
Equation (3.5) is identical with equation (I.5.4), as it should be: according to

the above-said, the normal frames on U , if any, for a derivation D along vector fields
and for a linear connection coinciding on U with D are identical. This explains why
most of the properties of the normal frames for derivations along vector fields and
linear connections are similar or identical. Regardless of this, below some results,
concerning normal frames for derivations, will be proved independently, for others
a reference to the case of linear connections will be given, and, at last, to some
peculiarities of the case of derivations attention will be paid.

According to the aforesaid, if frames normal on U for D exist, they are
uniquely defined by the coefficients Γi

jk : U → K of D.
The following proposition and the first corollary of it describe the set of

normal frames, in any, for a given derivation along vector fields.

Proposition 3.2. Let a derivation D along vector fields admits a frame normal
on U ⊆ M . The set of all frames normal for D on U consists of the frames
that can be obtained from a fixed frame normal for D on U by means of linear
transformations whose matrices vanish on U under the action of the basic vector
fields of the normal frames.

Proof. Suppose the frames {Ei} and {E′
i} are normal for D on U . Then, due

to (3.1), ΓX |U = Γ′
X |U = 0 for every vector field X , so equation (3.3) reduces to

(X(A))|U = 0, A = [Ai
j ]. The choice X = Ei implies Ei(A)|U = 0. The converse

assertion is almost evident: if {Ei} is normal on U , i.e., ΓX |U = 0, and E′
i = Aj

iEj

with Ei(A)|U = 0, then, from the transformation law (2.11), we get Γ′
X |U = 0,

i.e., the frame {E′
i} is normal for D on U . �

Corollary 3.1. All frames normal on U for some derivation along vector fields,
if any, are connected via linear transformations whose coefficients vanish on U
under the action of the basic vector fields of the normal frames.

Proof. See Proposition 3.2 or its proof. �

Corollary 3.2. If a derivation D along vector fields admits a frame normal on
U ⊆ M , then (2.9) holds in it with

Γk|U = 0. (3.6)

Proof. See Proposition 3.1, equation (3.4), and Corollary 3.1. �
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Remark 3.1. Here and below, we suppose the derivation D and the vector field
X to be defined on the whole manifold M , i.e., D : X �→ DX with DX being
derivation of T 1(M) and X ∈ X(M). If D and X are defined on a smaller set, e.g.,
on a submanifold N of M with dim N < dimM , then all of the above (and next)
results are valid mutatis mutandis provided M is replaced with N ; in particular,
all frames will be defined on (subsets of) N and, correspondingly, the Latin indices
i, j, . . . should run from 1 to dim N , not to dimM .

Due to equation (3.6), Definition I.5.1 is a special case of Definition 3.1 when
applied to linear connections. In fact, if ∇ is a linear connection, its components
ΓX

i
j are defined by (2.6) with ∇ for D and satisfy (2.8) at every point in U and for

every X ∈ X(U). So, if ∇ admits frames normal on U , equation (3.6) implies that
a frame normal for ∇ on U according to Definition 3.1 is normal for ∇ on U by
Definition I.5.1. Conversely, if ∇ admits frames normal on U according to Defini-
tion I.5.1, by equation (2.8) they are also normal by Definition 3.1. Consequently,
Definitions 3.1 and I.5.1 are equivalent when linear connections are concerned.

Now we shall turn our attention to the holonomicity of the normal frames, if
such exist.

Proposition 3.3. Let a derivation D along vector fields admits C1 frames normal on
a neighborhood U ⊆ M . All of these frames are either holonomic or anholonomic
depending on is the torsion of D zero of non-zero on U , respectively.

Proof. Let {Ei} be a frame normal for D on U . In it, by virtue of (2.15), the
torsion along the pair (Ei, Ej) is (T D(Ei, Ej))|U = −(Ck

ijEk)|U = −([Ei, Ej ] )|U
and, consequently (see (2.15)), we have (T D(X, Y ))|U = −(X iY j[Ei, Ej ] )|U for
every X, Y ∈ X(U). Therefore [Ei, Ej ] |U = 0 iff T D|U = 0. �

Remark 3.2. Remarks I.5.2 and I.5.3 are valid mutatis mutandis in a case of
derivations along vector fields.

Recalling Remark I.5.1 on page 40, which is completely valid in a case of gen-
eral derivations along vector fields, we have to emphasize that the (an)holonomicity
of a frame {Ei} normal on U does not imply any conclusions concerning the
(an)holonomicity of the frame {Ei} outside U if it is defined on a set larger than
U . Moreover, if {Ei} is normal on U but not outside it, the derivation’s components
in {Ei} must vanish solely on U and generally are non-zero outside U .

Proposition 3.3 simply means that only the torsionless derivations along vec-
tor fields admit holonomic frames normal on a neighborhood. Moreover, for these
derivations anholonomic normal frames do not exist.

Definition 3.2. Let D be a derivation along vector fields admitting normal frames.
A chart (V, x) of M and the associated to it coordinate system {xi} are called
normal (for D) on a set U ⊆V if the coordinate frame

{
∂

∂xi

}
is normal for D on U .

So, the normal coordinates are the ones for which the associated local frames
are normal. They may exist only in the torsionless case, as stated in the following
assertion.
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Corollary 3.3. Normal coordinates may exist on a neighborhood only for torsionless
derivations along vector fields and they (locally) generate all frames normal for
them, if any.

Proof. See Definition 3.2 and Proposition 3.3. �

We can equivalently restate Corollary 3.3 by saying that derivations (along
vector fields) with non-vanishing torsion do not admits holonomic frames normal
on a neighborhood and if for them normal frames exist, they are anholonomic.

Now we want to turn our attention to coordinates normal on a subset U ⊆ M
which may not be a neighborhood.

The normal coordinates, if any, for a derivation (along vector fields) admitting
normal frames can be found as solutions of (3.3′). If on U ⊆ M normal frames
exist and (V, x) is a chart with V ∩ U 
= ∅ and associated coordinates {xi}, the
coordinates x′ i = x′ i(x1, . . . , xdim M ) defined on V are normal on U ∩ V if and
only if (3.3′) holds for Ei = ∂

∂xi and Aj
i = ∂xj

∂x′ i , i.e., iff(
ΓX

i
m

∂xm

∂x′ j + Xm ∂

∂xm

( ∂xi

∂x′ j
))∣∣∣∣

U∩V

= 0

which, by virtue of ΓX = ΓkXk, is equivalent to1(
∂2xi

∂x′ j∂x′ k +
∂xm

∂x′ j
∂xn

∂x′ k Γi
mn

)∣∣∣∣
U∩V

= 0. (3.7)

As one can expect, this equation is identical with the normal frame equation (I.5.4′)
on page 41 defining the normal coordinates for linear connections.

Proposition 3.4. If a derivation D along vector fields admits coordinates normal on
a set U ⊆ M , then it is torsionless on U . In other words, if D admits a holonomic
frame normal on U , it is torsion free on U .

Proof. If p ∈ U and {x′ i} are coordinates in a neighborhood of p normal on U ,
then (3.7) is valid. Antisymmetrizing this equation with respect to j and k, we find
Γi

[mn]|U = 0. Combining the last result with (2.17) and (I.3.14), we get T |U = 0
as in a holonomic frame, like

{
∂

∂xi

}
in (3.7), is fulfilled Ci

jk = 0. �

The last proposition immediately implies the following assertion.

Corollary 3.4. If U ⊆ M , only the torsionless on U derivations along vector fields
may admit frames which are normal and holonomic on U .

Later it will be proved that the vanishment of the torsion on a submanifold
is also a sufficient condition for the existence of normal coordinates for derivations
along vector fields admitting frames normal on them.

1The same result follows also from (3.5′) for Ei = ∂/∂xi and Aj
i = ∂xj/∂ ′xi.
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If a derivation D along vector fields admits frames normal on U ⊆ M , it is a
linear connection on U , as pointed above. To this connection corresponds a parallel
transport (see Subsection I.3.3) for which in ex. are valid the results concerning
parallel transports and normal frames of Section I.5 (see page 42 and further). In
particular, Propositions I.5.5 and I.5.6 remain true for the parallel transport in U
associate to D.

4. Frames and coordinates normal at a point

From the considerations in the previous section and Subsection II.2.2, we can
expect the existence of frames normal for every derivation D along vector fields
at every fixed point p in a C2 manifold M provided D is linear at p, i.e.,

ΓX(p) = Xk(p)Γk (4.1)

in every frame for some constant dimM × dimM matrices Γ1, . . . ,Γdim M . Below
we shall see that just this is the situation, which can be proved in a number of
ways.

Theorem 4.1. Let M be a C2 manifold, p be a given point in M , and D be a
derivation along vector fields of T 1(M). There exist frames normal for D at p if
and only if D is linear at p. Moreover, if D is linear at p and (V, x) is a chart
with V � p, then in V all frames normal for D at p are

{
Ei = Aj

i
∂

∂xj

}
where

A := [Aj
i ] : V → GL(dim M, K) is of class C1, non-degenerate, and its general

form is

A(q) =
{
1− Γj [xj(q) − xj(p)]

}
A0

+ Ajk(q)[xj(q) − xj(p)][xk(q) − xk(p)], q ∈ V (4.2)

where Γ1, . . . ,Γdim M are the (constant ) matrices of the coefficients of D given
via (4.1), A0 is a constant non-degenerate matrix, and Ajk are C1 matrix-valued
functions on U such that they and their first partial derivatives are bounded at p.

Proof. If D admits frames normal at p, by Proposition 3.1, it is linear at p, i.e.,
(4.1) holds. Conversely, if D is linear at p and (V, x) is a chart with p in its
domain, a frame

{
Ei = Aj

i
∂

∂xj

}
is normal for D at p iff A = [Aj

i ] satisfies (3.5)
with U = {p}. In the proof of Theorem II.2.3 (p. 82), we proved that this equation
always has solutions in V , the general one being given by (4.2) (see (II.2.14) with
Γj for Γj(p) and V for U). �

Theorem 4.1 provides a complete description of all frames normal at a single
point for a given derivation (along vector fields) linear at this point. By Corol-
lary 3.1, these frames are connected via linear transformations whose matrices
vanish at the given point under the action of the basic vector fields of the normal
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frames.1 According to Corollary 3.4 for U = {p}, the frames normal at a single
point p and holonomic at p exist if the derivation is torsionless at p.

In the torsion free case, the linear derivations along vector fields admit normal
coordinates at every fixed point p, which coordinates are solutions of (3.7) for U =
{p} with respect to x′ i.2 Equivalently, in this case, coordinates {yi} normal at p
can be found by transforming some local coordinates xi, defined in a neighborhood
of p, in such a way that the transformation {xi} → {yi} leads to the vanishment at
p of the derivation’s coefficients in {yi}. Since they change according to (I.3.5), this
problem is solved in the discussion preceding Proposition II.2.3 (see the paragraph
containing equation (II.2.11) on page 80). So, the general form of the coordinates
{yi} normal at p is given by equation (II.2.11′) on page 80 in which xΓl

(ij)(p)

should be replace with the coefficients xΓl
ij of the derivation (along vector fields)

at p. In this way we have proved the following theorem generalizing Theorem II.2.1.

Theorem 4.2. Let M be a C3 manifold, p ∈ M and D be torsionless and linear
at p derivation along vector fields. There exist coordinates {yi} normal at p for D
whose general form is

yi(q) = yi(p) + bi
j[x

j(q) − xj(p)]

+ bi
l

x
Γl

jk[xj(q) − xj(p)][xk(q) − xk(p)]

+ bi
jkl(q)[x

j(q) − xj(p)][xk(q) − xk(p)][xl(q) − xl(p)], (4.3)

where yi(p) are constant numbers, xi are arbitrarily chosen local coordinates in
some neighborhood V of p, q ∈ V , [bj

i ] is constant non-degenerate matrix, xΓl
jk

are the coefficients of D at p in {xi}, and the C3 functions bi
jkl : V → K together

with their first partial derivatives are bounded at p.

This result gives a complete description of all coordinates normal at a single
point for torsionless and linear at it derivations along vector fields.

Following the discussion before Proposition II.2.3, Theorem 4.2 can be slight-
ly generalized: if D is arbitrary, with or without torsion, derivation linear at p,
there exist local coordinates {yi} in which the symmetric part of the coefficients of
D, i.e., yΓl

(jk) := 1
2

( yΓl
jk + yΓl

kj

)
, vanish at p and their general form is (4.3) (in

which xΓl
jk may be replaced with xΓl

(jk)). But these coordinates are not normal
for D at p unless D is torsionless at p.

5. Frames and coordinates normal along paths

Relaying on the results of Section 3 and Subsection II.3.2, we may assume the
existence of normal frames along a path γ : J → M for a derivation D along

1This result is also a consequence of (3.5) and (3.6) for U = {p}.
2The vanishment of the torsion plays a role of an integrability condition for (3.7) with U = {p}.
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vector fields provided D is linear along γ, i.e., on the set γ(J):

ΓX(γ(s)) = Γk(γ(s))Xk(γ(s)), s ∈ J (5.1)

for some matrix-valued functions Γk on γ(J), ΓX being the matrix (of the compo-
nents) of D in a frame {Ei} defined in a neighborhood of γ(J). (Notice, we suppose
D to be linear on γ(J) but outside γ(J) it could not be such.) The truthfulness
of this supposition is verified by the results presented below.

In this section, as in Section II.3 (see p. 85), the manifold M will be considered
as real one, i.e., as real manifold of dimension dimR M . (Recall, dimR M = dim M
if M is real and dimR M = 2 dimM = 2 dimC M if M is complex; see also p. 7.)

Theorem 5.1. Let M be C2-manifold, γ : J → M be C1 regular path without
self-intersections, and D be C0, i.e., continuous, derivation along vector fields
of T 1(M). There exist frames (locally) normal for D along γ if and only if D is
linear along γ, that is on γ(J). Moreover, if D is linear along γ, for every s0 ∈ J ,
there exist neighborhood U1 of γ(s0) and a frame {E′

i} on U1 which is normal
for D along γ in U1, i.e., on U1 ∩ γ(J). Besides, there exist subinterval J1 ⊆ J
with γ(J1) = U1 ∩ γ(J) and a chart (U1, x) with associated coordinates {xi} in
U1 in which γ1(s) = s, the other components of γ(s) being constants, such that
all of the mentioned normal frames are

{
E′

i|p = Aj
i (p) ∂

∂xj

∣∣
p

}
, where p ∈ U1 and

the C1 non-degenerate matrix-valued function A = [Aj
i ] : U1 → GL(dimR M, R) is

given by

A(p) =
{
1− Γk(p0)[xk(p) − xk(p0)]

}
Y (x1(p), s0;−Γ1 ◦ γ)B

+ Bkl(p)[xk(p) − xk(p0)][xl(p) − xl(p0)]. (5.2)

Here 1 is the identity (unit) matrix, Γk are the coefficients’ matrices of D (see
equation (5.1)), p = x−1(s, t) ∈ U1 with s ∈ J1 and t ∈ RdimR M−1, p0 = γ(s) =
x−1(s, t0) for fixed t0 ∈ RdimR M−1, Y is the unique solution of the initial-value
problem (II.3.17) with s = x1(p) and Z = −Γ1 ◦ γ, B is constant non-degenerate
matrix, and the matrix valued functions Bkl on U1 are of class C1 and they and
their first partial derivatives are bonded on γ(J1).

Proof. If frames (locally) normal for D along γ exist, by Proposition 3.1 the deriva-
tion D is linear along γ, i.e., (5.1) holds.

Suppose D is linear along γ : J → M . Let {Ei} be a frame defined on a
neighborhood of γ(J). As it was proved in Section 3, D admits frames {E′

i = Aj
i Ej}

normal along γ if there exist non-degenerate matrix-valued C1 functions A = [Aj
i ]

which satisfy equation (3.5) for U = γ(J), i.e.,

Γk(γ(s))A(γ(s)) + E(A)|γ(s) = 0 (5.3)

for s ∈ J . So, D admits frames normal along γ iff this equation has solutions with
respect to A for some {Ei}. Besides, these solutions, if any, describe all such normal
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frames. In Subsection II.3.2 (see the paragraph containing equation (II.3.12) on
page 94), we proved that for every s0 ∈ J there exist a subinterval J1 ⊆ J
with J1 � s0, neighborhood U1 ⊃ γ(J1) = γ(J) ∩ U1, and local chart (U1, x)
with coordinate functions (II.3.12) in which the components of γ(s), s ∈ J1, are
γ1(s) = s and γk(s) = tk0 for some constant numbers tk for k ≥ 2 (see (II.3.13))
and every point p ∈ U1 has coordinates of the form x(p) = (s, t) for some s ∈ J1

and t ∈ RdimR M−1.
Further, it was proved in Subsection II.3.2 that (5.3) for Ek = ∂

∂xk reduces
to the system (II.3.16) which always has solutions, the general one being given
by (5.2) (see the discussion before (II.3.23)). �

Now the discussion between Theorems II.3.1 on page 97 and II.3.2 on page 99
can be repeated in extenso for derivations (along vector fields) linear along a given
path γ. Below we summarize the main results of it.

The holonomicity of the (local) frames normal along γ for D depends on the
torsion of D on γ(J): if D is torsion free on γ(J), i.e., along γ, these frames are
holonomic and, correspondingly, along γ exist normal coordinates; otherwise, if
D has non-vanishing torsion along γ, the mentioned frames are anholonomic. It
should be emphasized that the holonomicity of the normal frames on γ(J) does not
imply some conclusions of their holonomicity outside the set γ(J) where they can
be holonomic or anholonomic depending on the free parameters B and Bkl in (5.2).

The normal frames provided by Theorem 5.1 are essentially local : they exist
in the corresponding local coordinate neighborhoods and only as an exception
such a neighborhood may contain the whole path γ. Covering the set γ(J) with
coordinate neighborhoods of this kind and taking a normal frame in each of them,1

we can construct all frames globally normal along γ. These global normal frames
may turn not to be smooth in the region(s) of intersection of the domains of the
local coordinate neighborhoods.

The above concerns injective paths, i.e., ones without self-intersections. This
restriction can be weakened considerably: the results are valid mutatis mutandis
for locally injective paths. For this end, the interval J has to be presented as a
union of subintervals Jλ, λ∈Λ, such that the restricted paths γ|Jλ

are without self-
intersections. So the afore-given construction of, possibly global, normal frames is
applicable for γ|Jλ

. From the frames normal along γ|Jλ
all frames globally normal

along the whole path γ can be constructed. The details of this scheme are given
before Theorem II.3.2 on page 99 whose version for derivations along vector fields
reads:

Theorem 5.2. Let M be C2 manifold, γ : J → M be locally injective, C1, and reg-
ular path, and D be C0 derivation along vector fields. There exist frames (globally,
i.e., on γ(J)) normal for D along the whole path γ iff D is linear along γ. Locally
these frames, described via Theorem 5.1, are of class C1 but globally they may not
be such. Frames normal and holonomic along γ exist iff D is torsion free on γ(J).

1In the region(s) of intersection, we arbitrarily fix (choose) some frame normal in it (them).
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As was proved above, a derivation D along vector fields which is linear and
torsion free along regular locally injective path γ admits holonomic frames normal
along γ. Since these frames coincide with the ones for a linear connection ∇ with
the same coefficients along γ as those of D, the corresponding normal coordinates,
locally generating the holonomic normal frames, for ∇ and D coincide. The normal
coordinates for a symmetric C0 linear connection are described by Theorem II.3.3
on page 103. Hence the normal coordinates for derivations along vector fields are
given via the same theorem with the only change that the words “symmetric linear
connection” must be replace with “derivation along vector fields which is linear
and torsionless along γ”.

6. Frames and coordinates normal in a neighborhood

The main result concerning the existence of frames normal for derivations along
vector fields in a neighborhood, or submanifold of maximum dimensionality, is
that the flat linear connections are the only derivations admitting normal frames
on them.

Theorem 6.1. Let M be C3 manifold, D be C1 derivation along vector fields on
M , and U be (dim M)-dimensional submanifold of M . There exist frames normal
for D on U if and only if the restriction of D to U , i.e., to T 1(U), is a flat linear
connection.

Proof. Suppose there is a frame {E′
i} normal for D on U . By Proposition 3.1 and its

proof, D is linear on U and in an arbitrary frame {Ei = (A−1)j
iE

′
j} its coefficients’

matrices are given by (3.4). Hence D reduces on U to a linear connection ∇
with coefficients’ matrices (3.4) in {Ei} and whose curvature, according to (II.4.1)
and (3.4), has in {Ei} components Ri

jkl such that on U is fulfilled

Rkl := [Ri
jkl]

=
{
2El[+(Ek(A))A−1] + 2(Ek(A))A−1(El(A))A−1 + Cm

kl (Em(A))A−1
}

[kl]

=
{
2(E[lEk])(A) + Cm

kl Em(A)
}
A−1 ≡ 0

where [Ei, Ej ] = 2E[i ◦ Ej] = Ck
ijEk was used. Consequently ∇ (and also D) is

flat on U .
Conversely, if D is a flat linear connection on U , by Theorem II.4.1, on U

exist frames normal for this linear connection which, by virtue of (2.9), are also
normal for D on U . �

Theorem 6.1 reduces all problems concerning normal frames, if any, for
derivations (along vector fields) on submanifolds of maximum dimension to the
same problems for (flat) linear connections. Since the last range of problems was
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completely investigated in Section II.4, we are not going to repeat them and the
corresponding discussion here. We shall only summarize the main points of them
as the following exercises.

Exercise 6.1. Prove that every C1 flat linear derivation along vector fields on a C3

manifold admits (global) normal frames as, in fact, it is a flat linear connection.
(See Theorem 6.1 and Corollary II.4.1.)

Exercise 6.2. Prove that all frames {E′
i} normal for a C1 flat linear derivation on

an (dim M)-dimensional submanifold U are {E′
i = Aj

iEj}, where {Ei} is a frame
on U and A = [Aj

i ] : U → GL(dimM, K) is given by (II.4.11) in which p ∈ U ,
p0 ∈ U is fixed, B ∈ GL(dim M, K), Γk are the coefficients’ matrices in {Ei}, and
Y is the solution of (II.4.4) with q = p, q0 = p0, N = M , ea = Ea, and Za = −Γa

where a = 1, . . . ,dimM . (See Theorems 6.1 and II.4.2.)

Exercise 6.3. Prove that, if a C1 derivation which is linear, flat and torsionless in
the domain U of some local chart (U, x) of a C3 manifold, then it admits in U
normal coordinates which can be obtained from {xi} via (II.4.14) with ai ∈ K.

7. Frames and coordinates normal on submanifolds

As a consequence of the general constructions in Section 3, the equations describ-
ing frames normal on a submanifold U , if any, for derivations along vector fields
coincide with the ones for a linear connection with the same coefficients on U .
This allows an almost obvious direct transferring of the results obtained for linear
connections to the general case of arbitrary derivations along vector fields. Here is
a list of the main of them.

Theorem 7.1. Let N be submanifold of C3 manifold M and D be C1 derivation
along vector fields of T 1(M). Then:

(i) There exist frames normal for D on N if and only if it is linear on N and
it’s curvature vanishes on N along vector fields tangent to N as a manifold:(

RD(X, Y )
)∣∣

q
= 0, Xq, Yq ∈ Tq(N), q ∈ N ⊆ M. (7.1)

(ii) If D admits frames normal on N , every point q0 ∈ N has a neighborhood
UN in M such that on UN exist C1 frames normal for D on N , i.e., on
Ū = UN ∩ N � q0. Moreover, on UN exist coordinates {xi} such that:
(a) to every p = x−1(s, t′), (s, t′) ∈ WN × W ′ ⊆ Kdim N × Kdim M−dim N

corresponds a unique point p0 = x−1(s, t′0) ∈ Ū for some t′0 ∈ W ′

independent of t′ and
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(b) all frames defined on UN and normal on Ū are
{
E′

i = Aj
i

∂
∂xj

}
with

A(p) = [Aj
i ] =

{
1− Γk(p0)[xk(p) − xk(p0)]

}
× Y

(
x̄(p0), s0;−Γ1 ◦ (x−1( · , t′0)), . . . ,−Γdim N ◦ (x−1( · , t′0))

)
B(t′0)

+ Bkl(p)[xk(p) − xk(p0)][xl(p) − xl(p0)]. (7.2)

Here Γk are the coefficients’ matrices of D, Y is the unique solution of equa-
tion (II.5.9a) with A = Y and initial condition (II.5.9c) on page 122, (ŪN , x̄) is
the chart of N induced by (UN , x), s0 = x̄(q0), B is bounded matrix-valued func-
tion, and the matrix-valued functions Bkl on UN are of class C1 and they and
their first partial derivatives are bounded on ŪN .

Proof. Let {Ei} be a frame on (a neighborhood of) N . Suppose D admits a frame
{E′

i = Aj
i Ej} normal on N . By Proposition 3.1, the derivation D is linear on N

and, according to the results after it, the matrix A = [Aj
i ] satisfies the normal

frame equation (3.5) with U = N , viz.

Γk(p)A(p) + (Ek(A))|p = 0 p ∈ N. (7.3)

In Subsection II.5.2, we proved that this equation, written there as (II.5.7), has
solutions iff the integrability conditions (II.5.1) hold with R being the curvature
tensor of a linear connection on M whose coefficients, when restricted to N , coin-
cide with the ones of D. Because of (2.16), the conditions (II.5.1) are equivalent
to (7.1). Consequently, as A satisfies (II.5.7) with Γk being the coefficients’ ma-
trices of D, the equality (7.1) holds. Conversely, let the derivation D be linear
with coefficients’ matrices Γk and (7.1) be valid. Then, as we just said, the equa-
tion (7.3) admits solutions with respect to A. If A is such a solution, the frame
{E′

i = Aj
iEj} is normal for D on N due to (2.11) and (2.9). This completes the

first part of the theorem’s proof.
Now suppose D admits frames normal on N . Then D is linear on N and

equation (7.1) and its equivalent version (II.5.1) hold. Then Theorem II.5.2 is
valid for a connection whose coefficients on N coincide with the ones of D. Hence
the coordinates with the properties (a) exist and in them, i.e., for Ei = ∂

∂xi , the
general solution of (7.3) is given via (7.2). So, the frames {E′

i = Aj
iEj} on UN

with A = [Aj
i ] given by (7.2) are normal on Ū = UN ∩ N for D and on UN there

are not other frames with this property. �
Combining Theorem 7.1 with Corollaries II.5.1 and II.5.2, we can formulate

the following result.

Corollary 7.1. Let N be a submanifold of a C3 manifold M endowed with C1

derivation D along vector fields which is linear on N . Suppose ∇ is a linear con-
nection on M and the coefficients of ∇ on N coincide with the ones of D. Then
on (a neighborhood of) N exist frames normal for D if and only if on N exists a
frame parallel with respect to ∇ or, equivalently, iff the parallel transport generated
by ∇ is path-independent on N along all paths lying entirely in N .
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If a derivation along vector fields admits frames normal on a submanifold N ,
Assertion (ii) of Theorem 7.1 gives a complete local description of all such frames.

Exercise 7.1. Using the explicit form (7.2) of the transformation matrix A, prove
the validity of Proposition 3.2 and Corollary 3.1 on submanifolds; this is reflected
in the constancy of the matrix B(t′0) in (7.2) for a fixed choice of the local coor-
dinates {xi}.
Exercise 7.2. Construct a frame globally normal on the whole N from the frames
locally normal on N . The idea is to take a system of overlapping (coordinate)
neighborhoods, forming a neighborhood of N , on each of which C1 normal frames
exist and from these local normal frames to be constructed a global frame normal
on N . In this way all frames globally normal on N can be obtained, the details of
this construction were explained after the proof of Corollary II.5.2.

If a derivation D along vector fields admits frames normal on a submanifold
N , there are holonomic frames normal on N iff D has zero torsion on N (see
Corollary 3.4). Since the normal frames for derivations, linear on N for which (7.1)
holds, and linear connections, with the same coefficients on N , coincide in the
torsionless case, the corresponding normal coordinates for them coincide too. All of
these normal coordinates {zi} can be found explicitly by integrating the equation
∂zi

∂xj

∣∣
q

=
(
A−1(q)

)i

j
, where q ∈ Ū and A is given by (7.2), with respect to zi in some

neighborhood Uz of Ū in UN with Uz ∩N = Ū (see (II.5.12)); for the notation see
Theorem 7.1. This system of equations was completely solved in Subsection II.5.2
(see pages 124–126) and its general solution is (II.5.16). This result, combined
with the just said in this paragraph, completes the proof of the following theorem
(cf. Theorem II.5.3 on page 124).

Theorem 7.2. Let N be a submanifold of a C3 manifold M and D be a C1 deriva-
tion along vector fields such that on N it is linear, torsionless and (7.1) holds. For
every point q ∈ N exists a chart (Uz , z) of M , with q in its domain Uz, which is
normal for D on Uz ∩ N . Moreover, the coordinate functions zi : Uz → K of all
such charts normal on N are given by

zi(p) = ai +

p0∫
q0

dim N∑
a=1

(
A−1(q)

)i

a
dqa +

(
A−1(p0)

)i

j
[xj(p) − xj(p0)]

+
(
A−1(p0)

)i

l
Γl

jk(p0)[xj(p) − xj(p0)][xk(p) − xk(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)], (7.4)

the notation being explained in Subsection II.5.2.
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8. Frames and coordinates normal along mappings

In Section 5, we have investigated the problems of existence, uniqueness, and
holonomicity of frames normal along a path γ : J → M for a derivation D along
vector fields. The aim of the present section is a generalization of these results
for frames normal along sufficiently general mappings γ : Jn → M or f : N → M
where Jn is a neighborhood in Rn (or n-dimensional submanifold of Rn) and N is
n-dimensional manifold for some integer n ∈ {1, . . . ,dimM}. Obviously, the choice
n = 1 and an open interval for J1 returns us to Section 5.1 If we suppose γ(Jn) to
be a single point or, more generally, an n-dimensional submanifold of M (and γ to
be injective in the last case),2 the results of Sections 4 and 7, respectively, should
be reproduced. Relaying on these special cases, we can expect that for n = 0, 1
the linearity of the derivation should be a necessary and sufficient condition for
the existence of frames normal along γ, while for n ≥ 2 (if dim M ≥ 2) this might
not be the general case.

Now the rigorous statements are in order.
Recall, according to Definition 3.1, we say that a frames {Ei} is normal along

a mapping g : Q → M , Q being non-empty set, for a derivation D along vector
fields of T 1(M) if it is defined in a neighborhood of g(Q) (or on M if g(Q) = M)
and in it the components of D along every vector field vanish everywhere on the
set g(Q).

By Proposition 3.1, a necessary condition for the existence of frames normal
along a mapping γ : Jn → M is the linearity of D along γ, i.e.,

ΓX(γ(s)) = Γk(γ(s))Xk(γ(s)), s ∈ Jn (8.1)

in an arbitrary frame {Ei}. Here ΓX is the components’ matrix of D in it, X ∈
X(M), and Γk are matrix-valued functions on γ(Jn) which are the coefficients’
matrices of D.

From Section 3, we know that a linear derivation D admits normal frames
along γ : Jn → M iff for some (and hence for every) frame {Ei} there exists
a non-degenerate matrix-valued function A = [Ai

j ] such that the normal frame
equation (3.5) holds along γ, viz.

(ΓkA + Ek(A))|γ(Jn) = 0 (8.2)

or
Γk(γ(s))A(γ(s)) + Ek(A))|γ(s) = 0, s ∈ Jn. (8.2′)

1In Section 5 the interval J1 ≡ J is of arbitrary type, i.e., it may be open or closed from one
or both ends. To incorporate the last case, when J1 is closed from the left or/and right, as a
special case of the next considerations, we must admit Jn to be n-dimensional submanifold with
boundary in Rn. The following results can be modified to cover this more general case, which
we leave to the reader as an exercise. (See Remark I.2.1 on page 6 for the notion of a manifold
with boundary.)

2The set γ(Jn) is a submanifold if, for instance, γ is a regular embedding [12, p. 230].
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If (8.2) has solutions with respect to A, all frames {E′
i} normal for D along γ are

{E′
i = Aj

iEj} for some A satisfying (8.2).
Since the system of equations (8.2) is a multidimensional generalization

of (II.3.11), corresponding to n = 1, we shall partially follow the scheme of Sub-
section II.3.2.

The problem is to find, if any, all frames normal along a mapping γ : Jn → M
for a C1 linear derivation D along vector fields on a C3 manifold M . The next two
subsections deal with the case when γ is respectively injective or locally injective
while Subsection 8.3 investigates the case of a mapping f : N → M between
manifolds instead of γ.

In the present section, to detour some technical problems,3 we shall look
on the manifold M as on a real one, i.e., if M is real, no changes are necessary
and, if M is complex, we consider it as a real manifold of dimension dimR M =
2 dimM ≡ 2 dimC M (see p. 7). Below this will be formally reflected in writing
dimR M instead of dim M . (Recall, dimR M is equal to dimM if M is real or to
2 dimC M ≡ 2 dimM if M is complex.) Respectively, all Latin indices, with not
explicitly specified range, run from 1 to dimR M and the ranges of the coordinate
homeomorphisms lie in RdimR M . In short, in the present section M is real manifold
or complex manifold which we consider as real manifold of dimension dimR M and
endowed with a real differentiable structure.

8.1. Injective mappings

At first we suppose the mapping γ : Jn → M to be injective, i.e., without self-
intersections: if s1, s2 ∈ Jn and s1 
= s2, then γ(s1) 
= γ(s2). This requires n =
dimJn ≤ dimR M ; otherwise γ can not be 1:1. Below we are going to study and
solve equation (8.2′), if it has solutions, in a frame {Ei} associated to a special
kind of local coordinates. More precisely, we are going to show that γ(Jn) is n-
dimensional submanifold of M (in a sense of our definition on page 7) and then
to apply the results of Subsection II.5.2 or of Section 7.

Let γ : Jn → M be C1 regular injective mapping from a neighborhood Jn ⊆
Rn on a C3 manifold M with dimR M ≥ n. Consider Jn as an n-dimensional
manifold with a global chart (Jn, idJn) and standard coordinate functions ra, a =
1, . . . , n, such that ra(s) = sa for s = (s1, . . . , sn) ∈ Jn. If (U, y), y : U → RdimR M ,
is a chart of M with U ∩ γ(Jn) 
= ∅ and associated coordinate functions yi,
the regularity of γ implies (see p. 15) that the Jacobi matrix of γ in the charts

introduced, i.e.,
[∂(yi◦γ)

∂sa

∣∣
s

]
=

[∂γi
y

∂sa

∣∣
s

]
where γi

y := yi ◦ γ : Jn → R and here and

3For instance, if γ is (locally) injective, C1 and regular, the set γ(Jn) is a submanifold of M
and, roughly speaking, its real dimension is dimR(γ(Jn)) = n while its complex dimension, if
M is complex, is dimC(γ(Jn)) = n/2 which is not an integer for odd n. Besides, for complex M
and odd n, the below-constructed chart (U1, x), which plays a crucial role in proving most of the
results in this section, requires a complicated redefinition if we do not look on M as on a real
manifold. (If n is even, the almost only change in the complex case is to replace dimR M −n with
dimM − n/2 and to identify the neighborhoods Jn in Rn with some neighborhoods in Cn/2.)
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below a, b, c = 1, . . . , n and i, j, k, l = 1, . . . ,dimR M if the index ranges are not
explicitly written, has a rank equal to n(≤ dimR M) whenever s is such that
γ(s) ∈ U ∩ γ(Jn).

Lemma 8.1. Let n ∈ N, M be a C3 manifold with dim M ≥ n, and γ : Jn → M
be C1 regular injective mapping. For every s0 ∈ Jn, there exists a chart (U1, x) of
M such that γ(s0) ∈ U1, x : U1 → Jn

1 ×RdimR M−n for some open subset Jn
1 ⊆ Jn,

s0 ∈ Jn
1 , and x(γ(s)) = (s, t0) for some fixed t0 ∈ RdimR M−n and all s ∈ Jn

1 .

Remark 8.1. This lemma is a multidimensional generalization of Lemma II.3.1 on
page 94, which is its special case for n = 1.

Proof. Let us arbitrarily choose some s0 ∈ Jn and a chart (U, y) with U � γ(s0)

and y : U → RdimR M . Since the regularity of γ at s0 means that
[∂γi

y

∂sa

∣∣
s0

]
has max-

imal rank, equal to n, we, without loss of generality, can suppose the coordinates
{yi} to be taken such that det

[∂γa
y

∂sb

∣∣
s0

] 
= 0,∞.4 Then the implicit function The-
orem [7, 77, 78] implies the existence of a subneighborhood Jn

1 ⊆ Jn with Jn
1 � s0

and such that the matrix
[∂γa

y

∂sb

∣∣
s

]
is non-degenerate for s ∈ Jn

1 and the mapping

(γ1
y , . . . , γn

y )|Jn
1

: Jn
1 → (γ1

y(Jn
1 ), . . . , γn

y (Jn
1 )) ⊆ R

n,

with (γ1
y , . . . , γn

y )|Jn
1

: s �→ (γ1
y(s), . . . , γn

y (s)) for s ∈ Jn
1 , is a C1 diffeomorphism.

Define a chart (U1, x) of M with domain

U1 :={p|p ∈ U, ya(p) ∈ γa
y (Jn

1 ), a = 1, . . . , n}
=y−1

(
(γ1

y(Jn
1 ), . . . , γn

y (Jn
1 )) × R

dimR M−n
) � γ(s0)

(8.3a)

and local coordinate functions xi given via

ya =:
(
γa

y

∣∣
Jn
1

) ◦ (x1, . . . , xn), a = 1, . . . , n

yk =: xk +
(
γk

y

∣∣
Jn
1

) ◦ (x1, . . . , xn) − tk0 , k = n + 1, . . . ,dimR M
(8.3b)

where (x1, . . . , xn) : p �→ (x1(p), . . . , xn(p)), p ∈ U1, and tk0 ∈ R are arbitrarily

fixed constant numbers. Since ∂ya

∂xb = ∂γa
y

∂sb , ∂ya

∂xk = δa
k for k ≥ n + 1, ∂yk

∂xa = ∂γk
y

∂sa for

k ≥ n + 1, and ∂yk

∂xl = δk
l for k, l ≥ n + 1, the Jacobian of the change {yi} → {xi}

on U1 is det
[

∂xi

∂yj

]
=

(
det

[∂γa
y

∂sb

])−1 
= 0,∞. Consequently xi are really coordinate
functions and x : U1 → Jn

1 × RdimR M−n is in fact coordinate homeomorphism.5

4If we start from a chart (U, z) for which the matrix
[
∂γa

z /∂sb
∣∣
s0

]
is degenerate, we can

make a coordinate change {zi} → {yi} with yi = zαi , where the integers α1, . . . , αdimR M form

a permutation of 1, . . . , dimR M , such that
[
∂γa

y /∂sb
∣∣
s0

]
is non-degenerate. (For the proof, see

any book on matrices, e.g., [49, 90].) Further, we suppose that such a renumbering of the local
coordinates is already done if required. (Cf. Footnote II.15 on page 94.)

5The so-constructed chart (U1, x) is, obviously, a multidimensional generalization of a similar
chart defined in Subsection II.3.2 – see the paragraph containing equation (II.3.12) on page 94.
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The coordinates {xi} can be expressed through {yi} explicitly. Indeed, writing the
first raw of (8.3b) as

(y1, . . . , yn) = (γ1
y |Jn

1
, . . . , γn

y |Jn
1
)◦(x1, . . . , xn) = (γ1

y , . . . , γn
y )|Jn

1
◦(x1, . . . , xn)

and using that (γ1
y , . . . , γn

y )|Jn
1

is a C1 diffeomorphism and the second raw of (8.3b),
we find (cf. (II.3.12))

(x1, . . . , xn) =
(
(γ1

y , . . . , γn
y )|Jn

1

)−1 ◦ (y1, . . . , yn)

xk = yk − (γk
y |Jn

1
) ◦ (

(γ1
y , . . . , γn

y )|Jn
1

)−1 ◦ (y1, . . . , yn) + tk0 , k ≥ n + 1.

(8.3b′)

Using (8.3), we see that the local coordinates of γ(s) for s = (s1, . . . , sn) ∈ Jn
1

in (U1, x) are

γa(s) := xa(γ(s)) = sa, γk(s) := xk(γ(s)) = tk0 , k ≥ n + 1, (8.4)

i.e., x(γ(s)) = (s, t0) for some fixed t0 = (tn+1
0 , . . . , tdimR M

0 ) ∈ RdimR M−n. �
Thus, in the chart (U1, x) or in the coordinates {xi} constructed above,

the first n coordinates of a point lying in γ(Jn), i.e., in γ(Jn
1 ), coincide with

the corresponding parameters s1, . . . , sn of γ, the remaining coordinates, if any,
being constant numbers. This conclusion allows locally, in U1, the mapping γ
to be considered as a representative of a family of mappings η( · , t) : Jn

1 → M ,
t ∈ RdimR M−n, defined by η(s, t) := x−1(s, t) for (s, t) ∈ Jn

1 ×RdimR M−n. In fact,
we have γ = η( · , t0) or γ(s) = η(s, t0).6

It is almost evident, for C1 regular injective mapping γ : Jn → M , the set
γ(Jn) is an n-dimensional submanifold of M (in a sense of the definition on page 7).
Indeed, for every point p = γ(s0) ∈ γ(Jn), s0 ∈ Jn, we can construct the afore-
described chart (U1, x) which is such that (vide supra) p ∈ U1 and

γ(Jn) ∩ U1 = γ(Jn
1 ) x−→ Jn

1 × {t},
x : q �→ (x1(q), . . . , xn(q), tn+1

0 , . . . , tdimR M
0 ) = s × t0

for every point q = γ(s) ∈ γ(Jn)∩U = γ(Jn
1 ), where s = (s1, . . . , sn), xa(q) = sa,

and some t0 = (tn+1
0 , . . . , tdimR M

0 ) ∈ RdimR M−n.
Let us return to our initial problem, the existence and description of normal

frames and coordinates, if any, along the mapping γ. One can solve it by continuing
the analogy with the material of Subsection II.3.2 and its multidimensional gener-
alization. We leave this method to the reader as an exercise; in this way he/she can
independently verify the below-presented assertions.7 Alternatively, we are going
to apply the already obtained results of Section 7 (or Section II.5).

6In [83] the existence of η is taken as a given fact without proof.
7If one follows this way, Lemma II.4.1 should be used instead of Lemma II.3.2.
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Since γ(Jn) is n-submanifold of M , if the C1 regular mapping γ : Jn → M is
injective, for the problems concerning frames normal along γ are completely valid
and applicable the results of Section 7. We shall partially reproduce them for the
mentioned range of problems utilizing the above-introduced special chart (U1, x).

Theorem 8.1. Let M be C3 manifold endowed with C1 derivation D along vector
fields and the mapping γ : Jn → M be injective, C1, and regular. Then:

(i) There exist frames normal for D along γ if and only if D is linear along γ,
i.e., on γ(Jn), and it is curvature free on γ(Jn) as a manifold,(

RD(X, Y )
)∣∣

q
= 0, Xq, Yq ∈ Tq(γ(Jn)), q ∈ γ(Jn), (8.5)

the last condition being locally, in the chart (U1, x) introduced above, equiva-
lent to

[Rab(−Γ1 ◦ γ, . . . ,−Γn ◦ γ)](s) = 0, a, b = 1, . . . , n (8.6)

where s = (s1, . . . , sn) ∈ Jn
1 with γ(Jn

1 ) = U1 ∩ γ(Jn) and

[Rab(Γ1 ◦ γ, . . . ,Γn ◦ γ)]|s :=
(∂(Γa ◦ γ)

∂sb
− ∂(Γb ◦ γ)

∂sa

)∣∣∣
s
+ (ΓaΓb −ΓbΓa)|γ(s)

(8.7)
with Γ1, . . . ,ΓdimR M being the matrices of the coefficients of D in the frame{

∂
∂xi

}
.

(ii) If D admits frames normal along γ, for every s1 ∈ Jn, there exists a chart
(U1, x), the same as in Assertion (i), with U1 � γ(s1) such that:
(a) In the associated coordinates {xi}, every p ∈ U1 has coordinates x(p) =

(s, t) for some s ∈ Jn
1 , where Jn

1 ⊆ Jn and U1 ∩ γ(Jn) = γ(Jn
1 ),

t ∈ RdimR M−n, and the coordinates of γ(s), s ∈ Jn
1 , are x(γ(s)) = (s, t0)

for some constant (independent of s) vector t0 = (tn+1
0 , . . . , tdimR M

0 ) ∈
RdimR M−n;

(b) All frames normal for D along γ in U1, i.e., normal on γ(Jn
1 ), are

{E′
i|p = Aj

i (p)Ej |p}, p = x−1(s, t) ∈ U1, where

A(x−1(s, t)) = [Ai
j(x

−1(s, t))] =
{
1−

dimR M∑
k=n+1

Γk(γ(s))(tk − tk0)
}

× Y (s, s0;−Γ1 ◦ γ, . . . ,−Γn ◦ γ)B(t0)

+
dimR M∑
k,l=n+1

Bkl(x−1(s, t))(tk − tk0)(tl − tl0). (8.8)

Here: s0 ∈ Jn
1 is fixed, the non-degenerate matrix B(t0) ∈ GL(dimR M, R) may

depend only on t0, the matrix-valued functions Bkl on U1 are of class C1 and they
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and their first partial derivatives are bounded when t → t0, and Y is the unique
solution of the initial-value problem

∂Y

∂sa

∣∣∣
s

= −Γa(γ(s))Y, a = 1, . . . , n, Y |s=s0 = 1. (8.9)

Remark 8.2. The fact that in (8.8) the summations are only over the range n +
1, . . . ,dimR M and in Y enter only Γ1, . . . ,Γn is a consequence of the special
choice of the coordinates {yi} used in the construction of {xi}: we have admitted
det

[∂γa
y

∂sb

∣∣
s0

] 
= 0,∞. If we have chosen another non-degenerate nth-order submatrix

of
[∂γi

y

∂sb

∣∣
s0

]
, this will result in the corresponding changes in the summation ranges

and in the indices of the Γ’s in (8.8).

Proof. Since γ(Jn) is n-dimensional submanifold of M , which was proved earlier,
by Theorem 7.1 (i) the condition (8.5) and the linearity of D on γ(Jn) are necessary
and sufficient for the existence of frames normal for D along γ. By (2.16), equa-
tion (8.5) is equivalent to Ri

jkl|γ(Jn) = 0 (cf. (II.5.1′) on page 113 with N = γ(Jn))
in any chart (U, y) of M with U ∩ γ(Jn) 
= ∅. So, according to Remark II.5.3 on
page 114, the condition (8.5) is equivalent to (II.5.1′′) on page 114 with N = γ(Jn),
which in the particular chart (U1, x) takes the form (8.6).

Suppose now D admits frames normal along γ; so it is linear along γ and (8.6)
holds.

The existence and explicit construction of a chart (U1, x) with the properties
described in (ii), point (a), was presented in the proof of Lemma 8.1 and it is given
by (8.3) in terms of some other chart (U, y). To prove the rest of the assertion, i.e.,
point (b) of (ii), we have to demonstrate that (8.8) is the general solution of (8.2′)
with Ei = ∂

∂xi , {xi} being the associated to (U1, x) local coordinates. It is almost
evident, this proof is contained in the discussion preceding Theorem II.5.2 in Sub-
section II.5.2. Indeed, in it we proved that (II.5.11) is the general solution of (II.5.7)
on a submanifold N of M in a chart (UN , x) described there. If we put N = γ(Jn),
then equation (II.5.7) reduces to (8.2′) and the chart (U1, x) introduced above is a
concrete realization of (UN , x) for t′0 = t0. Therefore (II.5.11), with p = x−1(s, t),
p0 = x−1(s, t0) = γ(s), t′0 = t0, and x̄(p0) = s, is the general solution of (8.2′).
Taking into account (8.4) and x(p) = (s, t) = (s1, . . . , sn, tn+1, . . . , tdimR M ), we
conclude that in this case (8.8) is an equivalent representation of the matrix-valued
function A : U1 → GL(dimR M, R) given by (II.5.11). �

Remark 8.3. An independent proof of Theorem 8.1 is presented in [83].

Corollary 8.1. Let γ : Jn → M be a C1 regular injective mapping in C3 manifold M
endowed with linear on γ(Jn) C1 derivation D along vector fields and ∇ be a linear
connection coinciding on γ(Jn) with D. For D exist frames normal along γ iff there
exists a frame parallel on γ(Jn) with respect to ∇ or iff the parallel transport gen-
erated by ∇ is path-independent on γ(Jn) along the paths lying entirely in γ(Jn).
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Proof. Use that γ(Jn) is a submanifold of M and see Corollary 7.1 for N = γ(Jn)
or Theorem 8.1 (ii) and Lemma II.5.1. �

If a derivation D along vector fields admits frames normal along regular
C1 injective mapping γ : Jn → M , Theorem 8.1 (ii) provides a complete local
description of all such frames. A frame {Eg

i } globally normal along the whole
mapping γ can be constructed by covering the set γ(Jn) by a set {Uλ|λ ∈ Λ} of
overlapping coordinate neighborhoods, like U1 above, in which exist frames {Eλ

i }
normal along the ‘part’ of γ in them and then letting Eg

i |p = Eλ
i |p if p is in a single

neighborhood Uλ and, if the sets Uλ with Uλ � p are more than one, we arbitrary
choose some of them. The obtained in this way frame globally normal along γ is
defined in a neighborhood of γ(Jn) equal to the union of the neighborhoods Uλ on
which the local normal frames forming it are defined. In this way all frames globally
normal along γ can be constructed. Notice, the frames globally normal along γ are
generally not smooth on the sets of intersection of two or more neighborhoods Uλ.

If frames normal along γ : Jn → M exist for a derivation D along vector
fields, then, according to Corollary 3.4, these frames can be (locally) holonomic if
D is torsionless on γ(Jn) in which case normal coordinates for it can exist.

Theorem 8.2. Let M be C3 manifold and γ : Jn → M be injective, C1 and regular.
Let D be C1, linear along γ and torsionless derivation along vector fields for
which (8.5) holds. Then for every s1 ∈ Jn there exists a subneighborhood Jn

1 � s1

of Jn and a chart (Uz, z) of M , with Uz ⊆ U1 ((U1, x) is the above-constructed
chart, see (8.3)) and Uz ∩ γ(Jn) = γ(Jn

1 ), which is normal for D along γ|Jn
1
, i.e.,

on γ(Jn
1 ). The coordinate functions zi : Uz → RdimR M of all such charts are given

through the equation

zi(x−1(s, t)) = ai +

s∫
s0

n∑
a,b=1

(
A−1(γ(σ1, . . . , σn))

)i

a

dγa

dσb
dσb

+
dimR M∑
k=n+1

(
A−1(γ(s))

)i

k
(tk − tk0) +

dimR M∑
l=1

(
A−1(γ(s))

)i

l

dimR M∑
j,k=n+1

Γl
jk(γ(s))(tj − tj0)

× (tk − tk0) +
dimR M∑

j,k,l=n+1

ai
jkl(x

−1(s, t))(tj − tj0)(t
k − tk0)(tl − tl0). (8.10)

Here (s, t) ∈ Jn
1 ×RdimR M−n are the coordinates of an arbitrary point p ∈ Uz ⊆ U1

in the chart (U1, x), i.e., x(p) = (s, t), in which γ = x−1( · , t0) for some fixed
t0 ∈ RdimR M−n, s0 ∈ Jn

1 is fixed, ai are constant numbers, A is given by (8.8),
and ai

jkl : Uz → R are bounded functions.

Proof. In fact, we have to solve the system ∂zi

∂xj

∣∣
q

= (A−1(q))i
j , q ∈ Uz (cf. (II.5.12))

with respect to zi in a neighborhood Uz of an arbitrarily chosen point in γ(Jn). In
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Subsection II.5.2 (see pp. 122–126) we solved this equation on arbitrary subman-
ifold N of M for A given by (II.5.11), the general solution being (II.5.16). Since
in the concluding part of the proof of Theorem 8.1 we proved that in the chart
(U1, x) the equality (II.5.11) reduces to (8.8) for N = γ(Jn), t′0 = t0, x(p) = (s, t),
p0 = x−1(s, t0) = γ(s), and x̄(p0) = s, we can assert that the general form of the
looked for coordinates {zi} is (II.5.16) for the pointed special choice of the param-
eters in it. One can easily verify that, in the last case, equation (8.8) is simply an
equivalent form of (II.5.16). �

Theorem 8.2 gives a full constructive description of all local coordinates nor-
mal along an injective mapping γ : Jn → M for a torsionless derivation along
vector fields. Hence it completes the exploration of the normal frames and coor-
dinates along such mappings.

8.2. Locally injective mappings

Relying on the proof of Theorem II.3.2 on page 99, one can expect that the require-
ment the mapping γ : Jn → M to be injective, imposed in the previous subsection,
can be weakened. Indeed, this happens to be the case.

Call a mapping f : X → Y , X and Y being sets, locally injective if for every
x ∈ X there exists a subset Xx ⊆ X with Xx � x such that the restricted mapping
f |Xx : Xx → Y is injective. If X has some structure, e.g., if it is n-manifold, we
further admit that Xx possesses the same structure; e.g., Xx to be n-manifold too
in the particular example. For instance, the mapping γ : Jn → M , Jn being neigh-
borhood of Rn, is locally injective if for every s ∈ Jn there is a subneighborhood
In
s ⊆ Jn with In

s � s such that γ|In
s

: In
s → M is injective. Obviously, γ is locally

injective if the set Jn
I := {s|s ∈ Jn, γ(s) is self-intersection point} ⊂ Jn has not

condensation points. The maximum neighborhood of s on which γ is injective will
be denoted by Jn

s . It can be represented as a union of all neighborhoods of s, like
In
s , on which γ is injective.

Proposition 8.1. Theorems 8.1 and 8.2 are valid if in them the condition on γ to
be injective is replaced with the requirement it to be locally injective and Jn

1 and
(U1, x) are constructed for the restricted mapping γ|Jn

s0
instead for γ.

Proof. Since γ|Jn
s0

is injective, for it Theorems 8.1 and 8.2 hold. Consequently, they
are also valid for the whole mapping γ if the pointed changes are made in their
formulations, as in the considered version they concern only the local properties
of γ on subneighborhoods on which it is injective. �

Following the proof of Theorem II.3.2 and the lines after the proof of Corol-
lary II.5.2, we are going to prove the following theorem.

Theorem 8.3. Let M be C3 manifold endowed with C1 derivation D along vector
fields and the mapping γ : Jn → M be locally injective, C1, and regular. Suppose D
is linear along γ and its curvature satisfies (8.5). Then there exist frames globally
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normal for D along the whole mapping γ, i.e., normal on the whole set γ(Jn).
Locally holonomic such frames exist iff D is torsion free on γ(Jn).

Proof. By Proposition 8.1 and the discussion after the proof of Corollary 8.1, for
every In ⊆ Jn for which γ|In is injective there exist frames normal for D along
γ|In . Let {In

λ |λ ∈ Λ} be an open cover of Jn such that the restricted mappings
γ|In

λ
are injective.8 For each mapping γ|Jn

λ
, λ ∈ Λ, there exists a frame {Eλ

i }
globally normal for D, i.e., on γ(Jn

λ ) and all of them can be constructed in the
way pointed in the mentioned discussion. From the frames {Eλ

i }, λ ∈ Λ, a frame
{Ei} globally normal along γ can be constructed: at every point p ∈ γ(Jn), we
put Ei|p = Eλ

i |p if there is a single λ ∈ Λ for which p ∈ γ(In
λ ), otherwise, if the

set {µ|µ ∈ Λ, γ(In
µ ) � p} consists of at least two elements, we arbitrary choose

some µ0 ∈ Λ for which γ(In
µ0

) � p and define Ei|p = Eµ0
i |p. The domain of {Ei} is

a union of the neighborhoods on which the frames {Eλ
i } forming it are defined. It

is obvious that all frames globally normal along γ can be constructed by the just
describe method.

The last assertion of the theorem is a consequence of Proposition 3.4, Theo-
rem 8.2, and Proposition 8.1 �

Notice, the proof of Theorem 8.3 provides a complete global description of
all frames normal along locally injective mappings, if such frames exist at all.

8.3. Mappings between manifolds

Since the differentiable manifolds are ‘locally Euclidean’ (Subsection I.2.1), the
results obtained until now in the present section have natural generalization for
mappings like f : N → M , N being n-manifold. Below we briefly sketch this
situation. Without loss of generality, N and M will be considered as real manifolds
(see p. 7).

Let f : N → M be C1 mapping from a C1 manifold N on a C3 manifold
M with dimR M ≥ dimR N and D be C1 derivation along vector fields of T 1(M).
We want to explore the problems of existence, uniqueness, construction, etc. of
frames (or, possibly, coordinates) normal for D along f . From the considerations
in Section 3, we know that D admits frames normal along f iff it is linear along
f , i.e., on f(N) ⊆ M , and its coefficients’ matrices Γk in a frame {Ei} defined on
(a neighborhood of) f(N) satisfy the normal frame equation

Γk(f(q))A(f(q)) + Ek(A)|f(q) = 0, q ∈ N (8.11)

for some non-degenerate matrix-valued function A whose domain is the same as the
one of {Ei}. Moreover, all frames normal along f have the form {E′

i = Aj
i Ej} where

A = [Aj
i ] is a non-degenerate solution of (8.11), if such exists. Hence the above

8Let Jn
I := {s|s ∈ Jn, ∃s′ ∈ Jn, s′ �= s, γ(s) = γ(s′)}. If Jn

I = ∅, we put Λ = {1} and
In
1 = Jn. If Jn

I �= ∅, we define Λ = Jn
I and In

s = Jn
s , Jn

s being the maximal neighborhood of
s ∈ In

s for which γ|In
s

is injective.
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range of problems (for a linear along f derivation) is reduced to the investigation
of the equation (8.11) in some frame {Ei}.

Locally (8.11) is equivalent to (8.2) for a suitable choice of the mapping
γ : Jn → M , Jn being neighborhood in Rn for n = dimR N . To demonstrate this,
for arbitrary q0 ∈ N , we take a chart (V, ϕ) of N with V � q0 and ϕ : V → Jn for
some neighborhood Jn in Rn. Since ϕ is, by definition, homeomorphism, for every
q ∈ V exists a unique s = (s1, . . . , sn) ∈ Jn such that s = ϕ(q) or q = ϕ−1(s).
Therefore in (V, ϕ) equation (8.11) is equivalent to

Γk(f(ϕ−1(s)))A(f(ϕ−1(s))) + Ek(A)|f(ϕ−1(s)) = 0, s ∈ Jn (8.12)

which corresponds to (8.2) with

γ = f ◦ ϕ−1. (8.13)

Consequently in each chart (V, ϕ) of N the problems connected to the frames
normal along f : N → M are equivalent to the same problems for the frames
normal along the mapping γ = f ◦ ϕ−1 : Jn → M with Jn = ϕ(V ) ⊆ Rn and
n = dimR N . Moreover, the normal frames, if any, for the both mappings, f and
γ, are identical. Since γ is (resp. locally) injective iff f is (resp. locally) injective (as
ϕ is bijection), the results in Subsection 8.1 and 8.2 have corresponding variants
concerning mappings between manifolds.

Theorem 8.4 (cf. Theorem 8.1). Let f : N → M be a mapping from a C1 manifold
N into a C3 manifold M , both considered as real manifolds, if some of them is/are
complex, with dimR N ≤ dimR M , and D be C1 derivation along vector fields of
T 1(M). Suppose f is locally injective, of class C1, and regular. Then:

(i) There exist frames normal along f for D if and only if D is linear along f ,
i.e., on f(N), and it is locally curvature free on f(N) in a sense that for every
(dimN)-submanifold N ′ of N on which the restricted mapping f |N ′ : N ′ →
M is injective, the derivation D is curvature free on f(N ′) as a manifold:

(RD(X, Y ))|q = 0, Xq, Yq ∈ Tq(f(N ′)), q ∈ f(N ′). (8.14)

For every chart (V, ϕ) of N ′, ϕ : V → Jn ⊆ R with n = dimR N , there
exists a chart (U1, x) of M with U1 ∩ f(N ′) = f(V1), V1 = ϕ−1(Jn

1 ) being
subneighborhood of V , such that in it (8.14) is equivalent to (8.6) with γ =
f ◦ ϕ−1.

(ii) If D admits frames normal along f , for every p1 ∈ N , there exists a chart
(U1, x) of M , the same as in (i) above, with U1 � p1 and such that:
(a) The coordinates of every p ∈ U1 in the associated coordinates {xi} are

x(p) = (s, t) for some s ∈ Jn
1 , where Jn

1 is a subneighborhood of Jn and
U1 ∩ V = (f ◦ ϕ−1)(Jn

1 ) (for the notation, see (i)), and t ∈ RdimR M−n,
and the coordinates of q ∈ U1∩V are x(q) = (ϕ(q), t0) = (s, t0) for some
s ∈ Jn

1 and constant, independent of s, vector t0 = (tn+1
0 , . . . , tdimR M

0 ) ∈
R

dimR M−n;
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(b) All frames normal for D along f in U1, i.e., normal on U1 ∩ V =
(f ◦ ϕ−1)(Jn

1 ), are
{
E′

i|p = Aj
i (p) ∂

∂xj

∣∣
p

}
, p = x−1(s, t) ∈ U1, where A

is given by (8.8) with γ = f ◦ ϕ−1.

Remark 8.4. The formulation of the theorem implicitly uses the fact that f(N ′)
is n-dimensional, n = dimR N , real submanifold of M . (Recall, all manifolds are
considered as real ones in the present section.) This follows from the proved in
Subsection 8.1 assertion that γ(Jn) is n-submanifold of M for regular C1 mapping
γ : Jn → M , Jn being neighborhood in Rn. In fact, since in every chart (V, ϕ),
ϕ : V → Jn, of N we have f(V ) = (f ◦ ϕ−1)(Jn) and, consequently, f(N ′) is
n-submanifold of M as γ = f ◦ ϕ−1 is locally injective (ϕ is bijection), the image
f(N ′) is n-submanifold of M as it can be represented as a union of n-submanifolds
like f(V ).

Proof. The first part of Assertion (i) is a trivial corollary of Theorem 7.1 (i) and the
fact that the frames globally normal along f can be constructed from the frames
normal along the restricted mappings f |N ′ in a way analogous to the one described
in the proof of Theorem 8.3 (with N for Jn and f for γ). To prove the equivalence
of (8.14) and (8.6) for γ = f ◦ ϕ−1, we notice that for every chart (V, ϕ) of N ′,
ϕ : V → Jn ⊆ R

n, Theorem 8.1 (i) is valid for the mapping γ = f ◦ϕ−1 : Jn → M .
So, equation (8.14) in (V, ϕ) is equivalent to (8.6) with γ = f ◦ ϕ−1 and there
is a chart (U1, x) of M , described in Subsection 8.1, in which (8.5) is equivalent
to (8.6) for γ = f ◦ ϕ−1 and U1 ∩ γ(Jn) = U1 ∩ f(N ′) = (f ◦ ϕ−1)(Jn

1 ) = f(V1).
The proof of Assertion (ii) rests on Theorem 8.1 (ii). Let p1 ∈ N and N ′

be (dim N)-submanifold of N with N ′ � p1 and such that f |N ′ is injective. Let
(V, ϕ), ϕ : V → Jn ⊆ R

n, be a chart of N ′ and s1 = ϕ(p1) ∈ Jn. Now it is evident
that the second part of the theorem is a simple restatement of the second part of
Theorem 8.1 for the mapping γ = f ◦ ϕ−1 : Jn → M . �

Corollary 8.2 (cf. Corollary 8.1). Let the manifolds N and M , regarded as real
ones, if some of them is/are complex, be of classes C1 and C3, respectively, and
the mapping f : N → M be locally injective, of class C1, and regular. Let a deriva-
tion D along vector fields of T 1(M) be of class C1 and linear along f and ∇ be a
C1 linear connection on M coinciding on f(N) with D. For D exist frames normal
along f iff there is a frame locally parallel on N with respect to ∇ or iff the par-
allel transport generated by ∇ is locally path-independent on N along paths locally
lying entirely in N . Here by ‘locally’ is understood on any (dim N)-dimensional
submanifold N ′ of N such that f |N ′ is injective.

Proof. See Corollary 8.1 for γ = f◦ϕ−1, where ϕ is the coordinate homeomorphism
of a chart (V, ϕ) of N ′, and note that N can be covered by the domains of charts
like (V, ϕ). �

If the frames normal along a mapping f : N → M exist, the ones provided by
Theorem 8.4 (ii) are local in a sense that they are defined only on some neighbor-
hood (in M) of every point in f(N). From these neighborhoods one can construct
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a neighborhood of f(N) in M on which a frame globally normal along f can be
defined by identifying it in each coordinate neighborhood with the corresponding
local normal frame; in a case of overlapping of two or more neighborhoods, one
arbitrary can fix some of the local frames to represent the global one. (For details,
see the paragraph after the proof of Corollary 8.1.) It is clear, all frames globally
normal along f can be constructed in this way.

If a derivation is torsionless, some of the frames normal for it, if any, are
holonomic and hence locally they are generated by (normal) local coordinates. Of
course, this is true for the frames normal along mappings between manifolds as
the following result states explicitly.

Theorem 8.5 (cf. Theorem 8.2). Let N and M be manifolds, considered as real ones
if some of them is/are complex, of classes C1 and C3, respectively, and f : N → M
be locally injective, C1, and regular. Let a derivation D along vector fields of
T 1(M) be torsionless, of class C1, linear along f , and its curvature to satisfies
equation (8.14) on every (dimN)-dimensional submanifold N ′ of N on which f |N ′

is injective. Then for every point p1 ∈ N there exist a chart (V1, ϕ) of N , with
ϕ : V1 → Jn

1 ⊆ Rn, V1 � p1, n = dimR N and f |V1 injective, and a chart (Uz, z) of
M , with Uz ⊆ U1 ((U1, x) is the chart provided by Theorem 8.4 (ii)) and Uz ∩N =
f(V1) = (f ◦ ϕ−1)(Jn

1 ), which is normal for D along f in f(V1), i.e., along f |V1

or on f(V1). The associated coordinates functions zi : Uz → RdimR M of all such
normal charts are given via equation (8.10) for γ = f ◦ ϕ−1.

Proof. By Theorem 8.4 and Corollary 3.3, the derivation D admits normal co-
ordinates. Let p1 ∈ N and (V, ϕ) and (U1, x) be the charts described in the
Theorem 8.4 with U1 � f(p1) ∈ V . In the notation of Theorem 8.4, define
V1 = U1∩V = (f ◦ϕ−1)(Jn

1 ) and γ = f ◦ϕ−1 : Jn
1 → M . Now the rest of the proof

follows from the remark that Theorem 8.2 is valid for the mapping γ = f ◦ϕ−1. �

9. Normal frames and coordinates for derivations
along a fixed vector field

In Sections 3–8, we have explored problems connected with frames normal for
derivations along vector fields of the tensor algebra over a manifold (see Defini-
tion 2.3). In the present section, we want briefly to pay attention to the same
range of problems for derivations along a fixed vector field or, equivalently, for a
given derivation of the same algebra (see Definition 2.1).

Throughout this section X will denote a fixed vector field over a manifold M ,
X ∈ X(M). Respectively, DX means a derivation along this concrete X of T 1(M)
or, in other words, DX is a derivation of T 1(M) with decomposition like (2.3)
with fixed X and arbitrary S.

Definition 9.1 (cf. Definition 3.1). Let U be a subset of a manifold M and DX be
a derivation along some fixed vector field X ∈ X(M) of T 1(M). A frame {Ei},
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defined on an open subset of M containing U or equal to it, is called normal on
U for DX if the components of DX in {Ei} vanish on U (for the fixed X).

Proposition 9.1. The only derivation D0 along the zero vector field for which
frames normal on U ⊆ M exist is the zero derivation, assigning to a C1 tensor
field the zero tensor field of the same type. Every frame defined on (a neighborhood
of ) U is normal for D0 on its domain.

Proof. If D0 admits a frame {Ei} normal on U , Γ0
i
j |U = 0, equation (2.5) implies

D0K = 0 for every tensor field K, so D0 is the zero derivation, with decomposi-
tion (2.3) with X = 0 and S0 = 0. If D0 is the zero derivation, from (2.6) follows
that every frames {Ei} is normal for it. �

Proposition 9.1 has a slightly more general local version:

Proposition 9.2. Let M be manifold, U ⊆ M , X ∈ X(M), X |U = 0, and DX be
derivation along X. Frames normal on U for DX exist if and only if DX is the
zero derivation on U , DX

∣∣
T 1(U)

= D0|T 1(U), assigning to every tensor field on U

the zero tensor field of the same type on U . If on U the derivation DX is the zero
one, then every frame defined on U or on a larger set is normal for DX on U .

Proof. If {Ei} is a frame normal for DX on U , i.e., ΓX |U = 0, from (2.5) we get
(DXK)|U = 0 for every tensor field K as X |U = 0. Conversely, if DX is the zero
derivation on U , from (2.6), we derive ΓX |U = 0 in every frame {Ei}. �

Nevertheless the above two results are completely trivial, they give a full
description of the frames, if any, normal for derivations along vector fields on the
sets on which these vector fields vanish.1 For this reason, further in this section
we assume X to be a non-zero vector field on U , X |U 
= 0, but there could exist
points in U at which X vanishes. Notice, from (2.6) follows that if DX is the
zero derivation along X on U ⊆ M , then its components vanish identically in any
frame defined on U . Combining this with (2.11), we get X |U = 0 . Hence, the zero
derivation on U along fixed vector field can be such if this vector field vanished
on U . So, assuming X |U 
= 0, we automatically exclude the case when DX is the
zero derivation on U from further considerations.

One may call a derivation DX along a fixed vector field X linear on U ⊆ M
if in some (and hence in any) frame its components’ matrix has the form ΓX(p) =
Γk(p)Xk(p), p ∈ U , for some matrix-valued functions Γk on U . Since the compo-
nents’ matrix of every DX for every fixed X possess (generally infinitely many)
such representations,2 this concept is useless for exploring the normal frames for
DX . Paraphrasing, we may say that every derivation along a fixed vector field is
linear on every set.

1Evidently, if DX is the zero derivation on U and {Ei} is a frame defined on V with V ∩U �= ∅,
the frame {Ei} is normal on V ∩ U for DX . Consequently, every chart or coordinate system is
normal for the zero derivation on the intersection of their domains.

2For example, if X1(p) �= 0, we put Γ1(p) = ΓX(p)/X1(p) and Γk(p) = 0 for k ≥ 2.
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Let {Ei} be a frame defined on a (neighborhood of) U ⊆ M . A frame {E′
i =

Aj
iEi}, where A = [Aj

i ] is a C1 non-degenerate matrix valued-function, is normal
for DX on U iff A is a solution of the normal frame equation (see (2.11), cf. (3.3))

(ΓXA + X(A))|U = 0 for fixed X ∈ X(M). (9.1)

So, DX admits frames normal on U iff this equation (for fixed X) has solutions;
if they exist, all such frames are {E′

i = Aj
i Ej} with A being a solution of (9.1).

Below we shall prove that equation (9.1) (for fixed X) always has (non-degenerate)
solutions (in a neighborhood of the non-singular points of X) which results in the
general conclusion that frames normal for a derivation along a fixed vector field
exist on arbitrary subsets of M , in particular on the whole manifold M . The set of
frames normal for a derivation along fixed vector field is described by the following
result.

Proposition 9.3. Let DX be derivation along some fixed X ∈ X(M) and U ⊆ M .
The frames normal on U for DX (if any) are connected by linear transformations
whose matrices vanish under the action of X on U . Equivalently, the set of all
frames normal for DX (if any) consists of frames that can be obtained from a fixed
normal frame for DX by transformations of the described type.

Proof. If {Ei} and {E′
i = Aj

iEj} are normal for DX on U , then ΓX = Γ′
X = 0,

so (9.1) (or (2.11)) implies X(A)|U = 0, A = [Aj
i ]. �

Since the concepts of curvature and torsion can not be introduced for deriva-
tions along a fixed vector fields,3 for them there are no analogues of Proposition 3.3
and Corollary 3.3. Regardless of that, they always admit normal coordinates (in
a neighborhood of the non-singular points of X) which are defined as follows.

Definition 9.2 (cf. Definition 3.2). A chart (V, x) of M and the associated to it
coordinate functions or system are called normal on U ⊆ V for a derivation DX

along fixed X ∈ X(M) if the coordinate frame
{

∂
∂xi

}
is normal for DX on U .

If U ⊆ M and (V, x) is a chart of M such that V ∩ U 
= ∅, the coordinates
x′i = x′i(x1, . . . , xdim M ) are normal on U ∩ V iff (9.1) holds for Aj

i = ∂xj

∂xi , i.e., iff
they are solutions of the normal frame/coordinates equation(

ΓX
i
m

∂xm

∂x′ j + Xm ∂

∂xm

( ∂xi

∂x′ j
))∣∣∣

U∩V
= 0. (9.2)

Using the equalities

∂xi

∂x′ l
∂x′ l

∂xk
= δi

k,
∂

∂xj

( ∂xi

∂x′ k
)

= − ∂xi

∂x′ l
∂2x′ l

∂xj∂xm

∂xm

∂x′ k ,

3In some sense the curvature and torsion for every DX are identically zero as seen from (2.12)
and (2.13) for Y = X.
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the second of which is a consequence of the first one and its derivative with respect
to xj , we rewrite (9.2) as(

Xm ∂2x′ i

∂xm∂xk
− ∂x′ i

∂xm
ΓX

m
k

)∣∣∣
U∩V

= 0. (9.2′)

This equation is more suitable than (9.2) for finding x′ i if xi are known.
Now we turn our attention to the problems of existence and construction of

normal frames and coordinates for derivations along fixed vector fields. Formally
they are equivalent to the solutions of equations (9.1) and (9.2), respectively, under
certain conditions.

9.1. The case at a single point

Let p0 ∈ M be a given point in a manifold M and DX be a derivation along some
fixed vector field X ∈ X(U) of T 1(M) with components’ matrix ΓX in a frame
{Ei} defined on a neighborhood of p0. The frames normal for DX at p0, if any, are
{E′

i = Aj
iEj}, where A = [Aj

i ] is a non-degenerate solution of (9.1) for U = {p0}:

ΓX(p0)A(p0) + (X(A))|p0 = 0. (9.3)

Theorem 9.1. Let M be C1 manifold, p0 ∈ M and DX be a derivation along fixed
X ∈ X(M). If Xp0 = 0, then either every frame in a neighborhood of p0 is normal
at p0 for DX (if DX is the zero derivation at p0) or such frames do not exist (if DX

is not the zero derivation at p0). If Xp0 
= 0, then DX always admits frames {E′
i}

normal at p0 and, if X is continuous, all such frames are
{
E′

i|p = Aj
i (p)Ej |p

}
,

where A : U1 → GL(dim M, K) is given by equation (9.8) below and p ∈ U1, with
(U1, x) being the special chart constricted in Subsection II.3.2 for U1 � p0 and γ
being the integral path for X through p0.4

Proof. If Xp0 = 0, then equation (9.3) has solution(s) with respect to A iff
ΓX(p0) = 0 in which case DX is the zero derivation at p and every non-generate
matrix-valued function A is its solution. This trivial conclusion, which follows also
from Proposition 9.2 for U = {p}, means that for Xp0 = 0 either every frame in
a neighborhood of p0 is normal for DX at p0 or frames normal for DX at p0 do
not exist. To check the case, one should take some frame and calculate the matrix
of the components of DX in it. If it happens to be non-vanishing at p0, frames
normal at p0 do not exist, otherwise every frame is normal for DX at p0.

Suppose now Xp0 
= 0. Since (9.3) implies a single condition at p0 on A and
its directional derivative along X , one can expect that it admits infinitely many
solutions which will be proved below.

4Equivalently, in an arbitrary chart (U, y) with U � p0, the matrix-valued function A has the
form (9.4) under the condition (9.5). Formula (9.7) provides a class of such A which is its general
form iff det(ΓX(p0)) �= 0.
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Let (U, y) be a chart of M with U � p0, Ei = ∂
∂yi , and A : U → GL(dim M, K)

be of class C2. In U is valid the Taylor expansion

A(p) = A0 + Ak[yk(p) − yk(p0)] + Akl(p)[yk(p) − yk(p0)][yl(p) − yl(p0)] (9.4)

where A0 ∈ GL(dimM, K), Ak are constant matrices and the matrix-valued func-
tions Akl on U are of class C1 and they and their first partial derivatives are
bounded at p0. Inserting (9.4) into (9.3), we get

ΓX(p0)A0 + X i
y(p0)Ai = 0, det A0 
= 0 (9.5)

with X i
y being the components of X in

{
∂

∂yi

}
.

A simple verification shows that

A0 = X i
y(p0)Bi, Ak = −ΓX(p0)Bk, (9.6)

with arbitrary constant matrices B1, . . . , Bdim M for which det(X i
y(p0)Bi) 
= 0, is

a solution of (9.5) to which corresponds a solution of (9.3) of the form5

A(p) = X i
y(p0)Bi − ΓX(p0)Bk[yk(p) − yk(p0)]

+ Akl(p)[yk(p) − yk(p0)][yl(p) − yl(p0)]. (9.7)

If ΓX(p0) is non-degenerate, then, evidently, (9.6) is the general solution of (9.5)
and, consequently, (9.7) is the general solution of (9.3). A method for obtaining the
general solution of (9.5), and hence of (9.3), for arbitrary ΓX(p0) and continuous
X is the following one.6

Suppose X is of class C0. Since Xp0 
= 0, there is a unique integral path
γ : J → M through p0, i.e., (see equation (I.2.19) on page 13) γ̇(s) = Xγ(s),
s ∈ J , and γ(s0) = p0 for some fixed s0 ∈ J . In Subsection II.3.2, we saw that
there is a chart (U1, x) with p0 ∈ U1 ⊆ U and coordinates functions (II.3.12)
in which the coordinates of γ(s) are given via (II.3.13). Therefore in (U1, x) we
have Xk

γ(s) = γ̇k(s) = δk
1 for s ∈ J1, where J1 ⊆ J is such that J1 � s0 and

γ(J1) = γ(J) ∩ U1. Hence

Xγ(s) = γ̇(s) =
∂

∂x1

∣∣∣
γ(s)

,

and, in particular, Xp0 = ∂
∂x1

∣∣
p0

.

Repeating the aforesaid with (U1.x) for (U, y), we get

ΓX(p0)A
(x)
0 + A

(x)
1 = 0 (9.5′)

5This solution was first derived in [84, Section IV].
6If X is not of class C0 in a neighborhood of p0 and det(ΓX(p0)) = 0, the methods of matrix

algebra should be used for explicit solving of (9.5). Equivalently, one can take any C1 vector
field Y with Yp0 = Xp0 and ΓY (p0) = ΓX(p0) for X in the next lines.
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instead of (9.5), with the index (x) indicating that the corresponding quantities
are computed in

{
∂

∂xi

}
. So A

(x)
1 = −ΓX(p0)A

(x)
0 , with arbitrary non-degenerate

A
(x)
0 , is the general solution of (9.5). Consequently, the general solution of (9.3) in

(U1, x) is (see (9.4))

A(x)(p) = A
(x)
0 − ΓX(p0)A

(x)
0 [x1(p) − x1(p0)]

+
dim M∑
k=2

A
(x)
k [xk(p) − xk(p0)] + A

(x)
kl (p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (9.8)

where A
(x)
0 , A

(x)
2 , . . . , A

(x)
dim M are constant matrices, the matrix A

(x)
0 is non-degen-

erate, and the matrix-valued functions Akl on U1 are of class C1 and they and
their first partial derivatives are bounded at p0. �

The problem for existence and description of charts (or coordinates) normal
at a single point p0 can be attacked by two independent but equivalent ways.
The first one is to select the free parameters in (9.8) so that there to exist local
coordinates {zi} with ∂

∂zi = E′
i =

(
A(x)(p)

)j

i
∂

∂xj . The second one, which we will
developed below, is to solve directly the normal frame equation (9.2′) for U = {p0},
i.e.,

Xm(p0)
∂2zi

∂ym∂yk

∣∣∣
p0

− ∂zi

∂ym

∣∣∣
p0

ΓX
m

k(p0) = 0 (9.9)

where {yi} are some given local coordinates in a neighborhood of p0, the quantities
ΓX

k
m(p0) and Xm(p0) are computed in

{
∂

∂yi

}
, and {zi} are the looked for normal

coordinates, if any.

Theorem 9.2. Let M be a C3 manifold, p0 ∈ M and DX be some derivation
along fixed X ∈ X(M). If p0 is a singular point for X, i.e., Xp0 = 0, then either
every chart with p0 in its domain is normal for DX (in a case DX is the zero
derivation at p0) or charts normal at p0 for DX do not exist (in a case DX is not
the zero derivation at p0). If Xp0 
= 0, then for DX always exist charts (Uz , z), with
Uz � p0, normal at p0 and the general form of their coordinate functions zi is given
via equation (9.13) below in which: ai, ai

j, a
i
jk ∈ K, det[ai

j ] 
= 0, ai
jkl : Uz ∩ V → K

are of class C1 and they and their first partial derivatives are bounded at p0,
(U1, x), with U1 ⊇ Uz, is the special chart constructed above in this subsection,
and ΓX is the matrix of DX in

{
∂

∂xi

}
.

Proof. If Xp0 = 0, then (9.9) holds iff ΓX(p0) = 0 (see also (9.2) for U∩V = {p0}).
Hence if Xp0 = 0, then charts normal at p0 either do not exist or every chart with
p0 in its domain is normal. (Recall, in the last case DX must be the zero derivation
at p0; see Proposition 9.2.)

Let M be C3 manifold, p0 ∈ M , Xp0 
= 0, and (U, y) be a given chart in M
with U � p0. We search for a chart (Uz, z) with Uz � p0 which is normal at p0 for
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DX . It is valid the Taylor expansion

zi(p) = ai + ai
j [y

j(p) − yj(p0)] + ai
jk[yj(p) − yj(p0)][yk(p) − yk(p0)]

+ ai
jkl(p)[yj(p) − yj(p0)][yk(p) − yk(p0)][yl(p) − yl(p0)], (9.10)

where ai, ai
j , a

i
jk ∈ K with det[ai

j ] 
= 0 and ai
jkl : U ∩ V → K are of class C1 and

they and their first partial derivatives are bounded at p0 (see the lines preceding
equation (II.3.24) on page 100).

From (9.10), we get ∂zi

∂yj

∣∣
p0

= ai
j and ∂2zi

∂yj∂yk

∣∣
p0

= 2ai
(jk). Substituting these

equalities into (9.9), we find

ai
jΓX

j
k(p0) − Xm(p0)2ai

(mk) = 0, det[ai
j ] 
= 0. (9.11)

This equation always has solutions, a class of which for ΓX(p0) 
= 0 is

ai
j = cibjX

m(p0)
(
blΓX

l
m(p0)

)
, 2ai

(mk) = ci
(
blΓX

l
m(p0)

)(
bnΓX

n
k(p0)

)
(9.12)

where bi, c
i ∈ K are such that det[ai

j ] 
= 0. The general solution of (9.11) can be
found analogously to the one of (9.5) above. For this end, we take for (U, y) the
afore-constructed chart (U1, x) in which X = ∂

∂x1 along the integral path of X

through p0 in U1. In it (9.11) reduces to 2ai
(1k) = ai

lΓX
l
k(p0), det[ai

j ] 
= 0, the
remaining quantities being left arbitrary. Consequently, due to (9.10), the general
form of the looked for coordinates {zi} normal at p0 is

zi(p) = ai + ai
j [x

j(p) − xj(p0)] + ai
lΓX

l
k(p0)[xk(p) − xk(p0)][x1(p) − x1(p0)]

+
dim M∑
j,k=2

ai
jk[xj(p) − xj(p0)][xk(p) − xk(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)]. (9.13)

Since the Jacobian of the transformation {xi} → {zi} at p0 is det
[

∂zi

∂xj

∣∣
p0

]
=

det[ai
j ] 
= 0, there is a subneighborhood Uz ⊆ U1 with Uz � p0 in which xi are well-

defined coordinate functions of a chart (Uz, z) which is normal by construction.7

�

9.2. The case along paths

The first step for generalizing the results form the previous subsection is to in-
vestigate the problems concerning frames or coordinates normal along paths for
derivations along fixed vector field.

7The constructed in [80, proof of Proposition 4.1] chart normal at a single point corresponds
to the choices ai

j = δi
j , ai

jk = 0 for j, k ≥ 2, and ai
jkl ≡ 0.
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In this section, as in Sections II.3, 5 and 8, we shall look on the manifold M
as on a real one, i.e., if M is real, no changes are necessary and, if M is complex,
we consider it as a real manifold of dimension dimR M = 2 dimM ≡ 2 dimC M
(see p. 7). We shall formally reflected this in writing dimR M instead of dim M .
Respectively, the Latin indices with not explicitly specified range will run from 1
to dimR M and the ranges of the coordinate homeomorphisms will lie in RdimR M .

Suppose γ : J → M is a locally injective C1 regular path in a C2 manifold
M endowed with C0 derivation DX along a fixed non-zero vector field X of class
C0, i.e., X ∈ X0(M) with X 
= 0. The problem is to study the equation (9.1) for
U = γ(J), i.e.,

ΓX(γ(s))A(γ(s)) + X(A)|γ(s) = 0 (9.14)

for s ∈ J . The idea for investigating (9.14) is to be constructed a chart along γ such
that the first (or the first two) coordinate(s) of a point in its domain to be equal
to some value of the parameter of γ (or to it and a function of the parameter of
an integral path of X) and in which X coincides with or is proportional to certain
basic coordinate vector.

Theorem 9.3. Let M be C3 manifold (which should be considered as a real one of
dimension dimR M if it is complex), γ : J → M be locally injective C1 and regular,
s0 ∈ J , and DX be a C1 derivation along a fixed C0 vector field X on M . If γ(s0)
is a singular point for X, X |γ(s0) = 0, then either every frame in a neighborhood
of γ(s0) is normal at γ(s0) for DX (in which case DX is the zero derivation at
γ(s0)) or such frames do not exist (in which case DX is not the zero derivation
at γ(s0)). If γ(s0) is not a singular point for X, X |γ(s0) 
= 0, then there exist a
subinterval J1 � s0 of J and a frame {E′

i} such that {E′
i} is normal for DX along

γ|J1 , i.e., on γ(J1). Moreover, there is a neighborhood V1 of γ(J1) on which all
frames normal for DX are

{
E′

i = Aj
i

∂
∂xj

}
, where A = [Aj

i ] : V1 → GL(dimR M, R),
V1 ⊆ U1, and (U1, x) is a chart of M with associated coordinates {xi}. The chart
(U1, x), transformation matrix A, and neighborhood V1 are constructed in different
ways depending on is the condition (9.15) below (with J0 ⊇ J1) valid or not:
(a) If (9.15) holds, (U1, x) is the special chart described in Subsection II.3.2 for

the path γ|J1 , A is given by equation (9.19) below, and V1 = x−1(J1, W ) where
W is a neighborhood of t0 in RdimR M−1 on which A0 is non-degenerate;

(b) If (9.15) is not valid, (U1, x) is the special chart constructed at the begin-
ning of Subsection 8.1 for the mapping α, introduced below on page 181 in
the proof of this theorem, A is given by equation (9.22) below, and V1 =
x−1(J1, J

′
0, R

dimR M−2) where J ′
0 is such that A|γ(J′

0)
is non-degenerate.

Proof. If X |γ(s) = 0 for some s ∈ J , then (9.14) implies ΓX(γ(s)) = 0 as A is
non-degenerate (cf. a similar situation explored in Subsection 9.1). Hence at the
singular points of X along γ, if any, either every frame is normal (DX is the zero
derivation at them) or frames normal at them do not exist (DX is not the zero
derivation at them). In particular, if X is singular along γ, X |γ(J) = 0, then either
every frame along γ is normal for DX or such frames do not exist at all.
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Below we shall suppose the existence of s0 ∈ J such that Xγ(s0) 
= 0, i.e.,
that X is not singular along the whole path γ. Since X is of class C0, there is a
neighborhood U0 of γ(s0) in which X is non-singular, X |U0 
= 0.

Let βp : J ′
p → M , p ∈ γ(J) be the integral path of X through p (see p. 13),

i.e., βp(σp,0) = p ∈ γ(J) for some σp,0 ∈ J ′
p and β̇p(σp) = Xβp(σp), σp ∈ J ′

p.
For the path βγ(s0) (in a neighborhood of γ(s0)) there are two possibilities: it
(locally) intersects γ only at γ(s0) = βγ(s0)(σγ(s0),0) for fixed σγ(s0),0 ∈ J ′

γ(s0)
or it

is (locally) obtainable from γ by a possible change of its parameter. We shall write
that in terms of X . The second possibility means the existence of a subinterval J0

of J with J0 � s0 and function g : γ(J0) → R\{0} such that γ(J0) ⊂ U0, γ|J0 is
injective (recall that γ is supposed locally injective), and on γ(J0) the field X is
proportional to the vector field γ̇ tangent to γ with factor g,

X |γ(J0) = gγ̇, (9.15)

while the first possibility is equivalent to the nonexistence of such connection
between X and γ̇. (Notice, (9.15) with g = 1 means that γ is, possibly locally, an
integral path for X .)

Let the relation (9.15) hold. Then, by virtue of equation (I.2.3), we have
X(A)|γ(s) = g(γ(s))[γ̇(s)(A)] = g(γ(s))dA(γ(s))

ds , so (9.14) reduces to

dA(γ(s))
ds

+
1

g(γ(s))
ΓX(γ(s))A(γ(s)) = 0, s ∈ J0. (9.16)

By Remark II.3.9 on page 96, the general solution of this equation, defining A
only on γ(J0), is

A(γ(s)) = Y
(
s, s0;− 1

g ◦ γ
ΓX ◦ γ

)
A0 (9.17)

where A0 ∈ GL(dimR M, R), s ∈ J0, s0 ∈ J0 is fixed as above, and Y is the unique
solution of the initial-value problem

dY

ds
= − 1

g(γ(s))
ΓX(γ(s))Y, Y |s=s0 = 1. (9.18)

If dimR M = 1, which is possible only if M is real, then (9.15) always holds8

and (9.17) gives the general solution of (9.14) with respect to A in γ(J0) � γ(s0).9

For dimR M ≥ 2, the general form of A on some neighborhood of γ(s0) could
be found as follows. Since the integral paths are without self-intersections, i.e.,

8For dimR M = 1, the vector γ̇(s) �= 0, s ∈ J0, can be taken as a basis of the one-dimensional
tangent space Tγ(s)(M), respectively {γ̇} is a frame on γ(J0). Therefore (9.15) is simply the
expansion of X over {γ̇} in this case.

9For dimR M = 1, the 1× 1 matrix ΓX(γ(s)) is simply a number, so that the explicit form of

Y is Y
(
s, s0;− 1

g◦γ
ΓX ◦ γ

)
= exp

(
−

s∫
s0

ΓX (γ(σ))
g(γ(σ))

dσ
)
.
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injective [9, 11], such is the restricted path γ|J0 . Construct for γ|J0 the special
chart (U1, x) described in Subsection II.3.2 (see p. 94 with γ|J0 : J0 → M for γ).
Then, for p ∈ U1, we have x(p) = (s, t) for some s ∈ J1 ⊆ J0 (recall that γ(J1) =
U1 ∩ γ(J0)) and t ∈ R

dimR M−1 and x(γ(s)) = (s, t0) for a fixed t0 ∈ R
dimR M−1.

Expanding A as

A(x−1(s, t)) = A(γ(s)) +
dimR M∑

k=2

Ak(x−1(s, t))(tk − tk0)

and using (9.17), we, finally, get the general solution of (9.14) in U1 as

A(x−1(s, t)) = Y
(
s, s0;− 1

g ◦ γ
ΓX ◦ γ

)
A0 +

dimR M∑
k=2

Ak(x−1(s, t))(tk − tk0), (9.19)

where A0 is constant non-degenerate matrix and the matrix-valued functions
A2, . . . , AdimR M on U1 are of class C1 and they and their first derivatives are
bounded when t → t0, i.e., on γ(J1). Since A is continuous (it is supposed of
class C1), there is a neighborhood of t0 in RdimR M−1 in which A(x−1(s, t)) is
non-degenerate.

Let us now suppose dimR M ≥ 2 and the integral path βγ(s0) : J ′
γ(s0) → M

to intersect γ : J → M at the single point γ(s0) = βγ(s0)(σγ(s0),0) for some unique
σγ(s0),0 ∈ J ′

γ(s0)
.10 Since γ is locally injective, there is a subinterval J3 ⊆ J with

J3 � s0 such that γ|J3 : J3 → M is without self-intersections. Let J2 := {s|s ∈
J3, γ(s) ∈ U0}. Then γ|J2 is injective path and along it X does not vanish. At
last, since X and γ are continuous, there exists a subinterval J0 ⊆ J2 with J0 � s0

such that the integral path βγ(s), s ∈ J2, intersects γ|J0 only once (at the point
γ(s) = βγ(s)(σγ(s),0)). A ‘local’ solution of (9.14) for the restricted path γ|J0 can
be found as follows.

Let, for every p ∈ γ(J), there be fixed (chosen) some C1 bijective mapping
(C1 diffeomorphism) τp : J ′ → J ′

p from some open R-interval J ′ to the domain
of the integral path βp such that τp(σ0) = σp,0 for fixed σ0 ∈ J ′.11 Consider a
mapping α : J0 × J ′ → M with α(s, σ) := βγ(s)(τγ(s)(σ)) for (s, σ) ∈ J0 × J ′.
Due to the aforesaid, α is injective, of class C1 and regular. Consequently, for
it are applicable the results at the beginning of Subsection 8.1 with α, 2, and
J0 × J ′ for γ, n, and Jn respectively. Therefore for α can be constructed a chart
(U1, x), explicitly given by (8.3) for n = 2, γ = α, and J2

1 ⊆ J2 = J0 × J ′,
with U1 � α(s0, σ0) = γ(s0) and U1 ⊆ U0, such that there is a subneighborhood
J2

1 := J1 × J ′ 0 ⊆ J0 × J ′ with α(J2
1 ) = U1 ∩ γ(J2), the coordinates of p ∈ U1 are

10This is only a local property if (9.15) does not hold. But in this way we do not loose generality
since if σ− ≤ σγ(s0),0 and σ+ ≥ σγ(s0),0 are respectively the maximal and minimal elements of
the set {σ|σ ∈ J ′

γ(s0)
, βγ(s0)(σγ(s0)) = γ(s) for some s ∈ J} � σγ(s0),0 and σ− �= σ+, then we

can take the interval (σ−, σ+) � σγ(s0),0 for J ′
γ(s0)

.
11Since all open real intervals are (C∞-) diffeomorphic, mappings like τp always exist.
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x(p) = (s, σ, t) for some (s, σ) ∈ J2
1 and t ∈ KdimR M−2, and x(α(s, σ)) = (s, σ, t0)

for a fixed t0 ∈ KdimR M−2 (see (8.4)).
Since in the special chart (U1, x) we have

x(βγ(s)(σγ(s))) = x(βγ(s)(τγ(s)(σ))) = x(α(s, σ)) = (s, σ, t0)

for σγ(s) = τγ(s)(σ) ∈ J ′
s, σ ∈ J ′, the components of Xβγ(s)(σγ(s)) in the frame{

∂
∂xi

}
are Xβγ(s)(σγ(s)) = ∂(xk(βγ(s)(σγ(s))))

∂σγ(s)
= ∂(δk

2 σ)
∂σγ(s)

= δk
2

(dτγ(s)(σ)

dσ

)−1
. Hence

Xβγ(s)(σγ(s)) =
1

dτγ(s)(σ)

dσ

∂

∂x2

∣∣∣
βγ(s)(σγ(s))

. (9.20)

So, in (U1, x), i.e., for s ∈ J1 and Ei = ∂
∂xi , the basic equation (9.14) reads

∂A(x−1(s, σ, t))
∂σ

∣∣∣∣σ=σ0
t=t0

+
dτγ(s)(σ)

dσ

∣∣∣
σ=σ0

ΓX(γ(s))A(γ(s)) = 0. (9.21)

The general solution of this equation with respect the matrix-valued function
A : U1 → GL(dimR M, R) can be found by expanding A with respect to (σ − σ0)
up to second order terms. In this way, we find

A(x−1(s, σ, t)) = A0(x−1(s, σ0, t))

− dτγ(s)(σ)
dσ

∣∣∣
σ=σ0

ΓX(γ(s))A0(γ(s))(σ − σ0) + B(x−1(s, σ, t))(σ − σ0)2 (9.22)

where A0 : x−1(J1, σ0, R
dim M−2) → GL(dimR M, R) and the matrix-valued func-

tion B on U1 is of class C1 and it and its first partial derivatives are bounded
on γ(J1), i.e., when σ → σ0 and t → t0. Since we have detA(x−1(s, σ0, t)) =
detA0(x−1(s, σ0, t)) 
= 0,∞ and A is continuous (as it is of class C1), there
is a subinterval J ′

0 ⊆ J ′ containing σ0 such that A : x−1(J1, J
′
0, R

dim M−2) →
GL(dimR M, R). This last result completes the proof of Theorem 9.3. �

The Theorem 9.3 provides a complete local description of the frames normal
along a path γ : J → M for a derivation DX along fixed vector field X ∈ X(M)
at the points in which X does not vanish. In particular, if Xγ(J) 
= 0, then every
point along γ has a neighborhood on which frames normal along γ exist and from
these frames all frames globally normal along γ can be constructed.

In a neighborhood of every point γ(s0), s0 ∈ J , for which Xγ(s0) 
= 0 coor-
dinates {zi} normal along γ exist. They can be found by integrating the system

∂
∂zi = Aj

i
∂

∂xj for some A given by (9.19) or by (9.22) (with corresponding {xi} as
specified above) or via direct solving of the normal frame equation (9.2′) along γ,
viz. of

Xm(γ(s))
∂2zi

∂xm∂xk

∣∣∣
γ(s)

+
∂zi

∂xm

∣∣∣
γ(s)

ΓX
m

k(γ(s)) = 0. (9.23)

Since the results obtained considerably simplify the second method, we shall fol-
low it.
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Proposition 9.4. Let M be C3 manifold, γ : J → M be locally injective, C1 and
regular path, and DX be C1 derivation along a fixed X ∈ X0(M). For every s0 ∈ J
for which X |γ(s0) 
= 0, there exist local coordinates in a neighborhood of γ(s0) which
are normal along γ. Their general form is given by equation (9.24) below under
the conditions (9.26) (resp. (9.27)) below if (9.15) holds (resp. does not hold).

Proof. Let s0 ∈ J , Xγ(s0) 
= 0, and (U1, x) with U1 � γ(s0) be the special chart
constructed above with reference mapping γ|J0 or α if (9.15) holds or not, respec-
tively. We shall look for a chart (Uz, z) with γ(s0) ∈ Uz ⊆ U1 in which (9.23) is
valid. Since M is supposed of class C3, we can write the expansion

zi(p) = ai(p0)+ai
j(p0)[xj(p)−xj(p0)]+ai

jk(p)[xj(p)−xj(p0)][xk(p)−xk(p0)].
(9.24)

Here: p ∈ Uz, p0 is the ‘projection’ of p along γ or α (i.e., p0 = x−1(s, t0) =
γ(s) or p0 = x−1(s, σ, t0) = βγ(s)(τγ(s)(σ)) if p = x−1(s, t) or p = x−1(s, σ, t)
respectively), ai and ai

j are C1 functions of p0 and ai
jk : Uz → R are C1 and they

and their first partial derivatives are bounded when p → p0.
In the chart (U1, x), the fixed vector field X has the expansion X |γ(s) =

g(γ(s)) ∂
∂x1

∣∣
γ(s)

or (9.20) if (9.15) holds or not, respectively. So, in these two cases,
equation (9.23) takes respectively the form (cf. (9.16) and (9.21))

∂2zi

∂x1∂xk

∣∣∣
γ(s)

− 1
g(γ(s))

∂zi

∂xj

∣∣∣
γ(s)

ΓX
j
k(γ(s)) = 0 (9.25a)

∂2zi

∂x2∂xk

∣∣∣p=p0
σ=σ0

− dτγ(s)(σ)
dσ

∣∣∣
σ=σ0

∂zi

∂xj

∣∣∣p=p0
σ=σ0

ΓX
j
k(γ(s)) = 0. (9.25b)

The entering here derivatives of the z’s with respect to the x’s can be expressed
through the unknown functions ai and ai

j by employing (9.24):

∂zi

∂xj

∣∣∣
γ(s)

=

{
dai(γ(s))

ds for j = 1
ai

j(γ(s)) for j ≥ 2
∂2zi

∂x1∂xk

∣∣∣
γ(s)

=

{
d2ai(γ(s))

ds2 for k = 1
dai

k(γ(s))
ds for k ≥ 2

∂zi

∂xj

∣∣∣
p=p0

=

⎧⎪⎨⎪⎩
∂ai

∂s

∣∣
p=p0

for j = 1
∂ai

∂σ

∣∣
p=p0

for j = 2

ai
j(p0) for j ≥ 3

∂2zi

∂x2∂xk

∣∣∣
p=p0

=

⎧⎪⎪⎨⎪⎪⎩
∂2ai

∂s∂σ

∣∣
p=p0

for k = 1
∂2ai

∂σ2

∣∣
p=p0

for k = 2
∂ai

k

∂σ

∣∣
p=p0

for k ≥ 3

where the first (resp. second) raw is valid when (9.15) holds (resp. does not
hold) and we have used that p0 = x−1(s, t0) = γ(s) (resp. p0 = x−1(s, σ, t0) =
βγ(s)(τγ(s)(σ))) if p = x−1(s, t) (resp. p = x−1(s, σ, t)). The substitution of these
equations into (9.25) results in the following two systems of linear differential
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equations for the functions ai and ai
j :

1
g(γ(s))

[dai(γ(s))
ds

ΓX
1
k(γ(s)) +

dimR M∑
j=2

ai
j(γ(s))ΓX

j
k(γ(s))

]

=

{
d2ai(γ(s))

ds2 for k = 1
dai

k(γ(s))
ds for k ≥ 2

(9.26)

dτγ(s)(σ)
dσ

∣∣∣
σ=σ0

[
∂ai(βγ(s)(τγ(s)(σ)))

∂s

∣∣∣
σ=σ0

ΓX
1
k(γ(s))

+
∂ai(βγ(s)(τγ(s)(σ)))

∂σ

∣∣∣
σ=σ0

ΓX
2
k(γ(s))

+
dimR M∑

j=3

ai
j(γ(s))ΓX

j
k(γ(s))

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2ai(βγ(s)(τγ(s)(σ)))

∂s∂σ

∣∣∣
σ=σ0

for k = 1
∂2ai(βγ(s)(τγ(s)(σ)))

∂σ2

∣∣∣
σ=σ0

for k = 2
∂ai

k(βγ(s)(τγ(s)(σ)))

∂σ

∣∣∣
σ=σ0

for k ≥ 3

. (9.27)

We are not going to solve these systems of differential equations, but we must
note that they always have solutions according to the general theorems of the
theory of differential equations [34]. The substitution of these solutions into (9.24)
gives the corresponding coordinates normal along the path γ. The domain Uz of
the normal chart (Uz, z) should be chosen such that in it the Jacobian det

[
∂zi

∂xj

]
be non-vanishing. �

Problem 9.1. Explore the system (9.26)–(9.27) of differential equations and find
its general solution.

9.3. The case on the whole manifold

The purpose of this section is to be shown that frames normal for a derivation
along fixed vector field exist on the whole manifold. The general form of these
frames will be found too.

Let M be C1 manifold, X ∈ X0(M), X 
= 0, {Ei} be a frame on M , and DX

be a C0 derivation along X . As we know, a frame {E′
i = Aj

i Ej} is normal for DX

(on M) iff (9.1) holds for U = M ,

ΓXA + X(A) = 0 (9.28)

where ΓX is the matrix of DX in {Ei}. We intend to demonstrate that this equa-
tion always has (local) non-degenerate solutions (at the non-singular points for
X) in contrast to the similar (system of) equation(s) for linear connections (Sec-
tion II.4) or for derivations along vector fields (Section 6).
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Theorem 9.4. Let M be C1 manifold, X be continuous vector field on M , X be
not identically zero on M , and DX be a C0 derivation along X. For every p0 ∈ M
for which Xp0 
= 0, there exists a chart (U, x) with associated coordinate system
{xi} such that: U � p0, X |U = ∂

∂x1

∣∣
U
, there exist frames normal on U for DX

and all such frames are
{
E′

i = Aj
i

∂
∂xj

}
where A = [Aj

i ] : U → GL(dimM, R)
is given by equation (9.31) below in which Y is defined by (9.32) below and A0

is a non-degenerate matrix-valued function. If p0 ∈ M and Xp0 = 0, at p0 exist
frames normal for DX iff DX is the zero derivation at p0, (DXK)|p0 = 0 for every
tensor field K, in which case every frame (in a neighborhood of p0) is normal at
p0 for DX .

Proof. Let us choose some p0 ∈ M such that Xp0 
= 0. According to [7, Proposi-
tion 1.53], there is a chart (U, x) of M with U � p0 and local coordinates {xi} for
which12

X |U =
∂

∂x1

∣∣∣
U

= 0. (9.29)

So, in (U, x) the normal frame equation (9.28) (on U) with Ei = ∂
∂xi reads

∂A

∂x1

∣∣∣
p

= −ΓX(p)A(p). (9.30)

Its general solution on U is

A(p) = Y
(
x1(p), x1(p0);−ΓX(x−1( · , x2(p), . . . , xdim M (p)))

)
× A0

(
x2(p), . . . , xdim M (p)

)
, (9.31)

where p ∈ U , the matrix-valued function Y = Y (x1(p), x1(p0); Z), with continuous
matrix-valued function Z on x1(U), is the unique solution of the initial-value
problem (see Lemma II.3.2 on page 96 or Lemma II.4.1 on page 105)

∂Y

∂x1

∣∣∣
p

= ZY, Y |x1(p)=x1(p0) = 1 (9.32)

and A0 is non-degenerate matrix-valued function of its arguments.
This ends the proof of the first part of the theorem. The second one is a

consequence of Proposition 9.2 (for U = {p0}). �

The Theorem 9.4 gives a complete local description of all frames normal on
M . If X is non-zero everywhere on M or if DX is the zero derivation at the points
at which X vanishes, all frames globally normal on the whole manifold M for DX

can be constructed from the local normal frames provided by Theorem 9.4. For
this end, a method similar to the one described in Subsection II.5.2 should be
applied (see page 123).

12This is a special case of the theorem for straightening (of integral paths); see [91, p. 121].
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If (U, x) is the chart provided by Theorem 9.4, the coordinate functions zi

of every normal chart (V, z) with p ∈ V ⊆ U are solutions of (9.2′) with x′ i = zi

and Xm = δm
1 : ( ∂2zi

∂x1∂xk
− ∂zi

∂xj
ΓX

j
k

)∣∣∣
V

= 0. (9.33)

According to the theorems of the theory of (linear partial) differential equa-
tions [34], this equation always has (local) solutions with respect to zi. The general
solution of (9.33) can not be expressed in a closed form for arbitrary ΓX . But if
M and DX are of class C∞, it can be found by expanding zi = zi(x1, . . . , xdim M )
and ΓX

j
k in power series with respect to [xi(p) − xi(p0)],

zi(p) = ai +
∞∑

n=1

ai
i1...in

[xi1(p) − xi1 (p0)] · · · [xin(p) − xin(p0)] (9.34a)

ΓX
j
k(p) = γj

k +
∞∑

n=1

γj
ki1...in

[xi1(p) − xi1 (p0)] · · · [xin(p) − xin(p0)] (9.34b)

where the a’s and γ’s are constant numbers symmetric in i1 . . . in and det[aj
i ] 
= 0.

Indeed, substituting these expansions into (9.33), we get the following infinite
system of recurrent equations

ai
1k = ai

jγ
j
k

ai
1ki2 = ai

ji2γ
j
k + ai

jγ
j
ki2

ai
1ki2i3 =

(
ai

ji2i3γ
j
k + ai

ji2γ
j
ki3

+ ai
jγ

j
ki2i3

)
(i2i3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(9.35)

From these equalities and (9.34a), the general solution of (9.33) can be found.
Since ∂zi

∂xj = ai
j and [ai

j ] is non-degenerate, the obtained series for zi is convergent
in some neighborhood V ⊆ U of p0 and the change {xi} → {zi} is well-defined in
V , i.e., it is with non-zero Jacobian in V . In this way all charts (V, z) normal for
the initial derivation DX can be found in a neighborhood of every point p0 ∈ M
at which Xp0 
= 0. (Recall, if Xp0 = 0 and DX is the zero derivation at p0, then
every chart in a neighborhood of p0 is normal at p0 for DX , but if Xp0 = 0 and
DX is not the zero derivation at p0, then charts (and frames) normal at p0 for DX

do not exist.)

9.4. Other cases

Following the methods of Subsections 9.1–9.3 and the ideas of Sections 4–8, one can
try to attack the problems for existence and construction of frames and coordinates
normal on submanifolds or along (locally injective) mappings for derivations along
fixed vector field. The main obstacles on this way are the complicated systems
of partial differential equations one gets, a typical example of which are (9.26)
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and (9.27).13 For this reason, we are not going to study these situations here and
want only to make some comments on them.

Proposition 9.5. Let M be C1 manifold, U be any subset of M , X be continuous
vector field on M , and DX be derivation along X. If p ∈ U and Xp 
= 0, then there
is a subset Up of U containing p on which frames normal for DX exist. If p ∈ U
and Xp = 0, then at p exist frames normal for DX iff DX is the zero derivation
at p and if this is the case, every frame defined in a neighborhood of p is normal
at p for DX .

Proof. If p ∈ U ⊂ M and Xp 
= 0, by Theorem 9.4 exist frames normal on some
neighborhood U0 of p in M (and all of them are described by this theorem). If
{Ei} is such a frame, then, obviously, it is normal for DX on Up := U0 ∩U � p as
Up ⊆ U , which completes the proof of the first part of the theorem. The second
part of its assertion is a consequence of Proposition 9.2. �

Corollary 9.1. If N is a submanifold of a C1 manifold M , X ∈ X0(M), X 
= 0,
and DX is a derivation along X, then for every p ∈ N for which Xp 
= 0 exists a
neighborhood UN

p of p in N on which frames normal for DX exist.

Proof. See Proposition 9.5 or its proof for U = N and put UN
p = Up. �

Corollary 9.2. Let f : N → M be locally injective mapping between C1 manifolds N
and M , X ∈ X0(M), X 
= 0, and DX be derivation along X. For every (dim N)-
dimensional submanifold N ′ of N on which f is injective and X |f(N ′) 
= 0 there
exist frames normal along f |N ′ for DX .

Proof. See Proposition 9.5 and construct, if required, a frame globally normal
along fN ′ from the local frames normal on the constituents of an open cover of
f(N ′) on each of which frames normal along f exist. �

Applying some freedom of the language, we may paraphrase Corollaries 9.1
and 9.2 by saying that on any C1 submanifold N of a C1 manifold M or along
a locally injective mapping f with range in M , frames locally normal on N or
along f exist for every derivation along a fixed vector field X provided X does not
vanish on N or on the range of f , respectively.

An important remark in connection with Proposition 9.5 and Corollaries 9.1
and 9.2 should be made. We proved the existence of frames (locally) normal on
U ⊆ M by restricting to (subsets of) U the frames locally normal on the whole
manifold M . All frames locally normal on M are described by Theorem 9.4 and
their restrictions to (subsets of) U are, of course locally normal on U . The essential
moment is that if U 
= M , then, generally, exist frames locally normal on U which
are not (locally) normal on M . In other words, the set of frames locally normal on

13In the general case, the analogues of (9.26) (resp. (9.27)) correspond to the cases when the
fixed vector field X lies (resp. does not lie) in the tangent space of the corresponding submanifold
considered as a manifold.
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U is larger than the one consisting of locally normal frames obtained by frames
(locally) normal on M via restriction to (subsets of) U .

An example of these more or less intuitively clear assertions is provided by
a comparison of Theorems 9.4 and 9.1, the latter corresponding to U = {p0},
with p0 ∈ M and Xp0 
= 0 in the above notation. Since in the both theorems xi

are coordinates in which X = ∂
∂x1 (on M or at p0 resp.), one can compare the

matrices (9.31) and (9.8) by means of which is achieved the transition to normal
frames (on M or at p0 resp.). Take, for simplicity, p0 in (9.31) and (9.8) to be
one and the same point. Expanding the right-hand side of (9.31) with respect to
xk(p) − xk(p0) and taking into account (9.30), we get

A(p) =
{
1− ΓX(p0)[x1(p) − x1(p0)] + B(x1(p))[x1(p) − x1(p0)]2

}
×
{
B0 +

dim M∑
k=2

Bk[xk(p) − xk(p0)]

+
dim M∑
k,l=2

Bkl(x2(p), . . . , xdim M (p))[xk(p) − xk(p0)][xl(p) − xl(p0)]
}

= B0 − ΓX(p0)B0[x1(p) − x1(p0)] +
dim M∑
k=2

Bk[xk(p) − xk(p0)]

+ B(x1(p))B0[x1(p) − x1(p0)]2

− ΓX(p0)[x1(p) − x1(p0)]
dim M∑
k=2

Bk[xk(p) − xk(p0)]

+
dim M∑
k,l=2

Bkl(x2(p), . . . , xdim M (p))[xk(p) − xk(p0)][xl(p) − xl(p0)] + · · · .

Here B0 and Bk, k ≥ 2 are arbitrary constant matrices, detB0 
= 0, Bkl with
k, l ≥ 2 are arbitrary matrix-valued functions (in both cases the arbitrariness
comes from the arbitrariness of A0 in (9.31)), and B(x1(p)) is a fixed matrix-
valued function whose form depends entirely on ΓX (B comes from the expansion
of Y in (9.31)). Comparing the last expression with (9.8), we see that the both
expressions coincide up to notation if in (9.8) we put

A
(x)
kl (p)[xk(p) − xk(p0)][xl(p) − xl(p0)] = B(x1(p))B0[x1(p) − x1(p0)]2

− ΓX(p0)[x1(p) − x1(p0)]
dim M∑
k=2

Bk[xk(p) − xk(p0)]

+
dim M∑
k,l=2

Bkl(x2(p), . . . , xdim M (p))[xk(p) − xk(p0)][xl(p) − xl(p0)] + · · · . (9.36)
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Hence, up to third order terms, (9.8) corresponds to (9.31) with

A
(x)
11 (p) = B(x1(p))B0, A

(x)
1k (p) = −ΓX(p0)Bk for k ≥ 2,

A
(x)
kl (p) = Bkl(x2(p), . . . , xdim M (p)) for k, l ≥ 2.

Exercise 9.1. Find the exact expressions for A
(x)
kl for which (9.8) reduces to (9.31).

(Hint: in the both sides of (9.36), take into account all quantities up to fifth order
with respect to [xk(p) − xk(p0)].)

The general idea and conclusion from the above discussion is: on every U ⊆ M
frames normal on U for a given derivation along some fixed vector field always exist
but the ‘smaller’ U is, the ‘larger’ the variety of these normal frames is; this variety
is ‘maximal’ at a single point and it is ‘minimal’ for the whole manifold M .

The aforesaid, concerning normal frames, can, evidently, mutatis mutandis
be transferred to the description of frames normal on subsets of a manifold (or
along locally injective mappings with range in it) for derivations along fixed vector
field in it.

10. Normal frames and coordinates for

derivations along paths

As it is well known (see p. 11), to every injective C1 path γ : J → M corresponds
a vector field γ̇ along γ, i.e., on γ(J), called tangent to γ, assigning to every point
γ(s), s ∈ J , the vector γ̇(s) tangent to γ at γ(s) and defined via (I.2.3).1 The
vector field γ̇ can be extended to a vector field X on a neighborhood of γ(J),
Xγ(J) = γ̇, in infinitely many ways. Consider some derivation DX along X of
T 1(M). Since outside γ(J) the field X is completely arbitrary, such is DX too.
One can get real profit of DX if it can be made to depend only on γ. Since it is
clear that outside γ(J) this is impossible without some additional very restrictive
assumptions on X , let us see what happens with DX when its action is restricted
to γ(J). Suppose K is a C1 tensor field of type (r, q) defined on a neighborhood
of γ(J) (or on γ(J) if dimR M = 1 and γ(J) = M). If {Ei} is a frame on this
neighborhood, the components of DX in the tensor frame induced by it are (2.5).
Hereof, applying Xγ(J) = γ̇ and (I.2.3), we obtain

(
(DX(K))i1...ir

j1...jq

)∣∣
γ(s)

=
d
(
Ki1...ir

j1...jq
(γ(s))

)
ds

+
r∑

a=1

ΓX
ia

k(γ(s))Ki1...ia−1kia+1...ir

j1...jq
(γ(s))

−
q∑

b=1

ΓX
k
jb

(γ(s))Ki1...ir

j1...jb−1kjb+1...jq
(γ(s)).

1If γ is not injective, the correspondence γ(s) → γ̇(s) is generally multiple-valued, while the
mapping s → γ̇(s) is always single-valued.
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From here an important conclusion follows: if DX is a derivation along X and the
restriction of its matrix ΓX to γ(J) depends only on the path γ,

ΓX(γ(s))|Xγ(s)=γ̇(s) = Γ(s; γ),

s ∈ J,
(10.1)

then the restriction to γ(J) of the action of DX on any tensor field is independent
of the particular definition of X and depends only on γ. Indeed, combining (10.1)
with the equation preceding it, we find

(
(DX(K))i1...ir

j1...jq

)∣∣
γ(s)

=
d
(
Ki1...ir

j1...jq
(γ(s))

)
ds

+
r∑

a=1

Γia

k(s; γ)Ki1...ia−1kia+1...ir

j1...jq
(γ(s))

−
q∑

b=1

Γk
jb

(s; γ)Ki1...ir

j1...jb−1kjb+1...jq
(γ(s))

(10.2)

for X |γ(J) = γ̇. One should have in mind the invariant character of the condi-
tion (10.1): if it holds (for some or every path γ) in some frame {Ei}, then it is
valid in any other frame {E′

i = Aj
iEj} as (2.11) implies

Γ(s; γ) �→ Γ′(s; γ) = A−1(γ(s))
[
Γ(s; γ)A(γ(s)) +

dA(γ(s))
ds

]
(10.3)

due to X |γ(J) = γ̇.

Example 10.1. An important example of a derivation along vector fields possessing
the property (10.1) is provided by the linear connections which, as we know from
Section 2, are derivations linear at every point of the manifold. In fact, if ∇ is a
linear connection with coefficients’ matrices Γk = [Γi

jk], Γi
jk being its coefficients,

then, by Proposition 2.2 (see also Definition 2.4), we have

ΓX(γ(s))|Xγ(s)=γ̇(s) = Γk(γ(s))γ̇k(s) (10.4)

as X |γ(J) = γ̇. The mapping assigning to a C1 tensor field K defined in a neigh-
borhood of γ(J) the tensor field (∇XK)|γ(J), where X ∈ X(M) and X |γ(J) = γ̇,
is called covariant derivative along γ generated by (associated to) ∇. It is denoted
by ∇γ̇ (and sometimes by D

ds or D
ds

∣∣
γ
).2 According to (10.2) and (10.4), the com-

2A far more logical is the covariant derivative along γ to be denoted by ∇γ (see below
Definition 10.1) instead by ∇γ̇ , but we shall follow the established tradition.
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ponents of ∇γ̇K at γ(s) are

(
(∇γ̇(K))i1...ir

j1...jq

)∣∣
γ(s)

=
d
(
Ki1...ir

j1...jq
(γ(s))

)
ds

+ γ̇l(s)
r∑

a=1

Γia

kl(γ(s))Ki1...ia−1kia+1...ir

j1...jq
(γ(s))

− γ̇l(s)
q∑

b=1

Γk
jbl(γ(s))Ki1...ir

j1...jb−1kjb+1...jq
(γ(s)).

(10.5)

where Γi
jk(γ(s)) are the coefficients of ∇ at γ(s). It should be mentioned the

different meaning of the symbols ∇X and ∇γ̇ : in the former X is a vector field
defined on the manifold M while in the latter γ̇ is a vector field defined only
along a path γ : J → M and not outside the set γ(J). That is why an expansion
like ∇γ̇ = γ̇k∇Ek

for γ̇(s) = γ̇k(s)Ek|γ(s) is not quite correct; one should write
∇γ̇

∣∣
T 1(γ(J))

= γ̇k
(∇Ek

∣∣
T 1(γ(J))

)
which, in more free terms, can be reduced to

∇γ̇ = γ̇k(∇Ek
|γ(J)) or to ∇γ̇ |γ(s) = γ̇k(s)(∇Ek

|γ(s)), s ∈ J .

The above considerations lead to the concept of a derivation along paths
(of the tensor algebra over a manifold) assigning to every C1 injective path a
derivation along it with properties like (10.1) and (10.2).

Definition 10.1. A derivation D along paths of the tensor algebra over a C1 man-
ifold M , is a mapping assigning to every C1 path γ : J → M without self-
intersections a mapping Dγ , called derivation along γ (of the algebra of C1 tensor
fields along γ), from the algebra of C1 tensor fields along γ into the one of C0

tensor fields,
Dγ : T 1(γ(J)) → T 0(γ(J)),

such that:

(i) Dγ(K + L) = DγK + DγL, K, L ∈ Tr;1
s (γ(J));

(ii) Dγ(K ⊗ L) = (DγK) ⊗ L + K ⊗ (DγL), K, L ∈ T 1(γ(J));
(iii a) Dγ : F1(γ(J)) → F0(γ(J));
(iii b) Dγ : T1;1

0 (γ(J)) → T1;0
0 (γ(J));

(iii c) Dγ : T0;1
1 (γ(J)) → T0;0

1 (γ(J));
(iv) Dγ(g) = γ̇(g), g ∈ F1(γ(J));
(v) Dγ(ω(Z)) = C1

1

(
Dγ(ω ⊗ Z)

)
, ω ∈ T0;1

1 (γ(J)), Z ∈ T1;1
0 (γ(J)).

Comments 10.1. This definition is similar to the Definition I.3.1 of a linear con-
nection: the fist two properties of the latter one are removed and all covariant
derivatives along a vector field X are replaced with derivatives along γ. Hence the
points (2)–(6) of comments I.3.1 can be repeated mutatis mutandis. Hereof we can
say that Dγ : is K-linear, satisfies the Leibnitz rule (with respect to the tensor mul-
tiplication), preserves the types of the tensor fields, commutes with all contraction
operators, and on scalar functions reduces to the vector field γ̇ tangent to γ.
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Remark 10.1. In connection with the theory of derivations (along paths) in vector
bundles (see Subsection IV.2.3), the so-defined derivations along paths should be
called section- or tensor-derivations along paths as the tensor fields are, in fact, sec-
tions of the corresponding tensor bundles over a manifold (see Subsection IV.2.4).
At the moment, this more complicated name is not required and, respectively, it
will not be employed in the present chapter. (For details, see the definition of a
section-derivation along paths on page 221 and Subsection IV.13.1.)

Suppose D is a derivation along paths, γ : J → M is injective and C1, and
{Ei} is a C1 frame on γ(J) which may be defined and outside γ(J). By con-
dition (iii b) of Definition 10.1, there exist unique functions Γγ

i
j for which the

expansion
Dγ(Ei) =: Γγ

j
iEj (10.6)

holds. They are called (local) components of Dγ or of D along γ. We shall write
Γi

j(s; γ) for the value of Γγ
i
j at γ(s), Γγ

i
j : γ(s) �→ Γi

j(s; γ) which is correct as γ

is supposed to be injective. The components of Dγ uniquely describe it in {Ei} as
from Definition 10.1 follows that the components of Dγ(K) for K ∈ Tr;1

q (γ(J)) in
the tensor frame induced by {Ei} are

(
(Dγ(K))i1...ir

j1...jq

)∣∣
γ(s)

=
d
(
Ki1...ir

j1...jq
(γ(s))

)
ds

+
r∑

a=1

Γia

k(s; γ)Ki1...ia−1kia+1...ir

j1...jq
(γ(s))

−
q∑

b=1

Γk
jb

(s; γ)Ki1...ir

j1...jb−1kjb+1...jq
(γ(s)).

(10.7)

which can be verified by direct calculation.
Comparing (10.7) with (10.2), we conclude that to every derivation D along

vector fields, whose components have the property (10.1), there corresponds a
derivation along paths D such that D : γ �→ DX

∣∣
T 1(γ(J))

for X ∈ X(M) with
X |γ(J) = γ̇. A particular example is provided by the covariant derivative along
paths associating to γ the covariant derivative ∇γ̇ along γ with ∇ being a linear
connection.

If the frame {Ei} is change to {E′
i = Aj

i Ej} (along γ) by means of a non-
degenerate matrix A = [Aj

i ], equation (10.6) implies the change

Γγ
i
j �→ Γ′

γ
i

j
=

(
A−1

)i

l

[
Γγ

l
kAk

j + γ̇(Al
j)
]
. (10.8)

Introducing the matrix Γγ :=
[
Γγ

i
j

]dim M

i,j=1
of the components of Dγ , we can rewrite

this as (cf. (2.11))
Γγ �→ Γ′

γ = A−1[ΓγA + γ̇(A)]. (10.9)
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Notice, the main difference between the pairs of transformations (2.10) and (2.11),
on one hand, and (10.8) and (10.9), on another hand, is that the former ones are
defined on an arbitrary neighborhood of M , while the latter ones have a sense only
along γ, i.e., on γ(J). If we put Γ(s; γ) = Γγ(γ(s)), s ∈ J , which is the matrix of
Dγ (in {Ei}) at the point γ(s), the change (10.9) takes the form (10.3), as one can
expect. If one is interested in holonomic frames, like

{
Ei = ∂

∂xi

}
with {xi} being

coordinates in U ⊆ M and U ∩ γ(J) 
= ∅, the coordinates change {xi} → {x′ i}
will imply, e.g., the change (10.8) with Ai

j = ∂xi

∂x′ j and all quantities should be
restricted on U ∩ γ(J).

Example 10.2. It is easily seen that, by virtue of (10.4), the component’s matrix
of a covariant derivative ∇γ̇ along γ is

Γγ = Γkγ̇k (10.10)

where Γk :=
[
Γi

jk

]
are the coefficients’ matrices of a linear connection ∇.

A derivation along paths is called differentiable of class Ck or simply of class
Ck, if its matrix is of class Ck with respect to all coordinate frames or the ones
obtainable from them by means of Ck+1 transformations (cf. similar convention
concerning derivations along vector fields on page 146).

Now the problem for the existence and properties of a special kind of frames,
called normal, in which the components of a derivation along paths vanish can be
posed. It has two sides: local, along particular path, and global, along every path.
We shall start with the former case.

Definition 10.2. Let D be a derivation along paths and γ : J → M be injective C1

path. A frame {E′
i} defined on γ(J) or on its subset is called normal for Dγ (or for

D along γ) if in it the components of Dγ (of D along γ) vanish. A frame defined
on a neighborhood (of part) of γ(J) is called normal for Dγ if its restriction to
γ(J) is normal for Dγ .

Frames {E′
i} normal along particular path γ for a C1 derivation D along

paths always exist and can easily be found on the base of the transformation
law (10.9) of the components of D along γ.

Theorem 10.1. If D is a C0 derivation along paths in a C2 manifold M and
γ : J → M is injective and C1, then all frames (globally) normal for D along γ,
i.e., for Dγ, are {E′

i = Aj
iEj}, where {Ei} is arbitrary frame along γ and A = [Ai

j ]
is given by

A(γ(s)) = Y (s, s0;−Γγ ◦ γ)A0, (10.11)
in which Y is the unique solution of (II.3.17), s ∈ J , s0 ∈ J is fixed, Γγ is the
matrix of D in {Ei}, and A0 is constant non-degenerate matrix.

Proof. If {Ei} is an arbitrary frame on γ(J), a frame {E′
i = Aj

iEj} is normal along
γ, Γ′

γ = 0, iff the normal frame equation

dA(γ(s))
ds

+ Γ(s; γ)A(γ(s)) = 0 (10.12)
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holds along γ, where A := [Ai
j ] : γ(J) → GL(dimM, K) is of class C1 and (10.3)

was used. By Remark II.3.9 on page 96, the general solution of the last equation
with respect to A is given by (10.11). �

Since the provided by Theorem 10.1 frames normal for a derivation Dγ along
a concrete path γ : J → M are defined only on γ(J), the problem for their holo-
nomicity is ill-posed. The correct question is: can these frames be (locally) ex-
tended in a holonomic or anholonomic way on a neighborhood with non-empty
intersection with γ(J)? As the existence of anholonomic extensions is clear and
beyond doubt, we shall show the existence of holonomic extensions on which base,
if required, anholonomic ones can be constructed. Looking on M as on a real man-
ifold (of dimension dimR M = 2 dimM if M is complex) and admitting γ to be
regular, the needed result is an evident corollary of the following lemma.

Lemma 10.1. Let γ : J → M be injective C1 regular path in a C1 real manifold M
and {Ei} be a frame defined on γ(J). For every s0 ∈ J , there exists a chart (U, y)
with U � γ(s0) such that the coordinate frame

{
∂

∂yi

}
reduces along γ to {Ei},

∂
∂yi

∣∣
U∩γ(J)

= Ei

∣∣
U∩γ(J)

, i.e., in a neighborhood of every point in γ(J) the initial
frame {Ei} can be extended in a holonomic way.

Remark 10.2. Since now γ(J) is one-dimensional (real) submanifold of M , this
lemma is a corollary of Lemma II.5.2 on page 116. Because of the importance of this
result, we present here its independent proof following the one of [76, Lemma 4.1].

Proof. Since γ is C1, regular, and without self-intersections, for every s0 ∈ J
the special chart (U1, x), with U1 � γ(s0) and described in Subsection II.3.2 on
page 94, can be constructed. Recall, (see (II.3.12) and (II.3.13)), for p ∈ U1, we
have x(p) = (s, t) for some s ∈ J1 := {σ|σ ∈ J, γ(σ) ∈ U1} ⊆ J and t ∈ RdimR M−1

and x(γ(s)) = (s, t0), s ∈ J1, for fixed t0 ∈ RdimR M−1. Let the non-degenerate
matrix B = [Bi

j(s)], s ∈ J1, be defined via the expansion

Ei|γ(s) = Bj
i (s)

∂

∂xj

∣∣∣
γ(s)

. (10.13)

Define the functions yi : U1 → R by

yi(x−1(s, t)) := bi +

s∫
s0

(
B−1(σ)

)i

1
dσ +

dimR M∑
k=2

(
B−1(σ)

)i

k
(tk − tk0)

+
dimR M∑
k,l=2

bi
kl(x

−1(s, t))(tk − tk0)(tl − tl0) (10.14)

where bi ∈ R and bi
kl : U1 → R are C1 and together with their derivatives are

bounded on γ(J1). Since

∂yi

∂xj

∣∣∣
γ(s)

=
∂yi

∂xj

∣∣∣
x−1(s,t0)

=
(
B−1(s)

)i

j
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and B(s) is non-degenerate, the transformation {xi} → {yi} is well-defined C1

diffeomorphism on U := x−1(J1, V ) ⊆ U1 for some neighborhood V of t0 in
RdimR M−1. Hence (U, y) is a chart of M with U � γ(s0) and the coordinate frame
generated by the associated with it coordinates {yi} has the following basic vectors
along γ, i.e., on γ(J1) ⊆ γ(J):

∂

∂yi

∣∣∣
γ(s)

=
∂xj

∂yi

∣∣∣
γ(s)

∂

∂xj

∣∣∣
γ(s)

=
([∂yk

∂xl

∣∣∣
γ(s)

]−1)j

i

∂

∂xj

∣∣∣
γ(s)

= Bj
i (s)

∂

∂xj

∣∣∣
γ(s)

.

Therefore ∂
∂yi

∣∣
γ(s)

= Ei|γ(s) and, consequently,
{

∂
∂yi

}
is a holonomic extension of

{Ei} in the neighborhood U of γ(s0). �
The next proposition reveals the complete (local) consistency between the

normal frames provided by Theorem 10.1 for the covariant derivatives along paths
(generated by a linear connection ∇) and the ones given via Theorem II.3.1 on
page 97.

Proposition 10.1. Let γ : J → M be a C1 regular injective path in a C1 manifold
M endowed with a C0 linear connection ∇. The frames on γ(J) normal along γ
for ∇ and the ones normal for the covariant derivative ∇γ̇ along γ are identical.

Proof. If a frame {E′
i} is normal along γ for ∇, then, due to (10.10), the compo-

nents’ matrix of ∇γ̇ in {E′
i|γ(J)} is Γ′

γ = Γ′
kγ̇k =

∑
k 0 × γ̇k = 0 as, by definition,

in a frame normal for ∇ the coefficients’ matrices Γ′
k of ∇ vanish.

To prove the converse assertion, we shall use the special chart (U1, x), in a
neighborhood of some point γ(s0) ∈ γ(J), constructed at the beginning of Sub-
section II.3.2. Since in the frame

{
Ei = ∂

∂xi

∣∣
U1

}
we have γ̇k = δk

1 , in it (10.10)
gives the matrix Γγ of ∇γ̇ as Γγ = −Γ1. Hereof, applying Theorem 10.1, we
see that a frame {E′

i} on γ(J) normal for ∇γ̇ has on γ(J) ∩ U1 basic vectors
E′

i|γ(s) = Aj
i (γ(s)) ∂

∂xj

∣∣
γ(s)

for s ∈ J1 := {σ|σ ∈ J, γ(σ) ∈ U1} � s0 with

A(γ(s)) = Y (s, s0;−Γ1 ◦ γ)A0 (10.15)

which, up to notation, coincides with the matrix (II.3.22) on page 97 transforming{
∂

∂xi

∣∣
γ(J)

}
into a frame on γ(J) normal for ∇. So, by Theorem II.3.1, locally, i.e.,

on γ(J1), every frame {E′
i} normal for ∇γ̇ is a restriction along γ (more precisely,

to γ(J1)) of a frame normal for ∇ along γ. �
In short, admitting some abuse of the language, we can say that the frames

normal along a path for a linear connection are normal for the generated by it
covariant derivative along paths and vice versa.

One should have in mind a significant difference between the normal frames
provided by Theorem 10.1 for ∇γ̇ and the ones provided by Theorem II.3.1 along
γ for ∇: the former normal frames are global, i.e., defined along the whole path γ,
on the set γ(J), while the latter ones are local, i.e., defined only on a neighborhood
in γ(J) of each point in γ(J).
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Now we turn our attention to the ‘global’ case.

Definition 10.3. A frame {Ei} defined on a subset U ⊆ M or on a larger set
(if U 
= M) is called normal on U for a derivation D along paths if for every
C1 injective path γ : J → U lying entirely in U the restricted frame {Ei|γ(J)} is
normal along γ for the derivation Dγ , D : γ → Dγ . In particular, a frame normal
on M for D is called simply normal for D.

Proposition 10.2. A derivation along paths admits frames normal on U ⊆ M if
and only if on U it is a covariant derivative along paths induced by some linear
connection for which frames normal on U exist.

Proof. Suppose, a derivation D along paths admits a frame {E′
i} normal on U .

Let {Ei} be a frame on U and A = [Aj
i ] : U → GL(dimM, K) be defined via

the expansion E′
i|γ(s) = Aj

i (γ(s))Ej |γ(s). By Theorem 10.1, the matrix Γ(s; γ) of
D along arbitrary path γ : J → U in U and the matrix-valued function A are
connected by (10.11) or, equivalently, satisfy (10.12). Hence, from (10.12), we get

Γ(s; γ) = −dA(γ(s))
ds

A−1(γ(s)) = −Ek(A)|γ(s)γ̇
k(s)A−1(γ(s))

where γ̇k are the components of γ̇ in {Ek}. Therefore the matrix Γγ of Dγ in
{Ek|γ(J)} is (10.10) with

Γk : p �→ Γk(p) = −(Ek(A))|pA−1(p). (10.16)

Since a simple verification shows that these matrices Γk transform according
to (I.5.3), they are matrices of the coefficients of a linear connection ∇ which,
due to Γ(s; γ) = Γk(γ(s))γ̇k(s), is such that Dγ = ∇γ̇ , i.e., the covariant deriva-
tive along paths generated by ∇ coincides with the initial derivation D along paths.
As {E′

i} is normal for D, in it is fulfilled 0 = Γ′(s; γ) = Γ′
k(γ(s))γ̇′ k(s) for arbitrary

γ : J → U . Hereof Γ′
k(p)γ̇′ k(s0) = 0 for every path γ : J → U with γ(s0) = p ∈ U

for some s0 ∈ J which implies Γ′
k|U = 0 and, consequently, {E′

i} is normal on U
for ∇.

Conversely, suppose Dγ = ∇γ̇ for a linear connection ∇ for which a frame
{E′

i} normal on U exist. Then the matrix Γγ of Dγ is given by (10.10) for all
frames {Ei} on U and all paths γ : J → U in U . In particular, for Ei = E′

i|γ(J),
we have Γ′

γ : γ(s) �→ Γ′(s; γ) = Γ′
k(γ(s))γ̇k(s) =

∑
k 0 × γ̇k(s) = 0 as Γ′

k = 0 in a
frame {E′

i} normal for ∇. Therefore Γγ = 0 in {E′
i} for every path γ lying entirely

in U and, by Definition 10.3, the frame {E′
i} is normal for Dγ = ∇γ̇ . �

The meaning of Proposition 10.2 is that the condition on a derivation D
along paths to admit frames normal on U ⊆ M is so strong that it reduces such
a derivation to a covariant derivative along paths admitting frames normal on
U . Since, by Proposition 10.1, such a covariant derivative along paths is always
generated by a linear connection ∇ admitting frames normal on U , all problems
concerning frames normal for D are reduced to similar problems for ∇, which we
have investigated earlier at length.
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11. On frames simultaneously normal
for two derivations

The problems concerning frames simultaneously normal for two derivations (along
vector fields, fixed vector field, paths, fixed path) are new and not investigated.
They arise naturally in some physical theories of gravity in which as a space-time
model is taken a differentiable manifold endowed with two, generally or initially
independent, linear connections. Such are the metric-affine theories [36, 92], the
ones with metric and background affine connection [93,94] in which there are two
connections, one of them being a Riemannian connection induced by some Rie-
mannian metric, as well as the theories with covariant and contravariant affine
connection [35, 95, 96] in which two different linear connections in the tangent
and cotangent bundles are used.1 The importance of the normal frames in these
theories comes from the fact that the normal frames are the mathematical tool
for description of the physical concept ‘inertial frame’ [97]. So, the equivalence
principle selects only linear connections possessing normal frames for the descrip-
tion of the pure gravity. Hereof, if two linear connections admit common normal
frame(s), they can serve together as a mathematical base for a gravitational theory,
otherwise only one of them should be selected for the same purpose.

Below in this section, we shall present some quite simple results whose main
moral is: frames simultaneously normal for two arbitrary and different derivations
(along vector fields, fixed vector field, paths, fixed path), generally, do not exist;
however, there are some exceptions. Physically, this can be interpreted as: in a
gravity theory with two linear connections only one of them can describe the
gravity directly, the other one may be connected with it but, generally, it should
be primary related to an object different from the gravity. However, there exist
exceptions from this conclusion which will be pointed.

The order of the rigorous results comes now.

Proposition 11.1. Let D(1) and D(2) be derivations along vector fields admitting
frames normal on U ⊆ M . There exist frames normal on U for D(1) and D(2)

simultaneously iff D(1)|U = D(2)|U .

Proof. Let {Ei} be a frame on (a neighborhood of) U and Γ(a)
k be the coefficients’

matrices of D(a), a = 1, 2. (Recall, by Proposition 3.1, the derivations are linear
on U .) A frame {E′

i = Aj
iEj} is normal for D(1) and D(2) iff (3.5) holds for Γ(a)

k

instead of Γk: (Γ(a)
k A + Ek(A))|U = 0, a = 1, 2, A = [Aj

i ] which is possible iff
Γ(1)

k |U = Γ(2)
k |U as A is non-degenerate which, in its turn, means D(1)|U = D(2)|U .

�

1In the last case, the two connections are equivalent to a single operator ∇ satisfying all con-
ditions in Definition I.3.1 but the condition (vii); see the definition of a mixed linear connection
on page 199.
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Proposition 11.2. Let D
(1)
X(1)

and D
(2)
X(2)

be derivations along fixed vector fields X(1)

and X(2), respectively, U ⊆ M , {Ei} be a frame on (a neighborhood of ) U , and
D

(1)
X(1)

and D
(2)
X(2)

admit frames normal on U . Then a frame {E′
i = Aj

iEj} normal

on U for D
(1)
X(1)

is also normal for D
(2)
X(2)

if and only if in {Ei} the components’

matrix of D
(2)
X(2)

on U is

Γ(2)
X(2)

|U = −[
(X(2)(A))A−1

]∣∣
U
, A = [Aj

i ].

Proof. The frame {E′
i = Aj

iEj} is normal for D
(2)
X(2)

if its matrix Γ(2)
X(2)

and A are

connected via (9.1) with X(2) and Γ(2)
X(2)

for X and ΓX , respectively, from where
the assertion follows. �

Proposition 11.3. Let U ⊆ M , X ∈ X(M) be fixed, D(1) and D
(2)
X be derivations

along vector fields and X, respectively, for which frames normal on U exist. Frames
normal on U for D(1) and D

(2)
X simultaneously exist if and only if D

(2)
X |U = D

(1)
X |U ,

where D(1) : X �→ D
(1)
X .

Proof. Let {Ei} be a frame on (a neighborhood of) U and {E′
i = Aj

iEj} be a
frame normal on U for D(1). Hereof A = [Aj

i ] satisfies (3.5), with the coefficients’
matrices Γ(1)

l of D(1) for Γl, which implies (Γ(1)
l X lA + X(A))|U = 0, X = XkEk.

The frame {E′
i} is also normal for D

(2)
X iff (9.1) holds, with the matrix Γ(2)

X of D
(2)
X

for ΓX , i.e., (Γ(2)
X A + X(A))|U = 0, which is equivalent to Γ(2)

X |U = (Γ(1)
l X l)|U ,

due to the previous equality, which, in its turn, expresses D
(2)
X |U = D

(1)
X |U in {Ei}.

�

Proposition 11.4. Let the derivations (1)Dγ and (2)Dγ along one and the same
C1 injective path γ : J → M admit normal frames (along γ). There is a frame
simultaneously normal for (1)Dγ and (2)Dγ if and only if (1)Dγ = (2)Dγ.

Proof. If {Ei} is a frame on γ(J) and the frame {E′
i = Aj

iEj} is normal for (1)Dγ ,
i.e., (10.12) holds for the matrices Γ(1)

γ of (1)Dγ in {Ei} for Γγ , Γγ = Γ(1)
γ , then

{E′
i} is also normal for (2)Dγ iff Γ(2)(s; γ) satisfies (10.12) with Γγ = Γ(2)

γ which,
due to the previous equality, is equivalent to Γ(1)

γ = Γ(2)
γ , i.e., to (1)Dγ = (2)Dγ . �

Proposition 11.5. Let (1)D and (2)D be derivations along paths which admit frames
normal on U ⊆ M . Then frames simultaneously normal for (1)D and (2)D exist
iff (1)D|U = (2)D|U .

Proof. The result follows from Proposition 11.4 for arbitrary path γ : J → M .
The assertion is also a consequence of Propositions 10.2 and 11.1 as any linear
connection is a (linear) derivation along vector fields. �
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Proposition 11.6. Frames simultaneously normal along γ : J → M for derivations
(1)D and (2)Dγ along paths and along γ, respectively, exist iff (2)Dγ = (1)Dγ, with
(1)D : γ �→ (1)Dγ .

Proof. See Proposition 11.4. �

Now we want to say a few words on the physical theories with covariant and
contravariant affine (linear) connections. As it was mentioned in Footnote 1 on
page 197, their mathematical base are the so-called linear connections of mixed
type [41, § 37], or, simply, mixed linear connections which are a generalization of the
linear connections. A mapping ∇ is called mixed linear connection (of type (1, 1)) if
it satisfies all conditions of Definition I.3.1 on page 21 except conditions (vii) in it.
If {Ei} and {Ei} are frames in T1

0(M) and T0
1(M) respectively,2 the contravariant

Γi
jk and the covariant Γj

i
k coefficients of ∇ in these frames are defined via the

expansions
∇Ek

Ej =: Γi
jkEi, ∇Ek

Ej =: Γi
j
k Ei. (11.1)

If K = Ki1...ir

j1...js
Ei1 ⊗ · · · ⊗ Eir ⊗ Ej1 ⊗ · · · ⊗ Ejs and X = XkEk ∈ X(M), then

∇XK = Xk∇Ek
K (11.2)

and the components of ∇Ek
K are (cf. (I.3.3))

(∇Ek
K
)i1...ir

j1...js
:= Ek

(
Ki1...ir

j1...js

)
+

r∑
a=1

Γia

lkK
i1...ia−1lia+1...ir

j1...js

+
s∑

b=1

Γjb

l
k Ki1...ir

j1...jb−1ljb+1...js
.

(11.3)

If we change the frame and coframe by means of non-degenerate matrix-valued
functions A = [Aj

i ] and B = [Bj
i ],

Ei �→ E′
i = Aj

iEj , Ei �→ E′ i = Bi
jE

j , (11.4)

the definitions (11.1) imply the following transformations of the coefficients of ∇
(cf. (I.3.5)):

Γi
jk �→ Γ′ i

jk =
(
A−1

)i

l
Am

j An
kΓl

mn +
(
A−1

)i

l
E′

k

(
Al

j

)
(11.5)

Γi
j
k �→ Γ′

i
j
k =

(
B−1

)l

i
Bj

mAn
kΓl

m
n +

(
B−1

)l

i
E′

k

(
Bj

l

)
(11.6)

which, if we introduce the coefficients’ matrices Γk :=
[
Γi

jk

]dim M

i,j=1
and Γk :=[

Γj
i
k

]dim M

i,j=1
of ∇, in a matrix form read (see the convention on the matrix indices

2The coframe {Ei} is not necessary to be dual to {Ei}.
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on page xii)

Γk �→ Γ′
k = Al

kA−1
[
ΓlA + El(A)

]
(11.5′)

Γk �→ Γ
′
k = Al

k

[
BΓl + El(B)

]
B−1 = Al

kB
[
ΓlB

−1 − El(B−1)
]
. (11.6′)

Hence Γi
jk are coefficients of (ordinary) linear connection which we shall denote

by (1)∇.
If B = A−1, which is equivalent to the requirement the action of the basic

vectors of the coframe {Ei} on the ones of the frame {Ei} to be invariant under
the change (11.4), i.e., Ei(Ej) = E′ i(E′

j),
3 then (11.6′) reduces to

Γk �→ Γ
′
k = Al

kA−1
[
ΓlA − El(A)

]
(11.7)

which implies that
(2)Γi

jk := −Γj
i
k, (2)Γk := −Γk (11.8)

are, respectively, coefficients and coefficients’ matrices of a (usual) linear connec-
tion which we denote by (2)∇.4

It is almost evident, ∇ is ordinary linear connection if and only if one, and
hence any, of the following equivalent equations holds:

(1)∇ = ∇, (1)∇ = (2)∇, (2)∇ = ∇, Γj
i
k + Γi

jk = 0, (11.9)

the last of which is valid in, e.g., a pair of dual frame and coframe. Consequently,
any one of these equalities is equivalent to the conditions (vii) in Definition I.3.1.

Definition 11.1. A pair
({Ei}, {Ei}) of a frame and coframe is called normal on

U ⊆ M for a mixed linear connection ∇ if in it all of the coefficients, contravariant
and covariant ones, of ∇ vanish on U .

Proposition 11.7. If only changes preserving the action of the coframe’s basic vec-
tors on the frame’s ones are considered,5 a mixed linear connection ∇ admits a
pair of such frame and coframe normal on U ⊆ M , if and only if on U ∇ reduces
to ordinary linear connection for which frames normal on U exist.

Proof. If
({Ei}, {Ei}), with Ei(Ej) constant under transformations of the frame

and coframe, is normal on U for ∇, then {Ei} is normal on U for (1)∇ and
(2)∇ simultaneously and, by Proposition 11.1, (1)∇|U = (1)∇|U which, as we said
above, implies ∇|U = (1)∇|U and {Ei} is normal on U for ∇|U . Conversely, if
∇ is ordinary linear connection and {Ei} is a frame normal on U for ∇, then
∇ = (1)∇ = (2)∇ and

({Ei}, {Ei}), with invariant Ei(Ej), is normal on U for ∇
considered as a mixed linear connection. �

3In particular such are all pairs of a frame and the coframe dual to it.
4In some sense [95, 96] (1)∇ (resp. (2)∇) is the ‘contravariant’ (resp. covariant) component

of ∇.
5In particular, such is the set of all dual frames and coframes.
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Consider now the general case, when the frame {Ei} and coframe {Ei} are
completely arbitrary, B 
= A−1. By virtue of (11.5′) and (11.6′), the pair

({E′
i =

Aj
iEj}, {E′ i = Bi

jE
j}) is normal on U ⊆ M for a mixed linear connection ∇ iff

the system of normal frame equations

(ΓkA + Ek(A))|U = 0 (11.10a)

(−ΓkB−1 + Ek(B−1))|U = 0 (11.10b)

holds. These equations are equivalent to the assertions that, respectively, the frame
{E′

i = Aj
iEj} is normal on U for the linear connection (1)∇ and the frame {E′′

i =
(B−1)j

iEj} is normal on U for the linear connection (2)∇.6 These very simple
results imply the following theorem.

Theorem 11.1. A mixed linear connection ∇ admits frames normal on U ⊆ M
if and only if the associated to it linear connections (1)∇ and (2)∇ admit frames
normal on U . Moreover, if frames normal on U for (1)∇ and (2)∇ exist and {Ei}
and {Ei} are respectively frame and coframe on (a neighborhood of ) U , then all
pairs of frames and coframes normal on U for ∇ are

({E′
i = Aj

iEj}, {E′ i =
Bi

jE
j}) where {E′

i} is a frame normal on U for (1)∇ and {E′′
i = (B−1)j

iEj} is a
frame normal on U for (2)∇.

Remark 11.1. For (1)∇ 
= (2)∇, the second part of the theorem does not con-
tradict to Propositions 11.7 and 11.1 because nowhere is imposed the additional
condition (1)∇ and (2)∇ to have a common frame normal on U , which could hap-
pen iff (11.10a) and (11.10b) have a common solution with respect to A and B−1

respectively.

From the above discussion the following conclusions can be made.
If pairs of frames {Ei} and coframes {Ei} for which the functions f j

i :=
Ej(Ei) are invariant under the change (11.4) are considered, a mixed linear con-
nection does not admit normal frames unless it is an ordinary linear connection for
which normal frames exist; in particular, this is true if only pairs of dual frames
and coframes, for which f j

i = δj
i , are taken into account.

If the considered frames and coframes are completely arbitrary, with no ad-
ditional conditions on them imposed, then all problems concerning normal frames
for a mixed linear connection ∇ are reduced to the same problems but for the
linear connections (1)∇ and (2)∇.

Consequently, in the both cases, any problem concerning normal frames for
mixed linear connections can equivalently be (re)formulated in terms of similar

6From here immediately follows an independent proof of Proposition 11.7: If E′ i(E′
j) =

Ei(Ej), then B−1 = A is a solution of (11.10b), so E′′
i = E′

i and hence {E′
i} is a common

normal frame for (1)∇ and (2)∇ which, by Proposition 11.1, implies (1)∇ = (2)∇. The last
result yields ∇ = (1)∇ = (2)∇.
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problem for ordinary linear connections. Since the last range of problems is ex-
plored at length in this book, we shall stop here with the investigation of the mixed
linear connections from the view-point of normal frames.

Exercise 11.1. Reformulate mutatis mutandis the definitions and results of this
section for the case of (normal) local coordinates or (normal) charts.

12. Normal frames for linear connections (review)

Since the linear connections find a far more numerous applications than the other
derivations (along vector fields), in the present section are summarized the main
ideas and are discussed the results concerning normal frames for linear connections
which are spread over the preceding material in this chapter.

First of all, recall that a derivation along vector fields, which is linear on the
whole manifold M , is a linear connection on M . More generally, a derivation D
along vector fields which is linear on some subset(s) of M coincides on it (them)
with a linear connection whose coefficients on this (these) set(s) coincide with the
ones of D. This fact allows the results on normal frames for derivations along
vector fields to be applied directly for ‘local’ linear connections, i.e., ones that are
defined on a proper subset of the whole manifold M .

In Chapter II, a complete description of the frames and coordinates normal
on submanifolds of M and along paths in M for linear connections defined on the
whole manifold M was presented. In the present chapter (Sections 3–7) analogous
results for derivations D along vector fields were proved. Frames normal on U ⊆ M
for D exist iff D|U = ∇|U where ∇ is linear connection on U or on a larger set (if
U 
= M) and ∇ admits frames normal on U ; moreover, if such ∇ exists, all frames
normal on U for D are normal on U for ∇ and vice versa. Reversing the situation,
we have

Assertion 12.1. If ∇ is a linear connection defined on U , then all problems con-
cerning the frames normal on U ′ ⊆ U for ∇, if any, are equivalent to the same
problems for a derivation D along vector fields such that D|U = ∇|U and D is not
linear everywhere on M\U , i.e., outside U (if U 
= M).

From here an essential conclusion follows.

Conclusion 12.1. The linear connections defined on M (resp. on subsets of M) are
globally (resp. locally) the only derivations along vector fields for which frames
normal on M (resp. on the corresponding subsets of M) could exist.

As we proved, normal frames always exist at a single point or along given
(locally injective) path; on submanifolds of dimension at least two, normal frames
exist as an exception iff some additional conditions, derived here, are satisfied.

In Section 8, we studied problems devoted to frames normal along (locally
injective) mappings like f : N → M , N and M being manifolds, for derivations
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D along vector fields. The main results are expressed by Theorem 8.4, the first
assertion of which can be restated as (see also Theorems 7.1 and II.5.2): A deriva-
tion D along vector fields admits frames normal along locally injective mapping
f : N → M if and only if for every (dimN)-dimensional submanifold N ′ of N such
that f |N ′ is injective, the restriction of D to f(N ′) (i.e., to T 1(f(N ′))) coincides
with some linear connection (possibly restricted to f(N ′)) for which frames nor-
mal on f(N ′) exist. Therefore the exploration of frames normal along f for D can
equivalently be reformulated in terms of linear connections. Reversing, ones again,
the situation, we get

Assertion 12.2. If ∇ is a linear connection, all problems regarding frames normal
along f for ∇ are equivalent to the same problems for a derivation D along vector
fields such that D|f(N ′) = ∇|f(N ′) and D is not linear on M\f(N ′).

Consequently a conclusion similar to the above one can be made.

Conclusion 12.2. Locally the linear connections are the only derivations along
vector fields for which frames normal along locally injective mappings exist. If
dimR N = 0, 1, then such frames always exist, otherwise some additional conditions
must be satisfied for their existence.

The only case, when the linear connections are not ‘selected’ from the view-
point of normal frames or coordinates, is the one for derivations along fixed vector
field (Section 9). This is not surprising, on the opposite such a result is quite
natural as the linear connections are special type of derivations along (arbitrary)
vector fields, not along fixed vector field. Of course, all results of Section 9 are
completely valid for every covariant derivative ∇X along fixed vector field X .1 We
hope that they can be useful in theoretical physics where derivatives with respect
to a fixed vector X find applications. The role of X can be played by a number of
vectorial physical quantities, for instance it could be the velocity field of a fluid,
some force field, the (four-)potential of an electromagnetic field, etc.

Since the derivations along a fixed path γ : J → M can be considered as a
suitable restriction of special kind of derivations along a fixed vector field X with
Xγ(J) = γ̇, the just said for such derivations is valid mutatis mutandis for deriva-
tions along a fixed path. The derivations along a fixed path always admit frames
normal along that path (Theorem 10.1), in particular this is true for the covari-
ant derivative ∇γ̇ along γ generated by some linear connection ∇. An interesting
result is the coincidence of the frames normal along γ for ∇γ̇ and for ∇ (Propo-
sition 10.1). As derivatives like ∇γ̇ often arise in physics, where γ̇ is interpreted
as a velocity of a (point) particle moving along γ, it is possible that the results of
Section 10 could find suitable physical applications.

If derivations along arbitrary paths are considered, then, as one can expected,
such derivations admit normal frames iff they are covariant derivatives generated

1Following the terminology of Section 2 (see, in particular, Definition 2.3), one can call ∇X

a linear connection along X: a linear connection ∇ is a derivation along vector fields which is
linear at every point and ∇X is the value of ∇ at X (see Definition I.3.1).
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by linear connections for which normal frames exist (Proposition 10.2). This re-
veals, once again, the privileged role of the linear connections between the other
derivations along vector fields.

If one wants frames simultaneously normal for two derivations along vector
fields (resp. along paths) to exist, then these derivations must (locally) coincide
(according to Proposition 11.1 (resp. 11.5)) and, consequently, they are globally
or locally identical linear connections (resp. identical covariant derivatives along
paths) (see Proposition 10.2) induced by some linear connection (see also Propo-
sition 10.1).

By Theorem 11.1, all problems regarding pairs of a frame and coframe nor-
mal for a mixed linear connection are equivalent to similar ones for a pair of linear
connections (its ‘contravariant’ and ‘covariant’ components). If these linear con-
nections admit normal frames, the pairs of a frame and coframe normal for the
mixed linear connections exist. It is important to be noted, such pairs of a frame
and coframe for a mixed linear connection, which is not (ordinary) linear connec-
tion, may exist if no additional conditions on the employed frames and coframes
are imposed, which is a highly unusual situation. Practically everywhere, the con-
sidered frames {Ei} and coframes {Ei} are supposed to be dual, Ei(Ej) = δi

j ,
or such that the functions f i

j := Ei(Ej) to be invariant under changes of the
frames and coframes. If this is the case, then pairs of a frame and coframe nor-
mal for a mixed linear connection may exist if it is an ordinary linear connection
(Proposition 11.7).

13. Examples

In the previous sections, we have demonstrated that different problems concerning
frames normal for derivations along (arbitrary) vector fields and paths are more or
less reduced to similar problems for suitable linear connections. For that reason,
the reader is referred to Sections I.7 and II.6 for instances of normal frames of this
kind for linear connections.

Below will be presented several examples of frames normal for derivations
along fixed vector field or fixed path. As it was mentioned earlier, these cases have
no analogues in the theory of frames normal for linear connections (along arbitrary
vector fields).

Example 13.1 (Covariant derivatives). If ∇ is a linear connection and X is a fixed
vector field on a manifold M , then ∇X is a derivation along X whose coefficients
in a frame {Ei} are ΓX

i
j = Γi

jkXk (see Proposition 2.2), where Γi
jk are the

coefficients of ∇ in {Ei}.
Let M be of class C1 and p0 ∈ M . If Xp0 = 0, then all frames/coordinates in

a neighborhood of p0 are normal for ∇X at p0 as ΓX
i
j(p0) = 0. Suppose Xp0 
= 0.

Then, in the notation and suppositions of Theorems 9.1 or 9.2, all respectively
frames {E′

i = Aj
iEj} and coordinate systems {zi} defined on a neighborhood of
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p0 and normal at p0 are such that (see (9.8) and (9.13))

A(x)(p) = A
(x)
0 −

∑
k

Xk
p0

[
Γi

jk(p0)
]dim M

i,j=1
A

(x)
0 [x1(p) − x1(p0)]

+
dim M∑
k=2

A
(x)
k [xk(p) − xk(p0)] + A

(x)
kl (p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (13.1)

zi(p) = ai + ai
j [x

j(p) − xj(p0)] + ai
lX

j
p0

Γl
kj(p0)[xk(p) − xk(p0)][x1(p) − x1(p0)]

+
dim M∑
j,k=2

ai
jk[xj(p) − xj(p0)][xk(p) − xk(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)]. (13.2)

Similarly, applying Theorem 9.3 or Proposition 9.4, one can describe the
frames or coordinates, respectively, (locally) normal for ∇ along a fixed path.

Example 13.2 (Lie derivatives). The Lie derivative L (see Example 2.1 and Sub-
section IV.13.3 below) is a fundamental derivation along vector fields on any C1

manifold [11]. If X ∈ X1(M), the coefficients of the Lie derivative LX along (with
respect to) X are defined by

LXEi =: ΓX
j
iEj

in a frame {Ei} and, due to (2.1), are (X = X iEi)

ΓX
i
j = −Ej(X i) + Ci

kjX
k. (13.3)

Consequently, L is nowhere linear derivation, precisely the only set U ⊆ M on
which ΓX

i
j = XkΓi

jk for some functions Γi
jk : U → K and all X , is the empty

set, U = ∅. Thus Proposition 3.1 implies the non-existence of frames normal for
L on any subset U ⊆ M .

Let now X be a fixed vector field. Suppose U ⊆ M and X |U = 0. If
Ej(X i)|U = 0 (which is equivalent LX to be the zero derivation on U), then
any frame or coordinate system defined on (a neighborhood of) U is normal for
LX on U . Otherwise, i.e., if Ej(X i)|p 
= 0 for some p ∈ U , frames/coordinates
normal on U for LX do not exist.

Let p0 ∈ U and Xp0 
= 0. Then, in the notation and suppositions of The-
orem 9.1 or 9.2, all respectively frames {E′

i = Aj
iEj} and coordinate systems

{zi} defined on a neighborhood of p0 and normal at p0 are such that (see (9.8)
and (9.13))

A(x)(p) = A
(x)
0 − [

(−Ej(X i) + Ci
mjX

m)|p0

]dim M

i,j=1
A

(x)
0 [x1(p) − x1(p0)]

+
dim M∑
k=2

A
(x)
k [xk(p) − xk(p0)] + A

(x)
kl (p)[xk(p) − xk(p0)][xl(p) − xl(p0)] (13.4)
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zi(p) = ai + ai
j [x

j(p) − xj(p0)]

+ ai
l(−Ek(X l) + Cl

mkXm)[xk(p) − xk(p0)][x1(p) − x1(p0)]

+
dim M∑
j,k=2

ai
jk[xj(p) − xj(p0)][xk(p) − xk(p0)]

+ ai
jkl(p)[xj(p) − xj(p0)][xk(p) − xk(p0)][xl(p) − xl(p0)]. (13.5)

Similarly, applying Theorem 9.3 or Proposition 9.4, one can describe the
frames or coordinates, respectively, (locally) normal for L along a fixed path. For
instance, if the condition (9.15) is not valid for a fixed (regular, C1, and locally
injective) path γ : J → M , then all frames locally normal along γ are, in the
notation of Theorem 9.3 and its proof,

{
E′

i = Aj
i

∂
∂xi

}
, where the matrix-valued

function A = [Ai
j ] is given by (9.22), which in the particular case reads (see (13.3))

A(x−1(s, σ, t)) = A0(x−1(s, σ0, t))

− dτγ(s)(σ)
dσ

∣∣∣
σ=σ0

[
(−Ej(X i) + Ci

kjX
k)|γ(s)

]dim M

i,j=1
A0(γ(s))(σ − σ0)

+ B(x−1(s, σ, t))(σ − σ0)2. (13.6)

Example 13.3 (Tensor fields of type (1, 1)). As we said in Example 2.1, a tensor
field S of type (1, 1) on a manifold M can be considered as a derivation. Hence
S : X(M) � X �→ S ∈ T1

1(M) is a derivation along (relative to) vector fields; it
can be called (generalized) Frenet-Serret derivative due to the considerations in
Example 13.6 below. If X is a vector field and {Ei} is a frame, then (2.2) yields
the following coefficients of S (considered as a derivation):

ΓX
i
j = Si

j . (13.7)

Since the coefficients of S along X are independent of X , Proposition 3.1 implies
a non-existence of frames/coordinates normal for S on any subset (unless S = 0).

However, if we consider X as an arbitrarily fixed vector field, frames or coor-
dinates normal for S exist on any subset, according to the results of Section 9. For
instance, Theorems 9.1 and 9.2 (resp. 9.3 and Proposition 9.4) with respectively
ΓX = [Si

j ] and ΓX
i
j = Si

j give the complete (local) description of all frames and
coordinates, respectively, normal at a single point (resp. along a path).

If p0 ∈ M , X is fixed and Xp0 
= 0, then Theorem 9.4 says that there is a
neighborhood U of p0 on which a frame

{
E′

i = Aj
i

∂
∂xj

}
is normal for S iff (see the

notation in Theorem 9.4)

A(p) = Y
(
x1(p), x1(p0);−

[
Si

j(x
−1( · , x2(p), . . . , xdim M (p)))

]dim M

i,j=1

)
× A0

(
x2(p), . . . , xdim M (p)

)
, (13.8)
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where Y is the solution of the initial-value problem

∂Y

∂x1

∣∣∣
p

= −[
Si

j(x
−1( · , x2(p), . . . , xdim M (p)))

]dim M

i,j=1
Y, Y |x1(p)=x1(p0) = 1.

(13.9)

Example 13.4 (General derivations and particular cases). As we know from Defi-
nition 2.3, any derivation D along vector fields is a sum of the Lie derivative and a
mapping S : X(M) → T1

1(M) assigning a tensor field SX of type (1, 1) to a vector
field X ; the choice SX = ΣX , with ΣX defined by (2.4), corresponds to a linear
connection ∇. According to (2.7), the coefficients of D and their matrix (at X)
are

ΓX
i
j = (SX)i

j − Ej(X i) + Ci
kjX

k (13.10)

ΓX =
[
(SX)i

j − Ej(X i) + Ci
kjX

k
]dim M

i,j=1
. (13.11)

Consequently, if X is fixed, frames and/or coordinates normal for D on some subset
can be found by applying the results of Section 9, precisely by substituting in them
the equations (13.10) and (13.11). We are not going to write the corresponding
explicit expressions as the mentioned substitution is a trivial technical task.

Suppose on a manifold M is given a derivation DX along a fixed vector field
X and a linear connection ∇. As a result of (2.3) and Example 2.2, we can write
the representations

DX = LX + SX (13.12a)
DX = ∇X + SX − ΣX . (13.12b)

The former equality (which is independent of the existence of ∇) is suitable for
general mathematical considerations, while the latter one finds applications in
some physical applications.

Here is a list of four derivations along fixed vector field X based on the
decompositions (13.12):

DF-W = ∇X − 2QX (Fermi-Walker derivative) (13.13a)

DF = ∇{}
X − 2Q̄X (Fermi derivative) (13.13b)

DT = LX + θδ (Truesdell derivative) (13.13c)

DJ = ∇{}
X − ω (Jaumann derivative), (13.13d)

where δ is the unit tensor field, the tensor fields QX , Q̄X and ω are type (1, 1)
and they, as well as the scalar function θ, are defined below in Examples IV.13.3–
IV.13.6 to which the reader is referred for further details.

Exercise 13.1. Calculate the coefficients of the derivations (13.13) and find all
frames/coordinates normal for them, e.g., at a given point.
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Example 13.5 (Fermi derivative along a path). Let DF be Fermi derivative, with
a representation (13.13b), on a C3 Riemannian manifold M with metric g. Its
restriction to a C2 path γ : J → M results into the Fermi derivative DF

γ along γ,

DF
γ = ∇{}

γ̇ − 2Q̄γ , (13.14)

where, according to Example IV.13.4 on page 297,(
Q̄γ

)i

j
= γ̇i(s)gjk(γ(s))(∇{}

γ̇ γ̇)k
∣∣
γ(s)

= γ̇i(s)gjk(γ(s))
(dγ̇k(s)

ds
+

{
k

lm

}∣∣∣
γ(s)

γ̇l(s)γ̇m(s)
) (13.15)

with the Christoffel symbols
{

i
jk

}
being defined by (I.4.14).

In particular, if γ is a geodesic, then Q̄γ = 0, by virtue of the equation of
geodesics (I.4.17), and hence

DF
γ = ∇{}

γ̇ for a geodesic path γ. (13.16)

Combining this result with Proposition 10.1, we can assert that all frames and/or
coordinates normal for the Fermi derivative along a (fixed) geodesic path γ coincide
with the ones for the Riemannian connection ∇{} along the path γ. For further
details on frames normal along a (geodesic) path for a linear connection, the reader
is referred to Section II.3; for a concrete instance of this kind, see Example II.6.8.

In the general case, the components of the Fermi derivative (13.14) are
(see (10.6))

Γi
j(s; γ) =

{
i

jk

}∣∣∣
γ(s)

−2γ̇i(s)gjk(γ(s))
(dγ̇k(s)

ds
+
{

k

lm

}∣∣∣
γ(s)

γ̇l(s)γ̇m(s)
)
. (13.17)

Theorem 10.1, with Γγ ◦ γ = [Γγ
i
j ◦ γ] defined via (13.17), gives a complete

description of all frames on γ(J) which are normal for DF
γ . If one needs holonomic

frames defined on a neighborhood of γ(J) and normal on γ(J), the results of
Lemma 10.1 should be applied.

Example 13.6 (Generalized Frenet-Serret derivative along path). The generalized
Frenet-Serret derivative DF-S

γ along a C1 path γ is a derivation along γ whose
coefficients in a frame {Ei} (along γ) are

Γi
j(s; γ) = Si

j(γ(s)) (13.18)

where Si
j(γ(s)) are the components at γ(s) in {Ei} of a tensor field S of type (1, 1).1

Comparing (13.18) and (13.7), we see that the latter reduces to the former one for
1The (usual) Frenet-Serret derivative is obtainable from (13.18) for a particular choice of

Si
j(γ(s)) as a function of the curvature(s) and torsion(s) of the path γ – see [98, eq. (6)].
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X = γ̇(s) at the point γ(s). In this sense, the derivation determined by a tensor
field of type (1, 1) can be called (generalized) Frenet-Serret derivation along vector
fields; respectively, the restriction to a path of this derivative along the vector field
tangent to the path results into the generalized Frenet-Serret derivative along that
path.

According to Theorem 10.1, all frames {E′
i = Aj

iEj} defined on γ(J) and
normal for DF-S

γ are such that

A(γ(s)) = Y (s, s0;−[Si
j ◦ γ])A0 (13.19)

with A0 being a constant non-degenerate matrix and Y being the solution of

dY

ds
= −[Si

j(γ(s))]Y Y |s=s0 = 1;

in particular, if Si
j(γ(s)) is independent of s, then Y = exp

(
Si

j(γ(s))(s − s0)
)
.

Holonomic frames
{

∂
∂yi

}
defined on a neighborhood of γ(J) and normal on γ(J)

for DF-S
γ can be constructed as pointed in the proof of Lemma 10.1, viz. one should

define Bi
j via (10.13) with E′

i for Ei, then the coordinates yi are given by (10.14).

14. Terminology 2: Normal and geodesic frames

We have called normal some special kinds of local bases, frames, charts, and coor-
dinates investigated in the present book. This needs some explanations which are
given below.

For symmetric linear connections, the local coordinates in which their com-
ponents vanish at a given point are called normal in [70, Chapter V, Section 3]
or in [20, § 11.6]. In [11, Chapter III, § 8] and in [71, p. 278] the local coor-
dinates normal at a point, introduced there via the exponential mapping (see
Subsection II.2.3) for linear connection (symmetric or not), are defined as such
for which the symmetric part of the connection’s components vanish at that point
(see Proposition II.2.3). Evidently, the latter definition includes the former one
as a special case. Note that the both definitions originate from the consideration
of the equation (I.3.22) of geodesic paths [11, 70, 71]. This is the primary reason
for calling these local coordinates geodesic (or Riemannian, or normal Rieman-
nian [20, § 11.5]) in the special case of a Riemannian manifold [51, § 42, p. 201],
where they are (sometimes) equivalently introduced via the condition that in them
the partial derivatives of the metric’s components vanish at a given point [51, § 42]
(cf. Proposition I.6.1).

The case of a symmetric linear connection is investigated in [19, Chapter III,
§ 7, pp. 156–158] (see the references therein too). There is made a distinction
between geodesic and normal at a point local coordinates. Geodesic coordinates
are called the ones in which the connection’s coefficients vanish at that point
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and normal coordinates are called the geodesic ones satisfying at the given point
equation (7.23) of [19, Chapter III, § 7] which, in particular, implies the van-
ishment at that point of the connection’s coefficients together with their sym-
metrized partial derivatives.1 (Note that the possibility for the existence of the
last type of coordinates is ensured by our (non-)uniqueness result expressed by
Proposition I.5.2 with which is compatible the mentioned equation; see also equa-
tions (I.6.11) and (II.3.10) and Proposition II.2.3.) Analogous opinion is shared
in [99, pp. 13–14].

It is known that the symmetric parts of the connection coefficients of arbi-
trary linear connection ∇ are directly linked with the equation (I.3.22) of geodesic
lines (curves, paths) and uniquely determine them [11, 19]. By our opinion, this
suggests the following convenient convention. Call normal or respectively geodesic
on a set U a local coordinate system (chart, frame), defined in a neighborhood of U ,
in which the local components of ∇ or respectively their symmetric parts vanish
on U . Thus, in the torsion free case, the concepts of normal and geodesic coordi-
nate system coincide. Generally a normal frame is geodesic, the converse being not
valid. In this sense, the normal coordinates described in [19, p. 158] are a special
type of (our) normal coordinates, specified by the additional conditions described
in this reference. These conditions are consistent with Proposition I.5.2. Note that
the proposed definition is in accordance with the special one used in [100].

If one adopts the suggested convention, then the generalization from linear
connections to arbitrary derivations D (along vector fields, fixed vector field, paths,
fixed path) of the tensor algebra over a manifold is evident: only the concept of
a normal frame is applicable because, generally, of some symmetry properties of
the components of D cannot be spoken about.2 This explains the terminology
accepted in the present monograph.

Let us mention that the so-defined normal frames on U for D have a con-
nection with a kind of generalized geodesic paths corresponding to D (cf. [101])
which will be discussed briefly in Section IV.15.

15. Conclusion

As the title of the present chapter indicates, it deals with different kinds of prob-
lems concerning frames (coordinates, charts) normal for derivations (along vector
fields, fixed vector field, paths, fixed path) of the tensor algebra over (vector fields
on) a differentiable manifold. Excluding the cases along fixed vector field or fixed
path, the general conclusion is that a derivation admits frames normal on some set
if and only if on it the derivation coincides with some linear connection (with the

1Cf. the derived here similar equations (I.6.11) and (II.3.10) for respectively the Riemannian
coordinates and Fermi coordinates.

2If D is derivation along arbitrary vector fields or paths and it admits frames normal on U ,
then one can speak of the symmetry properties of the coefficients of D on U as D is linear on U
(Proposition 3.1).
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same coefficients as the derivation on the set given) for which normal frames exist.
This fact singles out the linear connections, defined locally or globally, as the only
derivations which admit normal frames in the above sense. The last conclusion
is important for the theoretical physics and explains to a great extent why the
linear connections find so many applications in it. The reason is, from certain po-
sitions, quite simple: due to the equivalence principle, the ‘normal frames’ are the
mathematical concept for describing the physical notion of ‘inertial frame’ [97].

Most of the material in this chapter is new and written for the present book.
Exceptions are some results in Sections 4–7 which are taken from [76,80,83],1 but
the proofs are completely revised or new.

The main results obtained can be summarized as follows: Necessary and suf-
ficient conditions for the existence of frames or coordinates normal at a single
point, along locally injective paths or, more generally, mappings, and on subman-
ifolds for derivations along either arbitrary or fixed vector field or path are found.
Frames normal at a single point or along a path always exist. On other sets normal
frames exist iff some additional conditions are satisfied, exception being the case
of a derivation along a fixed vector field, when normal frames exist on every subset
of the manifold or, in particular, on the whole manifold. When normal frames or
coordinates exist, their complete constructive description is given.2

1These papers are revised journal versions of the earlier works [84–86], respectively.
2Exceptions are some cases of a derivation along fixed vector field, in which complicated

systems of partial differential equations arise.



Chapter IV

Normal Frames
in Vector Bundles

The the- ory of lin-
ear transports along paths in vector bun-

dles, generalizing the parallel transports gen-
erated by linear connections, is developed. The normal

frames for them are defined as ones in which their matri-
ces are the identity one. A number of results, including
theorems of existence and uniqueness, concerning normal
frames are derived. Special attention is paid to the case
when the bundle’s base is a manifold. The normal frames
are defined and investigated also for derivations along

paths and along tangent vector fields in the last
case. Frames normal at a single point or along

a given path always exist. On other subsets
normal frames exist only in the curva-

ture free case. The privileged role
of the parallel transports is

pointed out in this
context.

♥
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1. Introduction

The analysis of Corollary II.5.1 on page 123 reveals that the properties of the
parallel transport assigned to a linear connection, not directly the ones of the con-
nection itself, are responsible for the existence of frames normal on a submanifold
for the connection.1 This observation forms the groundwork of the idea the ‘nor-
mal’ frames to be defined directly for (parallel) transports without referring to the
concept of a (linear) connection (or some other derivation along vector fields). The
main obstacle for the realization of such an approach to ‘normal frames’ is that,
ordinary, the concept of a parallel transport is a secondary one, it is introduced
on the base of the concept of a (linear) connection. To the solution of the last
problem and the development of the mentioned approach to normal frames (in
finite-dimensional vector bundles) is devoted the present chapter of the book. As
we shall demonstrate below, the consistent realization of the above idea leads to
a completely new look on the ‘normal frames’, which is self-contained and incor-
porates as special cases all of the results of the preceding chapters.

The material in Sections 3–6 and 8 is based on the work [102] and the one
after them is practically new and written especially for the present book.2

In the present chapter is studied a wide range of problems concerning frames
normal for linear transports and derivations along paths in vector bundles and
for derivations along tangent vector fields in the case when the bundle’s base is
a differentiable manifold. In the last case, when tangent bundles are concerned,
the only general result, known to the author and regarding normal frames, is [23,
p. 102, Theorem 2.106].

The structure of this chapter is as follows.
Section 2 introduces some basic concepts from the theory of (fibre) bundles, in

particular of the one of vector bundles, required for the investigations in this chap-
ter. After the concepts of bundle, section, and vector bundle are fixed, a special at-
tention to the ones of liftings of paths and derivations along paths, which will play
an important role further, is paid. The tensor bundles over a manifold are pointed
as particular examples of vector bundles. Details on these and many other concepts
regarding (fibre) bundles, the reader can fined in the monographs [7,11,106–110].

Section 3 is devoted to the general theory of linear transports along paths in
vector fibre bundles which is a far reaching generalization of the theory of parallel
transports generated by linear connections.3 The general form and other prop-
erties of these transports are studied. A bijective correspondence between them
and derivations along paths is established. In Section 4, the normal frames are de-

1Here the situation is similar to the one described in the second paragraph of Section II.1
on page 74: the properties of the Christoffel symbols, not directly the ones of the Riemannian
metric generating them, are fully responsible for the existence of coordinates normal at a single
point in a Riemannian manifold.

2Although, some initial ideas and results are borrowed from the papers [103–105].
3This section is based on the early works [101, 105, 111–115] of the author. For some more

general results, see Chapter V.
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fined as ones in which the matrix of a linear transport along paths is the identity
(unit) one or, equivalently, in which its coefficients, as defined in Section 3, vanish
‘locally’. A number of properties of the normal frames are found. In Section 5 is
explored the problem of existence of normal frames. Several necessary and suf-
ficient conditions for such existence are proved and the explicit construction of
normal frames, if any, is presented.

Section 6 concentrates on, possibly, the most important special case of frames
normal for linear transports or derivations along smooth paths in vector bundles
with a differentiable manifold as a base. A specific necessary and sufficient condi-
tion for existence of normal frames in that case is proved. In particular, normal
frames may exist only for those linear transports or derivations along paths whose
(2–index) coefficients linearly depend on the vector tangent to the path along
which they act. Obviously, this is a generalization of the derivation along curves
assigned to a linear connection. Section 7 examplifies the theory in a case of line
bundles. Section 8 is devoted to problems concerning frames normal for derivations
along tangent vector fields in a bundle with a manifold as a base. Necessary and
sufficient conditions for the existence of these frames are derived. The conclusion
is made that there is a one-to-one onto correspondence between the sets of lin-
ear transports along paths, derivations along paths, and derivations along tangent
vector fields all of which admit normal frames.

In the first part of Section 9, based on [103], the concept of a curvature of a
linear transport along paths is introduced and some its properties are explored. In
its second part, relations between the curvature of a linear transports along paths
and the frames normal for them are studied. The main result is that only the cur-
vature free transports admit normal frames. The concept of a torsion of a linear
transport along paths in the tangent bundle over a manifold is introduced in Sec-
tion 10 (cf. the early paper [103]). Links between the torsion and holonomic normal
frames are investigated. The vanishment of the torsion is pointed as a necessary
and sufficient condition for existence of normal coordinates on submanifolds. If
such coordinates exist, their complete description is given.

Section 11 deals with parallel transports in the tangent bundles over mani-
folds and frames normal for these transports. It is shown that the parallel transport
assigned to a linear connection is a special kind of a linear transport in tangent
bundles. As a side result, an axiomatic definition of a parallel transport is ob-
tained, on the base of which a new definition of a linear connection, equivalent to
the usual one, is given. The flat parallel transports are pointed as the only linear
transports along paths in tangent bundles which transports admit normal frames.
The coordinates normal for flat and torsionless parallel transports are explicitly
presented.

Section 12 concerns a special type of normal frames in which the 3-index
coefficients, if any, of a linear transport along paths vanish.

Section 13 is similar to Section 11, but it deals with the interrelations between
different types of derivations along vector fields over a manifold and the linear
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transports along paths in the tangent bundle over it. As examples, particular
derivations or transports, such as Fermi-Walker, Jaumann, etc., are considered.

The aim of Section 14 is twofold. On one hand (Subsections 14.1–14.3), the
rigorous relations between the theory of linear transports along paths in vector
bundles and the one of parallel transports and connections in these bundles are
investigated. On the base of the axiomatic approach to the theory of parallel
transports, as presented in [23], we show how it (and hence the one of connections)
is incorporated as a special case in the general theory of linear transports along
paths. On another hand (Subsections 14.4 and 14.5), we demonstrate how the
results concerning normal frames and derived for linear connections on manifolds
and linear transports along paths are almost in extenso applicable to the theory
of parallel transports and connections on vector bundles.

In Section 15 is introduced the notion of autoparallel paths in manifolds
whose tangent bundle is endowed with a linear transport along paths. If this
transport is a parallel one, it is proved that the autoparallels coincide with the
geodesics of the linear connection generating the transport.

Section 16 gives an idea of the role of the linear transports along paths and
normal frames in a fibre bundle formulation of quantum mechanics.

The chapter ends with some notes in Section 17.

All fibre bundles in this chapter are vectorial ones. The base and total bundle
space of such bundles can be general topological spaces. However, if some kind of
differentiation in one/both of these spaces is needed to be introduced (considered),
it/they should possess a smooth structure; if this is the case, we require it/they
to be smooth, of class C1, differentiable manifold(s). Starting from Section 6,
the base and total bundle space are supposed to be C1 manifolds. Sections 3–5
do not depend on the existence of a smoothness structure in the bundle’s base.
Smoothness of the bundle space is partially required in Sections 2–5.4

2. Vector bundles

The purpose of the present section is the introduction of some simple basic concepts
of the theory of (fibre) bundles, in particular of vector bundles, on which this
chapter rests.

The most general intuitive idea of a bundle is the one of an object consisting
of a set (space) to each point of which is ‘attached’ some other set (space). Hence
a bundle should be thought as a mapping whose values are some sets, the attached
sets. On the sets forming a bundle may be imposed a large number of ‘reasonable’
conditions whose goal is particular bundles to be obtained for the exploration of
more or less concrete problems; for instance, the sets can be topological spaces, in

4The bundle space is required to be a C1 manifold in Section 2 (starting from Definition 2.1), in
Definition 4.1′ , in Proposition 4.1–4.2, if (4.1c) and (4.1d) are taken into account, in Theorem 5.2,
and in Proposition 5.6.
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particular manifolds. Often the attached sets are vector (linear) spaces, in which
case the bundle is called vector bundle. For quite a big class of problems, the notion
of a ‘smooth’ bundle is required: the idea is when one ‘moves’ in the initial set,
the corresponding attached sets (or selected points in them) to change smoothly.

A particular example of a smooth vector bundle is the tangent bundle to a
manifold M : its basic set (space) is the manifold M itself and the set attached at
p ∈ M is the space Tp(M) tangent to M at p. Similar structure have the tensor
bundles of different types over M . If f : M → K is a smooth function, a completely
trivial smooth bundle structure over M arises by assigning to each p ∈ M the value
f(p) of f at p.

2.1. Basic definitions

A bundle is a triple (E, π, B) of sets E and B, called (total) bundle space and
base (space) respectively, and (generally) surjective mapping π : E → B, called
projection.1 For every b ∈ B, the set π−1(b) is called the fibre over b.

If X ⊆ B, the bundle (E, π, B)|X := (π−1(X), π|π−1(X), X) is called the
restriction to X of a bundle (E, π, B).

A section of the bundle (E, π, B) is a mapping σ : B → E such that π ◦ σ =
idB, i.e., σ : b �→ σ(b) ∈ π−1(b). The set of sections of (E, π, B) is denoted by
Sec(E, π, B).

If E and B are topological spaces, which is the most widely considered case,
the bundle (E, π, B) is called topological. In this case in the definition of a bundle
is included the bundle property : there exists a (topological) space E such that, for
each b ∈ B, there is an open set (‘directory space’) W � b in B and homeomor-
phism (‘decomposition function’) φW : W × E → π−1(W ) of W × E onto π−1(W )
satisfying the condition (π ◦ φW )(w, e) = w for w ∈ W and e ∈ E . Besides, if
the restriction φW |b : {b} × E → π−1(b), b ∈ B, is homeomorphism, the bundle
property is called local triviality, E is called (typical, standard) fibre of the bundle,
and the fibre π−1(b) is homeomorphic to E for every b ∈ B.

A vector bundle is a locally trivial bundle (E, π, B) such that: (i) the fibres
π−1(b), b ∈ B, and the standard fibre E are (linearly) isomorphic vector spaces
and (ii) the decomposition mappings φW and their restrictions φW |b are (linear)
isomorphisms between vector spaces. The dimension of E , dim E = dimπ−1(b) for
all b ∈ B, is called the (fibre) dimension of the vector bundle, resp. it is called
(dim E)-dimensional. Here the vector spaces are considered over the field K = R, C.

All bundles in this chapter are supposed to be vectorial.

1The notation (E, π, B) for a bundle comes from the one E
π−−−−−→ B for a mapping π from

E on B.
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2.2. Liftings of paths

A lifting2 (in a vector bundle (E, π, B)) of a mapping g : X → B to E, X being
a set, is a mapping g : X → E such that π ◦ g = g. The set of all liftings of a
mapping g : X → B will be denoted by Liftg(E, π, B) := {g : X → E|π◦g = g}. In
particular, the liftings of the identity mapping idB of the base B are called sections
and their set is Sec(E, π, B) := Lift idB (E, π, B) = {σ|σ : B → E, π ◦ σ = idB}
(see Subsection 2.1).

Let P(A) := {γ|γ : J → A} and PLift(E, π, B) := {λ|λ : P(B) → P(E), (π ◦
λ)(γ) = γ for γ ∈ P(B)} be respectively the set of paths in a set A and the set of
liftings of paths from B to E.3 The set PLift(E, π, B) is: (i) A natural K-vector
space if we put (aλ + bµ) : γ �→ aλγ + bµγ for a, b ∈ K, λ, µ ∈ PLift(E, π, B), and
γ ∈ P(B), where, for brevity, we write λγ for λ(γ), λ : γ �→ λγ ; (ii) A natural
left module with respect to K-valued functions on B: if f, g : B → K, we define
(fλ + gµ) : γ �→ (fλ)γ + (gµ)γ with (fλ)γ(s) := f(γ(s))λγ(s) for γ : J → B and
s ∈ J ; (iii) A left module with respect to the set PF(B) := {ϕ|ϕ : γ �→ ϕγ , γ : J →
B, ϕγ : J → K} of functions along paths in the base B: for ϕ, ψ ∈ PF(B), we set
(ϕλ + ψµ) : γ �→ (ϕλ)γ + (ψµ)γ where (ϕλ)γ(s) := (ϕγλγ)(s) := ϕγ(s)λγ(s).

If we consider PLift(E, π, B) as a K-vector space, its dimension is equal to
infinity. If we regard PLift(E, π, B) as a left PF(B)-module, its rank is equal to
the dimension of (E, π, B) (i.e., to the dimension of the fibre(s) of (E, π, B)). In
the last case, a basis in PLift(E, π, B) can be constructed as follows (cf. [116,
Proposition 2.1.14] in a case of sections of a vector bundle).

For every path γ : J → B and a point s ∈ J , choose a basis {ei(s; γ)|i =
1, . . . ,dimπ−1(γ(s))} in the fibre π−1(γ(s)); if the total space E is a Cr manifold,
we suppose ei(s; γ) to have a Cr dependence on s. Define liftings along paths
êi ∈ PLift(E, π, B) by êi : γ �→ êi|γ := ei( · ; γ), i.e., êi|γ : s �→ êi|γ(s) := ei(s; γ).
The set {êi} is a basis in PLift(E, π, B), i.e., for every λ ∈ PLift(E, π, B) there
are λi ∈ PF(B) such that λ =

∑
i λiêi and {êi} are PF(B)-linearly independent.

Actually, for any path γ : J → B and number s ∈ J , we have λγ(s) ∈ π−1(γ(s)),
so there exists numbers λi

γ(s) ∈ K such that λγ(s) =
∑

i λi
γ(s)ei(s; γ). Defining

λi ∈ PF(B) by λi : γ �→ λi
γ with λi

γ : s �→ λi
γ(s), we get λ =

∑
i λiêi; if ei( · ; γ)

is of class Cr , so are λi
γ . The PF(B)-linear independence of {êi} is an evident

corollary of the K-linear independence of {ei(s; γ)}. As we notice above, if E is
Cr manifold, we choose êi, i.e., êi|γ , to be Cr and, consequently, the components
λi, i.e., λi

γ , are of class Cr too.
Let (E, π, B) be a vector bundle of dimension n ∈ N, n < ∞, U ⊆ B,

and g : Q → B with Q 
= ∅. A frame on (over) U (resp. along g) is a set
{ei|i = 1, . . . , n} of n F (U)-linearly (resp. F (g(Q))-linearly) independent sections
of (E, π, B)|U (resp. of (E, π, B)|g(Q)), where F (U) := {f : f : U → K} is the

2For detail see, e.g., [108].
3Every linear transport L along paths (vide infra Section 3, in particular Definition 3.3)

provides a lifting of paths: for every γ : J → B fix some s ∈ J and u ∈ π−1(γ(s)), the mapping
γ �→ γs;u with γs;u(t) := Lγ

s→tu, t ∈ J is a lifting of paths from B to E.
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set of functions on U . Said differently, {ei} is a frame on U (resp. along g) if
ei ∈ Sec

(
(E, π, B)|U

)
(resp. ei ∈ Sec

(
(E, π, B)|g(Q)

)
) and, for every p ∈ U (resp.

p ∈ g(Q)), the set of vectors {ei|p} is a basis in π−1(p).

2.3. Derivations along paths

Let (E, π, B) be a vector bundle whose bundle space E is Cr, r ∈ N, manifold. A
lifting λ ∈ PLift(E, π, B) is said to be of class Ck, k = 0, 1, . . . , r, if in some (and
hence in any) Ck frame in PLift(E, π, B) its components are of class Ck along
paths in some set of paths, i.e., λ is of class Ck if λγ is a Ck path for a path γ
in that set. Obviously, not every path in B has a Ck lifting in E; for instance, all
liftings of a discontinuous path in B are discontinuous paths in E. The set of paths
in B having Ck liftings in E is π ◦Pk(E) := {π ◦ γ|γ ∈ Pk(E)}, with Pk(E) being
the set of Ck paths in E. Therefore, when talking of Ck liftings, we shall implicitly
assume that they are acting on paths in π ◦ Pk(E) ⊂ P(B). The discontinuous
paths in B are, of course, not in π ◦ Pk(E), so that they are excluded from the
considerations below.

Analogously, ϕ ∈ PF(B) is of class Ck if ϕγ is of class Ck for a path γ in
some set of paths. Denote by PLiftk(E, π, B), k = 0, 1, . . . , r, the set of Ck liftings
of paths from B to E and by PFk(B), k = 0, 1, . . . , r, the set of Ck functions along
paths in B.

If the base B is Cr′
, r′ ∈ N, manifold, we denote by Seck(E, π, B), k =

0, 1, . . . , r′, the set of Ck sections of the bundle (E, π, B).

Definition 2.1. A derivation along paths in (E, π, B) or a derivation of liftings of
paths in (E, π, B) is a mapping

D : PLift1(E, π, B) → PLift0(E, π, B) (2.1a)

which is K-linear,
D(aλ + bµ) = aD(λ) + bD(µ) (2.2a)

for a, b ∈ K and λ, µ ∈ PLift1(E, π, B), and the mapping

Dγ
s : PLift1(E, π, B) → π−1(γ(s)), (2.1b)

defined via Dγ
s (λ) :=

(
(D(λ))(γ)

)
(s) = (Dλ)γ(s) and called derivation along

γ : J → B at s ∈ J , satisfies the ‘Leibnitz rule’:

Dγ
s (fλ) =

dfγ(s)
ds

λγ(s) + fγ(s)Dγ
s (λ) (2.2b)

for every f ∈ PF1(B). The mapping

Dγ : PLift1(E, π, B) → P
(
π−1(γ(J))

)
, (2.1c)

defined by Dγ(λ) := (D(λ))|γ = (Dλ)γ , is called a derivation along γ.
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Let {ei} be a frame along paths γ, i.e., for any γ : J → B and s ∈ J ,
ei : (s; γ) �→ ei(s; γ) and {ei(s; γ)} is a basis in π−1(γ(s)) that can depend on s
and γ. The components4 Γi

j(s; γ) of a derivation D along paths (along γ at s in
{ei}) are defined via the expansion

Dγ
s êj =: Γi

j(s; γ)ei(s; γ), (2.3)

where êi : γ �→ ei( · ; γ) is a lifting of paths, generated by ei according to (2.8)
below, and the dimension of (E, π, B) is assumed to be finite. If λ ∈ PLift1(E, π, B)
has an expansion λ = λiêi, then the properties (2.2) imply the explicit local
expansion

Dγ
s λ =

∑
i

(dλi
γ(s)
ds

+ Γi
j(s; γ)λj

γ(s)
)
ej(s; γ). (2.4)

Hence the components of D in a given frame uniquely define it.
From the last equation, we get the explicit expansion for Dλ:

D(λ) = (λ̇i + Γi
jλ

j)êi (2.5)

where λ̇i, Γi
j ∈ PF(B) and êi ∈ PLift(E, π, B) are such that

λ̇i : γ �→ λ̇i
γ : s �→ dλi

γ(s)
ds

(2.6)

Γi
j : γ �→ Γi

j( · ; γ) : s �→ Γi
j(s; γ) (2.7)

êi : γ �→ ei( · ; γ) : s �→ ei(s; γ). (2.8)

Similarly, the derivation of λ along γ is

Dγ(λ) := (Dλ)(γ) = (λ̇i
γ + Γi

j( · ; γ)λj
γ)ei( · ; γ). (2.9)

If the frame {ei} is changed by means of a non-degenerate matrix-valued
function A = [Aj

i ], {ei(s; γ)} �→ {e′i(s; γ) = Aj
i (s; γ)ej(s; γ)}, from (2.3) and (2.2),

we see that the matrix Γ(s; γ) := [Γi
j(s; γ)] of D transform into

Γ′(s; γ) := [Γ′ i
j(s; γ)] = A−1(s; γ)Γ(s; γ)A(s; γ) + A−1(s; γ)

dA(s; γ)
ds

. (2.10)

Applying (2.3), one can easily prove that every system Γi
j ∈ PF(B) of func-

tions along paths, Γi
j : γ �→ Γi

j( · ; γ) : s �→ Γi
j(s; γ), which transform according

to (2.10), defines via (2.4) a derivation D along paths in (E, π, B). Combining this
result with the above one, we can assert the existence of a bijective correspondence

4In connection with the theory of normal frames (see Section 4 and further), it is convenient to
call Γi

j(s; γ) also (2-index) coefficients of Dγ . This agrees with the fact that Γi
j are coefficients

of some linear transport along paths (see below).
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between the set of functions {Γi
j} along paths with transformation law (2.10) and

the set of derivations along paths of a vector bundle (E, π, B).
The set PSec(E, π, B) of sections along paths of a bundle (E, π, B) con-

sists of mappings σ : γ �→ σγ assigning to every path γ : J → B a section
σγ ∈ Sec

(
(E, π, B)|γ(J)

)
of the bundle restricted to γ(J). Every (ordinary) section

σ ∈ Sec(E, π, B) generates a section σ along paths via σ : γ �→ σγ := σ|γ(J), i.e.,
σγ is simply the restriction of σ to γ(J); hence σα = σγ for every path α : Jα → B
with α(Jα) = γ(J). Every σ ∈ PSec(E, π, B) generates a lifting σ̂ ∈ PLift(E, π, B)
by σ̂ : γ �→ σ̂γ := σγ ◦ γ; in particular, the lifting σ̂ associated to σ ∈ Sec(E, π, B)
is given via σ̂ : γ �→ σ̂γ = σ|γ(J) ◦ γ.

If B is a manifold, every derivation D along paths generates a mapping

D : PSec1(E, π, B) → PLift0(E, π, B)

such that, if σ ∈ PSec1(E, π, B), then D : σ �→ Dσ = D(σ) where Dσ : γ �→ D
γ
σ

is a lifting of paths defined by D
γ
σ : s �→ (D

γ
σ)(s) := Dγ

s σ̂ with σ̂ being the
lifting generated by σ, i.e., γ �→ σ̂γ := σγ ◦ γ. The mapping D may be called
a derivation of C1 sections along paths. Notice, if γ : J → B has intersection
points and x0 ∈ γ(J) is such a point, the mapping γ(J) → π−1(γ(J)) given by
x �→ {Dγ

s (σ̂)|γ(s) = x, s ∈ J}, x ∈ γ(J), is generally multiple-valued at x0 and,
consequently, is not a section of (E, π, B)|γ(J).

If B is a C1 manifold and for some γ : J → B there exists a subinterval
J ′ ⊆ J on which the restricted path γ|J : J ′ → B is without self-intersections, i.e.,
γ(s) 
= γ(t) for s, t ∈ J ′ and s 
= t, we can define the derivation along γ of sections
over γ(J ′) as a mapping

Dγ : Sec1
(
(E, π, B)|γ(J′)

) → Sec0
(
(E, π, B)|γ(J′)

)
(2.11)

such that
(Dγσ)(x) := Dγ

s σ̂ for x = γ(s) (2.12)

where s ∈ J ′ is unique for a given x ∈ γ(J ′) and σ̂ ∈ PLift
(
(E, π, B)|γ(J′)

)
is given by σ̂ = σ|γ(J′) ◦ γ|J′ . Generally the mapping (2.11) defined by (2.12)
is multiple-valued at the points of self-intersections of γ, if any, as (Dγσ)(x) :=
{Dγ

s σ̂ : s ∈ J, γ(s) = x}. The so-defined mapping D : γ �→ Dγ is called a section-
derivation along paths.5 As we said, it is single-valued only along paths without
self-intersections.

Let D be a derivation along paths in a vector bundle (E, π, B), γ : J → B
be injective, D be the generated by D section-derivation along paths, and σ ∈
Sec1(E, π, B)|γ(J). As a consequence of (2.12) and (2.4), we have

(Dγσ)|γ(s) =
∑

i

[dσi(γ(s))
ds

+ Γi
j(s; γ)σj(γ(s))

]
ei(s; γ) (2.13)

5A particular example of a section-derivation along injective C1 paths is the derivation along
paths provided by Definition III.10.1. For details – see Remark III.10.1 and Subsection 13.1.
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where {ei(s; γ)} is a basis in π−1(γ(s)), σ(γ(s)) =: σi(γ(s))ei(s; γ), and Γi
j(s; γ)

are the components of D (or of D) in {ei}.
Generally a section along paths or lifting of paths does not define a (single-

valued) section of the bundle as well as to a lifting along paths there does not
correspond some (single-valued) section along paths. The last case admits one
important special exception, viz. if a lifting λ is such that the lifted path λγ is
an ‘exact topological copy’ of the underlying path γ : J → B, i.e., if there exist
s, t ∈ J , s 
= t for which γ(s) = γ(t), then λγ(s) = λγ(t), which means that if
γ has intersection points, then the lifting λγ also possesses such points and they
are in the fibres over the corresponding intersection points of γ. Such a lifting
λ generates a section λ ∈ PSec(E, π, B) along paths given by λ : γ �→ λγ with
λ : γ(s) �→ λγ(s). In the general case, the mapping γ(s) �→ λγ(s) for a lifting λ of
paths is multiple-valued at the points of self-intersection of γ : J → B, if any; for
injective path γ, this mapping is a section of (E, π, B)|γ(J). Such mappings will
be called multiple-valued sections along paths.

2.4. Tensor bundles

Over every differentiable manifold M exists a collection of natural bundles, viz. the
different tensor bundles with M as a base, uniquely related to the differentiable
structure of M .

The tangent bundle (T (M), π, M), called also bundle tangent to M , is a well
explored example of a tensor bundle over a manifold M . Its base is the manifold M
itself, the bundle space T (M) is the disjoint union of the spaces tangent to M (see
Subsection I.2.3), i.e., T (M) :=

⋃
p∈M Tp(M), and the projection π : T (M) → M

is defined by π(Xp) := p if Xp ∈ Tp(M). So the fibre of (T (M), π, M) over p ∈ M
is exactly the space tangent to M at p, π−1(p) = Tp(M). It is a trivial exercise to
be verified the equivalence

X ∈ X(M) ⇐⇒ X ∈ Sec(T (M), π, M),

i.e., the vector fields over a manifold are simply sections of its tangent bundle,
and, consequently,

X(M) = Sec(T (M), π, M).

Respectively, the sections along paths of the tangent bundle are mappings assign-
ing to a path γ : J → M a vector field over γ(J) etc.

Since each space Tp(M) is (dim M)-dimensional vector (linear) space, the tan-
gent bundle (T (M), π, M) is (dim M)-dimensional vector bundle for which Kdim M

can be taken as a (standard) fibre.
Similar to the tangent bundle is the cotangent bundle (T ∗(M), π∗, M) whose

bundle space is T ∗(M) :=
⋃

p∈M T ∗
p (M) and the projection π∗ is such that

π∗(ωp) := p if ωp ∈ T ∗
p (M) where T ∗

p (M) is the cotangent space to M at p
(see Subsection I.2.4).
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The tensor bundle (T r
s (M), πr

s , M) of type (r, s), r, s ∈ N ∪ {0} is a natural
generalization of the tangent and cotangent bundles. Its bundle space is the disjoint
union of the tensor spaces of type (r, s) over M ,

T r
s (M) :=

⋃
p∈M

Tp
r
s(M)

with Tp
r
s(M) being the tensor space of type (r, s) at p ∈ M (see Subsection I.2.5).

The projection πr
s : T r

s (M) → M is defined by

πr
s(Kp) := p for Kp ∈ Tp

r
s(M).

Therefore the dimension of (T r
s (M), πr

s , M) is (dim M)r+s = dimTp
r
s(M) and

K(dim M)r+s

can be taken as its standard fibre. The choices (r, s) = (1, 0) and
(r, s) = (0, 1) correspond to the tangent and cotangent bundles, respectively. Since
Tp

0
0 ≡ K, the tensor bundle of type (0, 0) is (M ×K, π0

0 , M) with π0
0(p, a) := p for

(p, a) ∈ M × K.

Obviously, the tensor fields over M are sections of the corresponding tensor
bundles and vice versa,

Tr
s(M) = Sec

(
T r

s (M), πr
s , M

)
.

The algebraic tensor bundle (T(M), π, M) on (over) a manifold M is also
an example of a bundle structure over manifolds. By definition, its bundle space
is the disjoint union of the tensor algebras over M , T :=

⋃
p∈M T p(M), and its

projection is such that π(Kp) := p if Kp ∈ T p(M) for p ∈ M , i.e., the fibre over p
is the tensor algebra at p, π−1(p) = T p(M). All tensor fields are specific (of type
(r, s)) sections of the algebraic tensor bundle.

One can expect the existence of a link between the derivations along vector
fields of the tensor algebra over M (see Definition III.10.1 on page 191) and the
derivations along paths of the tensor bundles over M . Since the former derivations
are (uniquely) defined only along injective paths, the mentioned connection could
be expressed via the section-derivations along paths of the tensor bundles over the
manifold M (see (2.11) and (2.12)).

Let D be a derivation along paths of T (M), γ : J → M be injective, and K
be a C1 tensor field(=section) of type (r, q) along γ. Locally, in some frame along
γ, the derivative Dγ(K) of K along γ is given by (III.10.7) in which Γi

j(s; γ) are
the components of D along γ at s ∈ J .

Let now D be a section-derivation along paths, generated by a derivation
along paths, in the tensor bundle (T r

q (M), πr
q , M). If K ∈ Tr

q(M), then, in the
tensor frame (I.2.41) induced by a frame {Ei}, equation (2.13), with K for σ and
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this frame for {ei}, reads6

(DγK)(γ(s)) =
∑

i1,...,ir
j1,...,jq

[dKi1,...,ir

j1,...,jq
(γ(s))

ds

+ Γi1,...,ir ,k1,...,kq

j1,...,iq,l1,...,lr
(s; γ)K l1,...,lr

k1,...,kq
(γ(s))

]
E

j1,...,jq

i1,...,ir
|γ(s). (2.14)

This expression is identical for every K with the one corresponding to the right-
hand side of (III.10.7) if and only if the components of the section-derivation D
have the form

Γi1,...,ir,k1,...,kq

j1,...,iq,l1,...,lr
(s; γ) =

( r∑
a=1

δi1
l1
· · · δia−1

la−1
Γia

la
(s; γ)δia+1

la+1
· · · δir

lr

) q∏
b=1

δkb

jb

−
( q∏

a=1

δia

la

) q∑
b=1

δk1
j1

· · · δkb−1
jb−1

Γkb
ib

(s; γ)δkb+1
jb+1

· · · δkq

jq
(2.15)

where Γi
l are the components of a (section-)derivation along paths in the tangent

bundle (T (M), π, M).
Thus we have proved that a derivation along vector fields of the tensor algebra

over a manifold M is equivalent to a set of (section-)derivations along paths, one
in each tensor bundle (T r

q (M), πr
q , M) with q, r ∈ N∪{0}, whose components have

in some (and hence in every) frame the form (2.15); the corresponding (section-)
derivation along paths in (T r

q (M), πr
q , M) being equal to the restriction of the

initial derivation along paths of T (M) to the bundle space T r
q (M) of the tensor

bundle of type (r, q).

Example 2.1. A particular example of the above derivations is provided by the one
generated by a linear connection ∇ over M . As we said earlier in Section III.10,
any linear connection ∇ generates along every C1 path γ a derivation ∇γ̇ along γ
(of the tensor algebra along γ), locally given via (III.10.5). Taking into account the
afore-said, we can assert that in the tensor bundle of type (r, q) every connection
∇ generates a derivation along paths with local coefficients (2.15) in which

Γi
j(s; γ) = Γi

jk(γ(s))γ̇k(s) (2.16)

where Γi
jk are the coefficients of ∇.

6Notice, for r = q = 0 equation (2.14) implies (DγK)(γ(s)) =
dK(γ(s))

ds
= γ̇(s)(K), i.e., on

scalar functions Dγ acts as ordinary directional derivative, as it should be.
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3. Linear transports along paths in vector bundles

In the majority of the mathematical literature, the concept of a connection (in
locally trivial differentiable bundles of class C1) is taken as a basic one and the
concept of a parallel transport is introduced by its means (see, e.g., [6, 10–13, 16,
28, 106, 117]). However, the opposite approach is also known [17, 23, 30–33]: in it
the ‘parallel transport’ is axiomatically defined and on its base the concept of a
‘connection’ is introduced as a secondary one.1 It seems that the earliest written
accounts on this approach are the ones due to Ü.G. Lumiste [30, Section 2.2]
and C. Teleman [17, Chapter IV, Section B.3] (both published in 1964), the next
essential steps being made by P. Dombrowski [31, § 1] and W. Poor [23].2 The
comparison and the features of the both approaches to the theory of connections
and parallel transports is not a subject of the present book,3 but, for completeness,
it is partially investigated in Section V.8.

In the present section, the concept of a ‘linear transport along paths in vec-
tor bundles’ is axiomatically defined and some its simple properties are derived.
This concept is a straightforward generalization of the one of a parallel transport
assigned to a linear connection (see Section 11) and some other transports defined
on its base (see Section 13). As we shall see later (see Definitions 11.2 and 11.3
and the comments after them), on its base independent, but equivalent, definition
of a parallel transport and linear connection can be given. Moreover, in Subsec-
tion 14.3 will be shown that the parallel transports in general vector bundles are a
special type of linear transports along paths, as a consequence of which the whole
theory of connections and covariant derivatives can be deduced from the theory
of linear transports in these bundles.

3.1. Definition and general form

Let (E, π, B) be a K-vector bundle4 with bundle (total) space E, base B, projec-
tion π : E → B, and homeomorphic fibres π−1(p), p ∈ B. Whenever some kind
of differentiation in E is considered, the bundle space E will be required to be
a C1 differentiable manifold. The base B is supposed to be a general topological
space in Sections 3–5 and from Section 6 onwards is required to be a C1 differen-
tiable manifold. By J and γ : J → B are denoted a real interval and path in B,

1A summary of the realization of this approach in [23] is presented in Subsection 14.1 below;
see also [118].

2The author of [31] states that his paper is based on unpublished lectures of prof. W. Rinow
in 1949. See also [23, p. 46] where the author claims that the first axiomatical definition of a
parallel transport in the tangent bundle case is given by prof. W. Rinow in his lectures at the
Humboldt University in 1949. Some heuristic comments on the axiomatic approach to parallel
transport theory can be found in [8, Section 2.1] too.

3For some details, see [115, 118] and the references given therein.
4Most of our results are valid for vector bundles over more general fields too but this is

inessential for the following.



226 Chapter IV. Normal Frames in Vector Bundles

respectively. The paths considered are generally not supposed to be continuous or
differentiable unless their differentiability class is stated explicitly.

Definition 3.1. A linear transport along paths in the bundle (E, π, B) is a mapping
L assigning to every path γ a mapping Lγ , transport along γ, such that Lγ : (s, t) �→
Lγ

s→t where the mapping

Lγ
s→t : π−1(γ(s)) → π−1(γ(t)) s, t ∈ J, (3.1)

called transport along γ from s to t, has the properties:

Lγ
s→t ◦ Lγ

r→s = Lγ
r→t, r, s, t ∈ J, (3.2)

Lγ
s→s = idπ−1(γ(s)), s ∈ J, (3.3)

Lγ
s→t(λu + µv) = λLγ

s→tu + µLγ
s→tv, λ, µ ∈ K, u, v ∈ π−1(γ(s)). (3.4)

Remark 3.1. Equations (3.2) and (3.3) mean that L is a transport along paths in
the bundle (E, π, B) (see Definition V.8.1 below or [114, Definition 2.1]), which
may be an arbitrary topological bundle, not only a vector one in the general
case,5 while (3.4) specifies that it is linear [114, equation (2.8)]. In the present
book, with an exception of Section V.8, only linear transports in vector bundles
will be explored.
Remark 3.2. Definition 3.1 is a generalization of the concept of ‘linear connection’
given, e.g., in [31, Section 1.2] (see especially [31, p. 138, axiom (L1)]) which prac-
tically defines the covariant derivative in terms of linear transports along paths
(see (3.29) below which is equivalent to [31, p. 138, axiom (L3)]). Our definition
is much weaker; e.g., we completely drop [31, p. 138, axiom (L3)] and use, if re-
quired, weaker smoothness conditions. An excellent introduction to the theory of
vector bundles and the parallel transports in them can be found in the book [23].
In particular, in this reference is proved the equivalence of the concepts parallel
transport, connection and covariant derivative operator in vector bundles (as de-
fined there). Analogous results concerning linear transports along paths will be
presented below. The detailed comparison of Definition 3.1 with analogous ones
in the literature is not a subject of this work.

Further, in Subsection 13.3 (see also Definition 3.1, [105, Definition 2.1]
and [105, Proposition 4.1]), it will be proved that special types of linear trans-

5The definition of a connection in a topological bundle (E, π, B) in [17, Chapter IV, Sec-
tion B.3] is, in fact, an axiomatic definition of a parallel transport. If we neglect the continuity con-
dition in this definition, it defines a connection in (E, π, B) as a mapping C : (γ, q) �→ C(γ, q) as-
signing to any continuous path γ : [0, 1] → B and a point q ∈ π−1(γ(0)) a path C(γ, q) : [0, 1] → E
such that C(γ, q)|0 = q and π ◦ C(γ, q) = γ. If I is a transport along paths in (E, π, B), then
C : (γ, q) �→ C(γ, q) : t �→ C(γ, q)|t = Iγ

0→t(q) defines a connection C in (E, π, B) in the sense
mentioned. Moreover, if this definition is broadened by replacing [0, 1] with an arbitrary and
not fixed closed interval [a, b], with a, b ∈ R and a ≤ b, then the converse is also true, i.e.,
C(γ, q)|t = Iγ

a→t(q), t ∈ [a, b], for some transport I. However, the proof of this statement is not
trivial; cf. similar considerations in Subsections 3.2 and 3.3 below, which deal with analogous
problems in vector bundles (with other definition of a parallel transport).



3. Linear transports in vector bundles 227

ports along paths are: the parallel transport assigned to a linear connection (co-
variant derivative) of the tensor algebra of a manifold [11, 19],6 Fermi-Walker
transport [62, 119], Fermi transport [62], Truesdell transport [120, 121], Jaumann
transport [122], Lie transport [19, 119], the modified Fermi-Walker and Frenet-
Serret transports [98], etc. Consequently, Definition 3.1 is general enough to cover
a list of important transports used in theoretical physics and mathematics. Thus
studying the properties of the linear transports along paths, we can make corre-
sponding conclusions for any one of the transports mentioned.7

From (3.2) and (3.3), we get that Lγ
s→t are invertible mappings and

(Lγ
s→t)

−1 = Lγ
t→s, s, t ∈ J. (3.5)

Hence the linear transports along paths are in fact linear isomorphisms of the
fibres over the path along which they act.

The following two propositions establish the general structure of linear trans-
ports along paths.8

Proposition 3.1. A mapping (3.1) is a linear transport along γ from s to t for every
s, t ∈ J if and only if there exist a vector space V , isomorphic with π−1(x) for
all x ∈ B, and a family {F (s; γ) : π−1(γ(s)) → V, s ∈ J} of linear isomorphisms
such that

Lγ
s→t = F−1(t; γ) ◦ F (s; γ), s, t ∈ J. (3.6)

Proof. If (3.1) is a linear transport along γ from s to t, then fixing some s0 ∈ J and
using (3.3) and (3.5), we get Lγ

s→t = Lγ
s0→t ◦Lγ

s→s0
=

(
Lγ

t→s0

)−1 ◦Lγ
s→s0

. So (3.6)
holds for V = π−1(γ(s0)) and F (s; γ) = Lγ

s→s0
. Conversely, if (3.6) is valid for

some linear isomorphisms F (s; γ), then a straightforward calculation shows that
it converts (3.2) and (3.3) into identities and (3.4) holds due to the linearity of
F (s; γ). �

Proposition 3.2. Let a representation (3.6) for some vector space V and linear
isomorphisms F (s; γ) : π−1(γ(s)) → V, s ∈ J be given for a linear transport along
paths in the bundle (E, π, B). For a vector space �V , there exist linear isomor-
phisms �F (s; γ) : π−1(γ(s)) → �V, s ∈ J, for which

Lγ
s→t = �F−1(t; γ) ◦ �F (s; γ), s, t ∈ J, (3.7)

6For the proof, see Proposition 11.1 on page 282 below.
7The concept of linear transport along paths in vector bundles can be generalized to the trans-

ports along paths in arbitrary bundles [114] and to transports along mappings in bundles [123].
An interesting consideration of the concept of (parallel) ‘transport’ (along closed paths) in con-
nection with homotopy theory and the classification problem of bundles can be found in [124].
These generalizations are out of the scope of the present book.

8Particular examples of Proposition 3.1 are known for parallel transports in vector bundles.
For instance, Proposition 1 in [125, p. 240] realizes it for parallel transport in a bundle associated
to a principal one and induced by a connection in the latter case; see also the proof of the lemma in
the proof of Proposition 1.1 in [11, Chapter III, § 1], where a similar result is obtained implicitly.
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iff there exists a linear isomorphism D(γ) : V → �V such that

�F (s; γ) = D(γ) ◦ F (s; γ), s ∈ J. (3.8)

Proof. If equation (3.8) holds, the substitution of F (s; γ) = D−1(γ) ◦ �F (s; γ)
into (3.6) yields (3.7). Vice versa, if (3.7) is valid, then from its comparison
with (3.6) follows that D(γ) = �F (t; γ) ◦ (

F (t; γ)
)−1 = �F (s; γ) ◦ (

F (s; γ)
)−1

is the required (independent of s, t ∈ J) isomorphism. �
Starting from this point, we shall investigate further only the finite-dimen-

sional case, dimπ−1(x) = dimπ−1(y) < ∞ for all x, y ∈ B. In this way we shall
avoid a great number of specific problems arising when the fibres have infinite
dimension (see, e.g., [126] for details). A lot of our results are valid, possibly mu-
tatis mutandis, in the infinite-dimensional treatment too. One way for transferring
results from finite to infinite-dimensional spaces is the direct limit from the first to
the second ones. Then, for instance, if the bundle’s dimension is countably or un-
countably infinite, the corresponding sums must be replaced by series or integrals
whose convergence, however, requires special exploration [126]. Linear transports
along paths in infinite-dimensional vector bundles naturally arise, e.g., in the fibre
bundle formulation of quantum mechanics [127–131]. Generally, there are many
difficulties with the infinite-dimensional problem which deserves a separate inves-
tigation.

3.2. Representations in frames along paths

Let {ei(s; γ)} be a basis in π−1(γ(s)), s ∈ J .9 So, along γ : J → B we have a
set {ei} of bases on π−1(γ(J)), i.e., {ei} is a frame along γ.10 The dependence of
ei(s; γ) on s is inessential if we are interested only in the algebraic properties of
the linear transports along paths. The mapping s �→ ei(s; γ) will be required to be
of class C1 if some kind of differentiation of liftings of paths will be considered.

The matrix L(t, s; γ) :=
[
Li

j(t, s; γ)
]

(along γ at (s, t) in {ei}) of a linear
transport L along γ from s to t is defined via the expansion11

Lγ
s→t

(
ei(s; γ)

)
=: Lj

i(t, s; γ)ej(t; γ) s, t ∈ J. (3.9)

We call L : (t, s; γ) → L(t, s; γ) the matrix (function) of L; respectively Lj
i

are its matrix elements or components in the given frame.
It is almost evident that

Lj
i(t, s; γ)ej(t; γ) ⊗ ei(s; γ) ∈ π−1(γ(t)) ⊗ (

π−1(γ(s))
)∗ (3.10)

9Here and henceforth the Latin indices run from 1 to dim π−1(p), p ∈ B.
10Regardless of the fact that {ei(s; γ)} is a basis in π−1(γ(s)), we write ei(s; γ), not ei(γ(s)),

as we consider ei : γ �→ ei( · ; γ) as a lifting of paths; hence ei(s; γ) generally depends on s and
γ, not only on the combination γ(s). If γ has self-intersections, then the mapping p �→ ei(s; γ),
with p ∈ γ(J) and s ∈ J such that p = γ(s), is, generally, multiple-valued at these points.

11Notice the different positions of the arguments s and t in Lγ
s→t and in L(t, s; γ).
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where the asterisk (∗) denotes dual objects and ei(s; γ) := (ei(s; γ))∗. Hence the
change of the bases {ei(s; γ)} �→ {e′i(s; γ) := Aj

i (s; γ)ej(s; γ)}, s ∈ J , by means of
a non-degenerate matrix A(s; γ) :=

[
Aj

i (s; γ)
]
, implies

L(t, s; γ) �→ L′(t, s; γ) = A−1(t; γ)L(t, s; γ)A(s; γ) (3.11)

or in component form

L′j
i(t, s; γ) =

(
A−1(t; γ)

)j

k
Lk

l(t, s; γ)Al
i(s; γ). (3.11′)

Evidently, for u = ui(s; γ)ei(s; γ) ∈ π−1(γ(s)), due to (3.4), we have

Lγ
s→tu =

(
Lj

i(t, s; γ)ui(s; γ)
)
ej(t; γ). (3.12)

In terms of the matrix L of L, the basic equations (3.2) and (3.3) read respectively

L(t, s; γ)L(s, r; γ) = L(t, r; γ) r, s, t ∈ J, (3.13)
L(s, s; γ) = 1 s ∈ J (3.14)

with 1 being the identity (unit) matrix of corresponding size. From these equalities
immediately follows that L is always non-degenerate.

Proposition 3.3. A linear mapping (3.1) is a linear transport along γ from s to t
iff its matrix, defined via (3.9), satisfies (3.13) and (3.14).

Proof. The necessity was already proved. The sufficiency is trivial: a simple check-
ing proves that (3.13) and (3.14) convert respectively (3.2) and (3.3) into identities.

�

Proposition 3.4. A non-degenerate matrix-valued function L : (t, s; γ) �→ L(t, s; γ)
is a matrix of some linear transport along paths L (in a given field {ei} of bases
along γ) iff

L(t, s; γ) = F−1(t; γ)F (s; γ) (3.15)

where F : (t; γ) �→ F (t; γ) is a non-degenerate matrix-valued function.

Proof. This proposition is simply a matrix form of Proposition 3.1. If {fi} is a
basis in V and F (s; γ)ei(s; γ) = F j

i(s; γ)fj, then (3.15) with F (s; γ) =
[
F j

i(s; γ)
]

is equivalent to (3.6). �

Proposition 3.5. If the matrix L of a linear transport L along paths has a repre-
sentation

L(t, s; γ) = �F−1(t; γ) �F (s; γ) (3.16)

for some matrix-valued function �F (s; γ), then all matrix-valued functions F rep-
resenting L via (3.15) are given by

F (s; γ) = D−1(γ) �F (s; γ) (3.17)

where D(γ) is a non-degenerate matrix depending only on γ.
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Proof. In fact, this propositions is a matrix variant of Proposition 3.2; D(γ) is
simply the matrix of the mapping D(γ) in some bases. �

If F (s; γ) and F ′(s; γ) are two matrix-valued functions, representing the ma-
trix of L via (3.15) in two bases {ei} and {e′i} respectively, then, as a consequence
of (3.11), the relation

F ′(s; γ) = C(γ)F (s; γ)A(s; γ) (3.18)

holds for some non-degenerate matrix-valued function C of γ.

3.3. Linear transports and derivations along paths

Below we want to consider some properties of the linear transports along paths
connected with their ‘differentiability’; in particular, we shall establish a bijective
correspondence between them and the derivations along paths. For the purpose is
required a smooth, of class at least C1, transition from fibre to fibre when moving
along a path in the base. Rigorously this is achieved by exploring transports in
bundles whose bundle space is a C1 differentiable manifold which will be supposed
from now on in the present chapter.

Let (E, π, B) be a vector bundle whose bundle space E is a Cr, r ∈ N ∪
{0,∞, ω}, differentiable manifold. A linear transport Lγ along γ : J → B is called
differentiable of class Ck, k = 0, 1, . . . , r, or simply Ck transport, if for arbi-
trary s ∈ J and u ∈ π−1(γ(s)), the path γs;u : J → E with γs;u(t) := Lγ

s→tu ∈
π−1(γ(t)), t ∈ J , is a Ck mapping in the bundle space E. If a Ck linear trans-
port has a representation (3.6), the mapping s �→ F (s; γ) is of class Ck. So, the
transport Lγ is of class Ck iff Lγ

s→t has Ck dependence on s and t simultaneously.
If {ei( · ; γ)} is a Ck frame along γ, i.e., {ei(s; γ)} is a basis in π−1(γ(s)) and the
mapping s �→ ei(s; γ) is of class Ck for all i, from (3.12) follows that Lγ is of class
Ck iff its matrix L(t, s; γ) has Ck dependence on s and t.

Let E be a C1 manifold and S a set of paths in B, S ⊆ P(B) = {γ : J → B}.
A transport L along paths in (E, π, B), E being Cr manifold, is said to be of class
Ck, k = 0, 1, . . . , r, on S if the corresponding transport Lγ along γ is of class Ck

for all γ ∈ S. A transport along paths may turn to be of class Ck on some set S of
paths in B and not to be of class Ck on other set S′ of paths in B. Below, through
Section 6, the set S will not be specialized and written explicitly; correspondingly,
we shall speak simply of Ck transports implicitly assuming that they are such on
some set S. Starting from Section 6, we shall suppose B to be a C1 manifold and
the set S to be the one of C1 paths in B. Further we consider only C1 linear
transports along paths whose matrices will be referred to smooth frames along
paths.

Definition 3.2. The derivation D along paths generated by a C1 linear transport L
along paths in (E, π, B), E being a C1 manifold, is a mapping of type (2.1a) such
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that for every path γ : J → B, we have Dγ : λ �→ (Dλ)γ with Dγλ : s �→ Dγ
s λ,

s ∈ J , where Dγ
s is a mapping (2.1b) given via

Dγ
s (λ) := lim

ε→0

{1
ε

[
Lγ

s+ε→sλγ(s + ε) − λγ(s)
]}

(3.19)

for every lifting λ ∈ PLift1(E, π, B) with λ : γ �→ λγ . The mapping Dγ (resp. Dγ
s )

will be called a derivation along γ generated by L (resp. a derivation along γ at s
assigned to L).

Remark 3.3. The operator Dγ
s is an analogue of the covariant derivative along

paths assigned to a linear connection; cf., e.g., [31, p. 139, equation (12)].
Remark 3.4. Notice, if γ has self-intersections and x0 ∈ γ(J) is such a point, the
mapping x �→ π−1(x), x ∈ γ(J), given by x �→ {Dγ

s (λ)|γ(s) = x, s ∈ J} is,
generally, multiple-valued at x0.

Let L be a linear transport along paths in (E, π, B). For every path γ : J → B,
choose some s0 ∈ J and u0 ∈ π−1(γ(s0)). The mapping

L : γ �→ L
γ

s0,u0
, L

γ

s0,u0
: J → E, L

γ

s0,u0
: t �→ L

γ

s0,u0
(t) := Lγ

s0→tu0 (3.20)

is, evidently, a lifting of paths.

Definition 3.3. The lifting of paths L from B to E in (E, π, B), defined via (3.20),
is called lifting (of paths) generated by the (linear) transport L.

Equations (3.2) and (3.4), combined with (3.19), immediately imply

Dγ
t (L) ≡ 0, t ∈ J, (3.21)

Dγ
s (aλ + bµ) = aDγ

s λ + bDγ
s µ, a, b ∈ K, λ, µ ∈ PLift1(E, π, B), (3.22)

where s0 ∈ J and u0 ∈ π−1(γ(s0)) are fixed. In other words, equation (3.21) means
that the lifting L is constant along every path γ with respect to D.

Let {ei(s; γ)} be a smooth field of bases along γ : J → B, s ∈ J , i.e., {ei} to
be a frame along γ. Combining (3.12) and (3.19), we find the explicit local action
of Dγ

s as12

Dγ
s λ =

[
dλi

γ(s)
ds

+ Γi
j(s; γ)λj

γ(s)
]
ei(s; γ). (3.23)

Here the (2-index) coefficients Γi
j of the linear transport L are defined by

Γi
j(s; γ) :=

∂Li
j(s, t; γ)
∂t

∣∣∣∣
t=s

= −∂Li
j(s, t; γ)
∂s

∣∣∣∣
t=s

(3.24)

and, evidently, uniquely determine the derivation D generated by L.
12The existence of derivatives like dλi

γ(s)/ds, viz. that λi
γ : J → K are C1 mappings, follows

from λ ∈ PLift1(E, π, B).
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Exercise 3.1. Prove that the derivation along paths generated by a linear trans-
port is actually a derivation along paths (see Definition 2.1). (Hint: use (3.22)
and (3.23).)

Below, we shall prove that, freely speaking, a linear transport along path(s)
can locally, in a given field of local bases, be described equivalently by the set of
its local coefficients (with transformation law (3.26) written below).

If the transport’s matrix L has a representation (3.15), from (3.24) we get

Γ(s; γ) :=
[
Γi

j(s; γ)
]

=
∂L(s, t; γ)

∂t

∣∣∣∣
t=s

= F−1(s; γ)
dF (s; γ)

ds
. (3.25)

From here, (3.11), and (3.14), we see that the change {ei} → {e′i = Aj
iei} of

the bases along γ with a non-degenerate C1 matrix-valued function A(s; γ) :=[
Aj

i (s; γ)
]

implies

Γ(s; γ) =
[
Γi

j(s; γ)
] �→ Γ′(s; γ) =

[
Γ′ i

j(s; γ)
]

with
Γ′(s; γ) = A−1(s; γ)Γ(s; γ)A(s; γ) + A−1(s; γ)

dA(s; γ)
ds

. (3.26)

Proposition 3.6. Let along every (resp. given) path γ : J → B be given a geometri-
cal object Γ whose local components Γi

j in a frame {ei} along γ change according
to (3.26) with Γ(s; γ) =

[
Γi

j(s; γ)
]
. There exists a unique linear transport L along

paths (resp. along γ) the matrix of whose coefficients is exactly Γ(s; γ) in {ei}
along γ. Moreover, the matrix of the components of L in {ei} is

L(t, s; γ) = Y (t, s0;−Γ( · ; γ))Y −1(s, s0;−Γ( · ; γ)), s, t ∈ J (3.27)

where s0 ∈ J is arbitrarily fixed and the matrix Y (s, s0; Z), for a C0 matrix-valued
function Z : s �→ Z(s), is the unique solution of the initial-valued problem

dY

ds
= Z(s)Y, Y = Y (s, s0; Z), s ∈ J, (3.28a)

Y (s0, s0; Z) = 1. (3.28b)

Proof. At the beginning, we note that the existence and uniqueness of the solution
of (3.28) is ensured by Lemma II.3.2 on page 96.

Given a linear transport L with a matrix (3.15). Suppose its components
are exactly Γi

j(s; γ) in a frame {ei}. Solving (3.25) with respect to dF−1/ds,
we obtain dF−1(s; γ)/ds = −Γ(s; γ)F−1(s; γ) and, consequently, F−1(s; γ) =
Y (s, s0;−Γ( · ; γ))F−1(s0; γ). So, due to equation (3.15), the matrix of L is (3.27).
Because of [34, Chapter IV, equation (1.10)], the expression

Y (t, s; Z) = Y (t, s0; Z)Y (s0, s; Z) = Y (t, s0; Z)Y −1(s, s0; Z)



3. Linear transports in vector bundles 233

is independent of s0. Besides, as a consequence of (3.26), the matrix (3.27) trans-
forms according to (3.11) when the local bases are changed. Hence equation (3.3)
holds and, due to (3.12), the linear mapping L with a matrix (3.27) in {ei} is a
linear transport along γ. In this way we have proved two things: On one hand, a
linear mapping with a matrix (3.27) in {ei} is a linear transport with local coeffi-
cients Γi

j(s; γ) in {ei} along γ and, on the other hand, any linear transport with
local coefficients Γi

j(s; γ) in {ei} has a matrix (3.27) in {ei}. �

Now we are ready to prove a fundamental result: there exists a bijective
mapping between the sets of C1-linear transports along paths and derivations
along paths. The explicit correspondence between linear transports along paths and
derivations along paths is through the equality of their local coefficients and com-
ponents, respectively, in a given field of bases. After the prove of this result, we
shall illustrate it in a case of linear connections on a manifold.

Proposition 3.7. A mapping (2.1a) (resp. (2.1c)) is a derivation along paths (resp.
along γ) iff there exists a unique linear transport along paths (resp. along γ) gen-
erating it via (3.19). Besides, the components and coefficients of corresponding in
this way, respectively, derivation and linear transport along paths are equal.

Proof. Let {ei(s; γ)} be a frame along γ and D (resp. Dγ) be a derivation along
paths (resp. along γ). Define the components Γi

j(s; γ) of Dγ in {ei} by the expan-
sion (2.3) in which we consider êi : γ �→ ei( · ; γ) as a lifting of paths. They uniquely
define Dγ as (2.2) implies (3.23) (see the identical equality (2.4)). Besides, it is
trivial to verify the transformation law (3.26) for them. So, by Proposition 3.6,
there is a unique linear transport along paths (resp. along γ) with the same local
coefficients.

Conversely, as we already proved, to any linear transport L along paths
(resp. along γ) there corresponds a derivation Dγ along γ given via (3.19) whose
components coincide with the coefficients of Lγ and transform according to (3.26).

�

Example 3.1. Let ∇ be a linear connection (see Definition I.3.1) on a C1 dif-
ferentiable manifold M and Γi

jk(p), i, j, k = 1, . . . ,dim M , p ∈ M , be its lo-
cal coefficients in a field {Ei(p)} of bases in the tangent bundle over M , i.e.,
∇EiEj = Γk

jiEk. If γ is a C1 path in M , the covariant derivative ∇γ̇ = γ̇i∇Ei

along γ (see Section III.10, in particular equations (III.10.4) and (III.10.5)), γ̇
being the vector field tangent to γ, is a derivation along γ in the tensor bundles
over M and its local components are

Γi
j(s; γ) = Γi

jk(γ(s))γ̇k(s). (3.29)

Exercise 3.2. Verify that the unique linear transport along paths, corresponding,
in accordance with Proposition 3.7, to the derivation with local components given
by (3.29), along γ : J → M from s to t, with s, t ∈ J and s ≤ t, is exactly the
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parallel transport along γ|[s,t] generated via the initial connection ∇. (See Defini-
tion I.3.2 and, for some details, Section 11.)

Exercise 3.3. Prove that, given on the tangent bundle over M a derivation D
along paths with local components (3.29), then Γi

jk are the coefficients of a lin-
ear connection ∇, which, when restricted to the tangent bundle, is such that
(∇V U)|p = Dγ

s (U ◦ γ), where γ : J → M is any C1 path with γ̇(s) = Vp,
γ(s) = p ∈ M for some s ∈ J , and U, V are vector fields on M .

Example 3.2. Consider a concrete kind of a linear transports L in the trivial line
bundle (B×R, pr1, B), where B is a topological space, which in particular can be a
C0 manifold, × is the Cartesian product sign, and pr1 : B×R → B is the projection
on B. An element of B×R is of the form u = (b, y) for some b ∈ B and y ∈ R and
the fibre over c ∈ B is pr−1

1 (c) = {c} × R = {(c, z) : z ∈ R}; the linear structure
of pr−1

1 (c) is given by λ1(c, z1) + λ2(c, z2) = (c, λ1z1 + λ2z2) for λ1, λ2, z1, z2 ∈ R.
The bundle (B × R, pr1, B) admits a global frame field {e1} consisting of a single
section e1 ∈ Sec(B × R, pr1, B) such that e1 : B � b �→ e1(b) = (b, 1) ∈ pr−1

1 (b).
For γ : J → B and s, t ∈ J , define L : γ �→ Lγ : (s, t) �→ Lγ

s→t : pr−1
1 (γ(s)) →

pr−1
1 (γ(t)) by

Lγ
s→t(u) =

(
γ(t),

f(γ(s))
f(γ(t))

y
)

for u = (γ(s), y) ∈ pr−1
1 (γ(s)), (3.30)

where f : γ(J) → R \ {0} is a non-vanishing function on γ(J). The verification
of (3.2)-(3.4) is trivial and hence L is a linear transport along paths. Its matrix
in the frame {e1} is L(t, s; γ) = L1

1(t, s; γ) = f(γ(s))
f(γ(t)) , in conformity with (3.15). If

f ◦γ : J → R\{0} is of class C1, the single coefficient of L is (see (3.24)) Γ1
1(s; γ) =

d
ds ln(f(γ(s))); however, this coefficient is a useful quantity if B × R (and hence
B) is a C1 manifold – see (3.23). Going some pages ahead (see Proposition 5.2
and Definition 4.4 below), we see that the transport L satisfies equation (5.2)
below and therefore admits normal frames; in particular the frame {f1} such that
(see (5.3) below)

f1|γ(s) = Lγ
s0→s

(
e1|γ(s0)

)
=

(
γ(s),

f(γ(s0))
f(γ(s))

)
for a fixed s0 ∈ J and any s ∈ J is normal along γ, i.e., the matrix of L in {f1} is
the identity matrix (the number one in the particular case).

4. Normal frames for linear transports

The parallel transport in a Euclidean space En (or in Rn) has the property that, in
Cartesian coordinates, it preserves the components of the vectors that are trans-
ported, changing only their initial points [3]. This evident observation, which can
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be taken even as a definition for parallel transport in En, is of fundamental im-
portance when one tries to generalize the situation.

Let L be a linear transport along paths in a vector bundle (E, π, B), U ⊆ B
be an arbitrary subset in B, and γ : J → U be a path in U .

Definition 4.1. A frame (field of bases) in π−1(γ(J)) is called normal along γ for
L if the matrix of L in it is the identity matrix along the given path γ.

Definition 4.2. A frame field (of bases) defined on U is called normal on U for L
if it is normal along every path γ : J → U in U . The frame is called normal for L
if U = B.

Notice that ‘normal’ refers to a ‘normal form’ as opposed to orthogonal to
tangential.

In the context of the present book, we pose the following problem. Given a
linear transport along paths, is it possible to find a local basis or a field of bases
(frame) in which its matrix is the identity one? Below we shall rigorously formulate
and investigate this problem. If frames with this property exist, we call them
normal (for the transport given). According to (3.12), the linear transports do not
change vectors’ components in such a frame and, conversely, a frame with the last
property is normal. Hence the normal frames are a straightforward generalization
of the Cartesian coordinates in Euclidean space.1 Because of this and following
the established terminology with respect to metrics [11, 12], we call Euclidean a
linear transport admitting normal frame(s).

Since a frame field on an arbitrary set U is actually a basis in the set
Sec

(
(E, π, B)|U

)
= Sec(π−1(U), π|U , U), we call such a basis normal if the corre-

sponding field of bases is normal on U .
Remark 4.1. It should be emphasized that a frame normal on U must be defined
on U but outside U (if U 
= M), i.e., at points in M\U , it may not be defined.
In this aspect the frames normal for linear transports differ from the ones for
derivations along vector fields, in particular for linear connections, in which case
they must be defined on an open subset of M containing or equal to U . This
difference comes from the fact that in the definitions of the normal frames in the
latter case are involved implicitly derivations with respect to some frames or local
coordinates which derivations are well defined only on neighborhoods, while in the
former case appear only derivations along paths.

Definition 4.3. A linear transport along paths (or along a path γ) is called Euclidean
along some (or the given) path γ if it admits a frame normal along γ.

Definition 4.4. A linear transport along paths is called Euclidean on U if it admits
frame(s) normal on U . It is called Euclidean if U = B.

1According to the argument presented, it is more natural to call Cartesian the special kind
of local bases (or frames) we are talking about. But, in our opinion and for historical reasons, it
is better to use the already established terminology for linear connections and derivations of the
tensor algebra over a differentiable manifold (see below and [97, appendix A] or [83]).
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We want to note that the name “Euclidean transport” is connected with the
fact that if we put B = Rn and π−1(p) = Tp(Rn) (the tangent space to Rn at
p) and identify Tp(Rn) with Rn, then in an orthonormal frame, i.e., in Cartesian
coordinates, the Euclidean transport coincides with the standard parallel transport
in Rn (leaving the vectors’ components unchanged).

Example 4.1. Euclidean transports exist always in a case of a trivial bundle (B ×
V, pr1, B), with V being a vector space and pr1 : B×V → B being the projection on
B; cf. Example 3.2. For instance, the mapping Lγ

s→t(γ(s), v) = (γ(t), v), for v ∈ V ,
defines a Euclidean transport which is similar to the parallel one in Rn. Indeed, if
{fi : i = 1, . . . , ,dimV } is a basis of V and v = vifi, then ei : p �→ ei|p := (p, fi),
p ∈ B, is a (global) frame on B if we put viei|p = (p, vifi) = (p, v) and therefore
Lγ

s→t(ei|γ(s)) = ei|γ(t), which means that L : γ �→ Lγ : (s, t) �→ Lγ
s→t is a Euclidean

transport and {ei} is a normal frame for it (see Corollary 4.1 below).

Below we present some general results concerning normal frames leaving the
problem of their existence for the next section.

The importance of normal frames is established by the following result.

Proposition 4.1. The following statements are equivalent in a given frame {ei}
over U ⊆ B:

(i) The matrix of L is the identity (unit) matrix on U , i.e., along every path γ
in U :

L(t, s; γ) = 1. (4.1a)

(ii) The matrix of L along every γ : J → U depends only on γ, i.e., it is inde-
pendent of the points at which it is calculated:

L(t, s; γ) = C(γ) (4.1b)

where C is a matrix-valued function of γ.
(iii) If E is a C1 manifold, the coefficients Γi

j(s; γ) of L vanish on U , i.e., along
every path γ in U

Γ(s; γ) = 0. (4.1c)

(iv) The explicit local action of the derivation D along paths generated by L re-
duces on U to differentiation of the components of the liftings with respect to
the path’s parameter if the path lies entirely in U :

Dγ
s λ =

dλi
γ(s)
ds

ei(s; γ) (4.1d)

where λ = λiei ∈ PLift1
(
(E, π, B)|U

)
, with E being a C1 manifold, and

λ : γ �→ λγ .



4. Normal frames for linear transports 237

(v) The transport L leaves the vectors’ components unchanged along any path
in U :

Lγ
s→t

(
uiei(s; γ)

)
= uiei(t; γ) (4.1e)

where ui ∈ K.
(vi) The basic vector fields are L-transported along any path γ : J → U :

Lγ
s→t

(
ei(s; γ)

)
= ei(t; γ). (4.1f)

Proof. We have to prove the equivalences

L(t, s; γ) = C(γ) ⇐⇒ L(t, s; γ) = 1 ⇐⇒ Γ(s; γ) = 0

⇐⇒ Dγ
s λ =

dλi
γ(s)
ds

ei(s; γ) ⇐⇒ Lγ
s→t

(
uiei(s; γ)

)
= uiei(t; γ)

⇐⇒ Lγ
s→t

(
ei(s; γ)

)
= ei(t; γ). (4.2)

If L(t, s; γ) = C(γ), then, using the representation (3.15), we get F (t; γ) =
F (s; γ)C(γ) = F (s0; γ) for some fixed s0 ∈ J as the points s and t are arbi-
trary, so L(t, s0; γ) = F−1(s0; γ)F (s0; γ) = 1. The inverse implication is trivial.
The second equivalence is a consequence of (3.25) and (3.15) since Γ = 0 implies
F (s; γ) = F (γ), while the third one is a corollary of (3.23). The validity of the last
but one equivalence is a consequence of L(t, s; γ) = 1 ⇐⇒ Lγ

s→t

(
uiei(s; γ)

)
=

uiei(t; γ) which follows from (3.12). The last equivalence is a corollary of the lin-
earity of L and the arbitrariness of ui. �

Remark 4.2. An evident corollary of the last proof is

L(t, s; γ) = 1 ⇐⇒ F (s; γ) = B(γ) (4.3)

with B being a matrix-valued function of the path γ only. According to Proposi-
tion 3.5, this dependence is inessential and, consequently, in a normal frame, we
can always choose representation (3.15) with

F (s; γ) = 1. (4.4)

Corollary 4.1. Any one of the equalities (4.1a)–(4.1f) express a necessary and
sufficient condition for a frame to be normal for L in U .

Proof. This result is a direct consequence of Definition 4.2 and Proposition 4.1. �

Proposition 4.2. The equations (4.1a)–(4.1f) are equivalent in a given frame {ei}
along a (fixed) path γ : J → B.

Proof. This proof is identical with the one of Proposition 4.1 for U = γ(J). �
Corollary 4.2. A frame is normal along γ for L if and only if in that frame one
(and hence all) of the equalities (4.1a)–(4.1f) is (are) valid.
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Proof. The result follows from Definition 4.1 and Proposition 4.2. �

In particular, a frame is normal for L along γ iff in the frame the coefficients
of L vanish along γ, i.e., iff (4.1c) holds.

A lifting of paths λ ∈ PLift(E, π, B) is called L-transported along γ : J → B,
if for every s, t ∈ J is fulfilled

λγ(t) = Lγ
s→tλγ(s)

with λ : γ �→ λγ . Hence a frame {ei(s, γ)} along γ is L-transported along γ if the
liftings ê1, . . . , êdim B, defined via (2.8), are L-transported along γ.

Therefore a frame is normal for L along γ iff it is L-transported along γ, i.e.,
if, by definition, its basic vectors ei(s; γ) satisfy (4.1f). As we shall see below (see
Proposition 4.4), this allows a convenient and useful way for constructing normal
frames, if any.

For the above reasons, sometimes, it is convenient for the Definition 4.1 to
be replaced, equivalently, by the next ones.

Definition 4.1′. If E is a C1 manifold, a frame (or frame field) over γ(J) is called
normal along γ : J → B for a linear transport L along paths if the coefficients of
L along γ vanish in that frame.

Definition 4.1′′. A frame over γ(J) is called normal along γ : J → B for a linear
transport L along paths if it is L-transported along γ.

The last definition of a normal frame is, in a sense, the ‘most invariant (basis-free)’
one.

The next proposition describes the class of normal frames, if any, along a
given path.

Proposition 4.3. All frames normal for some linear transport along paths which
is Euclidean along a certain (fixed) path are connected by linear transformations
whose matrices may depend only on the given path but not on the point at which
the bases are defined.

Proof. Let {ei} and {e′i := Aj
iej} be frames normal along γ : J → B for a linear

transport L along paths and L and L′ be the matrices of L in them respectively.
As, by definition L = L′ = 1, from (3.11), we get A(s; γ) = A(t; γ) for any s, t ∈ J ,
i.e., A(s; γ) depends only on γ and not on s.

If E is a C1 manifold and Γ and Γ′ are the matrices of the coefficients of
L in {ei} and {e′i}, respectively, by Proposition 4.1 we have Γ = Γ′ = 0, so the
transformation law (3.26) implies dA(s; γ)/ds = 0, A(s; γ) :=

[
Aj

i

(
s; γ)]. �

Corollary 4.3. All frames normal for a Euclidean transport along a given path are
obtained from one of them via linear transformations whose matrices may depend
only on the path given but not on the point at which the bases are defined.
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Proof. See Proposition 4.3 or its proof. �
The following two results describe the class of all frames normal on an arbi-

trary set U , if such frames exist.

Corollary 4.4. If a linear transport along paths admits frames normal on a set U ,
then all of them are connected via linear transformations with constant (on U)
matrices.

Proof. Let {ei} and {e′i := Aj
iei} be frames normal on U and p ∈ U . By Proposi-

tion 4.3 (see also Definition 4.2) for any paths β and γ in U passing though p, we
have A(p) :=

[
Aj

i

]
= B(β) = B(γ) for some matrix-valued function B on the set

P(U) of the paths in U . Hence A(x) = const on U , due to the arbitrariness of β
and γ. �

Corollary 4.5. If a linear transport along paths admits a frame normal on a set
U , then all such frames on U for it are obtained from that frame by linear trans-
formations with constant (on U) coefficients.

Proof. The result immediately follows from Corollary 4.4 �
We end this section with a simple but important result which shows how the

normal frames, if any, can be constructed along a given path.

Proposition 4.4. If L is Euclidean transport along γ : J → B and {e0
i } is a basis

in π−1(γ(s0)) for some s0 ∈ J , then the frame {ei} along γ defined by

ei(s; γ) = Lγ
s0→s

(
e0

i

)
, s ∈ J (4.5)

is normal for L along γ.

Proof. Due to (3.2) and (4.5), the frame {ei} satisfies (4.1f) along γ. Hence, by
Corollary 4.2, it is normal for L along γ. �

An analogous result on a set U ⊆ B will be presented in the next section
(see Proposition 5.5 below).

5. On the existence of normal frames

In the previous section there were derived a number of properties of the normal
frames, but the problem of their existence was neglected. This is the subject of
the present section.

Following the ideas of the previous chapters, one may attack the problem
of existence of frames normal for a linear transport L along paths as follows.
Suppose {ei} is a frame on U ⊆ B (resp. along γ) and Γ(s; γ) is the matrix of the
coefficients of L along γ : J → U (resp. along the given path γ). Then L admits a
frame {e′i} normal on U (resp. along γ) iff there is a matrix-valued function A :=
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[Ai
j ] : (s, γ) �→ A(s; γ) = A(γ(s)) (resp. A : (s, γ) �→ A(s; γ)) transforming {ei} into

{e′i}, e′i(s; γ) = Aj
i (s; γ)ej(s; γ), and satisfying, by virtue of (4.1c) and (3.26), the

equation
dA(s; γ)

ds
+ Γ(s; γ)A(s; γ) = 0 (5.1)

for every γ : J → U and s ∈ J (resp. for the given path γ : J → B and s ∈ J).
This assertion is also an obvious corollary of the transformation law (3.26) and
Definition 4.1′ (or Proposition 4.1, points (i) and (iii)). Therefore all problems
concerning the properties and existence of frames normal on U (resp. along γ)
can be reduced to the investigation of the equation (5.1) with A(s; γ) = A(γ(s)),
γ : J → U (resp. with A depending, generally, separately on s and γ); for this,
we call (5.1) the normal frame equation along γ for L. We shall comment on this
approach in Subsection 13.4. Below we shall follow other, more direct, methods
which are primary related to the (‘global’) general properties of the linear trans-
ports along paths.

At a given point p ∈ B the following result is valid.

Proposition 5.1. A linear transport Lγ along γ : J → B such that γ(J) = {p} for
a given point p ∈ B admits normal frame(s) iff it is the identity mapping of the
fibre over p, i.e., Lγ

s→t = idπ−1(p) for every s, t ∈ J .

Proof. The sufficiency is trivial (see Definition 3.1). If {ei} is normal for Lγ (at
p), then Lγ

s→t(u
iei|p) = uiLγ

s→tei|p = uiei|p, ui ∈ K, due to γ(s) = γ(t) = p and
Proposition 4.1, point (iv). Therefore Lγ

s→t = idπ−1(p). �
Thus, for a degenerate path γ : J → {p} ⊂ B for some p ∈ B, the identity

mapping of the fibre over p is the only realization of a Euclidean transport along
paths. Evidently, for such a transport every basis of that fibre is a frame normal
at p for it.

Proposition 5.2. A linear transport L along paths admits frame(s) normal along a
given path γ : J → B iff

Lγ
s→t = idπ−1(γ(s)) for every s, t ∈ J such that γ(s) = γ(t), (5.2)

i.e., if γ contains loops, the L-transport along each of them reduces to the identity
mapping of the fibre over the initial/final point of the transportation.

Remark 5.1. For s = t the equation (5.2) is identically satisfied due to (3.3). But
for s 
= t, if such s and t exist, this is highly non-trivial restriction: it means
that the result of L-transportation along γ of a vector u ∈ π−1(x0) for some
x0 ∈ γ(J) from x0 to a point x ∈ γ(J) is independent of how long the vector
has ‘travelled’ along γ or, more precisely, if x0, x ∈ γ(J) are fixed and, for each
y ∈ γ(J), Jy := {r ∈ J : γ(r) = y}, then the vector Lγ

s0→s(u) is independent
of the choice of the points s0 ∈ Jx0 and s ∈ Jx (if some of the sets Jx0 and/or
Jx contain more than one point). This is trivial if γ is without self-intersections
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(see (3.2)). If γ has self-intersections, e.g., if γ intersects itself one time at γ(s),
i.e., if γ(s) = γ(t) for some s, t ∈ J, s 
= t, then the result of L-transportation
of u ∈ π−1(γ(s0)) from p0 = γ(s0) to p = γ(s) = γ(t) along γ is us = Lγ

s0→su
or ut = Lγ

s0→tu. We have us = ut iff (5.2) holds. Rewording, if we fix some
u0 ∈ π−1(γ(s0)), the bundle-valued function u : γ(J) → E given by u : γ(s) →
us = Lγ

s0→su0 ∈ π−1(γ(s)) for s ∈ J is single-valued iff (5.2) is valid.1 Notice,
since π ◦ us ≡ γ(s) (see (3.1)), the mapping u is (a single-valued) lifting of γ in E
through u0 irrespectively of the validity of (5.2).

Prima facie the above may be reformulated in terms of the concept of holon-
omy in vector bundles [23, pp. 51–54]. But a rigorous analysis reveals that this
is impossible in the general case without imposing further restrictions, like equa-
tion (5.6) below, on the transports involved. For instance, without requiring equa-
tion (5.6) below to be valid, one cannot introduce the concept of a holonomy
group.

Proof. If L is Euclidean along γ, then (5.2) follows from equation (4.1e) as it holds
for every ui ∈ K in some normal frame {ei}. Conversely, let (5.2) be valid. Put

ei|γ(s) := Lγ
s0→s

(
e0

i

)
(5.3)

where {e0
i } is a fixed basis in π−1(γ(s0)) for a fixed s0 ∈ J . Due to the nondegen-

eracy of L, {ei} is a basis at γ(s) for every s. According to (5.2), the so-defined
field of bases {ei} along γ is single-valued. By means of (3.2), we easily verify
that (4.1f) holds for {ei}. Hence {ei} is normal for L along γ. �

Remark 5.2. Regardless of the validity of (5.2), equation (5.3) defines a field of,
generally multiple-valued, normal frames in the set of sections along γ of (E, π, B).
Such a multi-valued property can be avoid if γ is supposed to be injective (⇔ with-
out self-intersections). Prima facie one may think that this solves the multi-valued
problem in the general case by decomposing γ into a union of injective paths. How-
ever, this is not the most general situation because a transport along a composition
of paths does not generally equal to the composition of the transports along its
constituent sub-paths (see equation (5.6) below); besides, since equation (5.10)
below does not hold generally, the absents of a natural/canonical definition of
composition (product) of paths introduces an additional indefiniteness.

Corollary 5.1. Every linear transport along paths is Euclidean along every fixed
path without self-intersections.

Proof. For a path γ : J → B without self-intersections, the equality γ(s) = γ(t),
s, t ∈ J is equivalent to s = t. So, according to (3.3), the condition (5.2) is
identically satisfied. �

Now we shall establish an important necessary and sufficient condition for
the existence of frames normal on an arbitrary subset U ⊆ B.

1The so-defined mapping u is a multiple-valued section along γ (see Subsection 2.3).
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Theorem 5.1. A linear transport along paths admits frames normal on some set
(resp. along a given path) if and only if its action along every path in this set
(resp. along the given path) depends only on the initial and final points of the
transportation but not on the particular path connecting these points. In other
words, a transport is Euclidean on U ⊆ B iff it is path-independent on U .

Proof. Let a linear transport L admit a frame {ei} normal on U ⊆ B. By (3.12)
and Definitions 4.1 and 4.2, this implies Lγ

s→tu
i(γ(s))

(
ei|γ(s)

)
= ui(γ(s))ei|γ(t)

for γ : J → U and u(p) ∈ π−1(p), p ∈ B. Conversely, let Lγ
s→tu(γ(s)) depend

only on γ(s) and γ(t) but not on γ and {ei} be a field of bases on U (resp. on
γ(J)). Then, due to (3.12), the matrix L of L in {ei} has the form L(t, s; γ) =
B(γ(t), γ(s)) for some matrix-valued function B on U ×U . Combining this result
with Propositions 3.4 and 3.5, we see that L admits a representation

L(t, s; γ) = F−1
0 (γ(t))F 0(γ(s)), s, t ∈ J (5.4)

for some non-degenerate matrix-valued function F 0 on the set U . Putting e′i|p =(
F−1

0 (p)
)j

i
ej|p, p ∈ U , we obtain from (3.11) that the matrix of L in {e′i} is

L′(t, s; γ) = 1, i.e., the frame {e′i} is normal for L on U . �
An evident corollary of Theorem 5.1 is the following assertion. Let a linear

transport L be Euclidean on U ⊆ B and ha : J → U , a ∈ [0, 1], be a homotopy of
paths passing through two fixed points p, q ∈ U , i.e., ha(s0) = p and ha(t0) = q
for some s0, t0 ∈ J and any a ∈ [0, 1]. Then Lha

s0→t0 is independent of a ∈ [0, 1]. In
particular, we have Lha

s0→t0

∣∣
q=p

= idπ−1(p) owing to Proposition 5.2.
Equation (5.4) and the part of the proof of Theorem 5.1 after it are a hint

for the formulation of the following result.

Theorem 5.2. A linear transport L along paths in a vector bundle, with C1 manifold
as a bundle space, is Euclidean on U (resp. along γ) iff for some, and hence for
every, frame {ei} on U (resp. on γ(J)) there exists a matrix-valued function F 0

on U such that the matrix L of L in {ei} is given by (5.4) for every γ : J → U
(resp. for the given γ) or, equivalently, iff the matrix Γ of the coefficients of L in
{ei} is

Γ(s; γ) = F−1
0 (γ(s))

dF 0(γ(s))
ds

. (5.4′)

Proof. Suppose a linear transport L is Euclidean. There is a frame {e0
i } nor-

mal for L on U (resp. along γ). Define a matrix F 0(p) via the expansion ei|p =(
F 0(p)

)j

i
e0

j

∣∣
p
, p ∈ U . Since, by definition, the matrix of L in {e0

i } is the unit
(identity) matrix on U , the matrix of L in {ei} is given via (5.4) due to (3.11).
Conversely, if (5.4) holds in {ei} on U , the frame {e′i|p =

(
F−1

0 (p)
)j

i
e0

j

∣∣
p
} is nor-

mal for L on U (resp. along γ), as we saw at the end of the proof of Theorem 5.1.
The equivalence of (5.4′) and (5.4) is a consequence of (3.24) (cf. (3.25), (3.26),
and (4.2)). �
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Remark 5.3. An alternative proof of theorem follows directly from equation (5.1):
we have A(s; γ) = A(γ(s)) and (5.4′) is valid for F 0 = A−1.

The proof of Theorem 5.2 suggest a way for generating Euclidean transports
along paths by ‘inverting’ the definition of normal frames: take a given field of
bases over U ⊆ B and define a linear transport by requiring its matrix to be the
identity matrix in the given field of bases. More precisely, we have in mind the
following. Let {ei} be a fixed frame on U , {e′i = Aj

iej}, with A =
[
Aj

i

]
being

non-degenerate, be arbitrary frame on U , and γ : J → U be a path in U . Define a
linear mapping (3.1) by its matrix in {e′i} (see (3.12)):

L(t, s; γ) = A(γ(t))A−1(γ(s)), A(p) :=
[
Aj

i (p)
]
, p ∈ U. (5.5)

According to Proposition 3.4, the mapping L : γ �→ Lγ : (s, t) �→ Lγ
s→t is a linear

transport along paths. By Theorem 5.1, this transport is Euclidean. Moreover,
from (3.11), we see that the matrix of L in {ei} is unit on U , i.e., {ei} is a frame
normal for L on U . We call this Euclidean transport generated by (or assigned to)
the given initial frame, which is normal for it.

Proposition 5.3. All frames normal for a Euclidean linear transport along paths
in U generate one and the same Euclidean transport along paths in U coinciding
with the initial one.

Proof. The result is an almost evident consequence of (5.5) and Corollary 4.5. �

Proposition 5.4. Two or more frames on U generate one and the same Euclidean
transport along paths iff they are connected via linear transformations with con-
stant (on U) coefficients.

Proof. If {ei} and {e′i} generate L, then they are normal for it (Proposition 5.3)
and, by Corollary 4.4, they are connected in the way pointed. The converse is a
trivial corollary of (5.5) for A(p) = const with p ∈ U . �

In this way we have established a bijective correspondence between the set
of Euclidean linear transports along paths in U and the class of sets of frames on
U connected by linear transformations with constant coefficients.

The comparison of Proposition 5.2 with Theorem 5.1 suggests that a trans-
port is Euclidean in U ⊆ B iff (5.2) holds for every γ : J → U . But this is not
exactly the case. The right result is the following one.

Theorem 5.3. A linear transport L along paths is Euclidean on some path-con-
nected set2 U ⊆ B iff the next three conditions are valid:

(i) Equation (5.2) holds for every continuous path γ : J → U ;

2A set is path-connected if every two its points can be connected by a continuous path lying
entirely in it. Sometimes such sets are called linearly connected or arc-connected.
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(ii) The transport along a product of paths is equal to the composition of the
transports long the paths of the product, i.e.,

Lγ1γ2 = Lγ2 ◦ Lγ1 (5.6)

where γ1 and γ2 are paths in U such that the end of γ1 coincides with the
beginning of γ2 and γ1γ2 is the product of these paths;

(iii) For any subinterval J ′ ⊆ J the locality condition

L
γ|J′
s→t = Lγ

s→t, s, t ∈ J ′ ⊆ J, (5.7)

with γ|J ′ being the restriction of γ : J → U to J ′, is valid.

Remark 5.4. Here and below we do not present and use a particular definition of
the product of paths. There are slightly different versions of that definition; for
details see [108,132] or [114, Section 3]. Our results are independent of any concrete
such definition because the transports, we are considering here, are independent
of the particular path they are acting along (see Theorem 5.1).

Proof. If L is Euclidean, then, by Definition 4.4, it admits normal frame(s) along
every γ : J → U and, consequently, according to Proposition 5.2, the condi-
tion (5.2) is valid along every γ : J → U . By Theorem 5.1, the transport Lγ

s→t,
s, t ∈ J depends only on the points p = γ(s) and q = γ(t) but not on the particular
path γ connecting p, q ∈ U . Equations (5.6) and (5.7) follow from here.

Conversely, let (5.2), (5.6), and (5.7) be true for all paths γ, γ1, and γ2 in
U , the end of γ1 coinciding with the beginning of γ2, and subinterval J ′ ⊆ J .
Meanwhile, we notice the equality

Lγ−1
=

(
Lγ

)−1
, (5.8)

γ−1 being the path inverse to γ,3 which is a consequence of (5.2) and (5.6).
Let p0 be arbitrarily chosen fixed point in U and {e0

i } an arbitrarily fixed
basis in the fibre π−1(p0) over it. In the fibre π−1(p) over p ∈ U , we define a basis
{ei|p} via (cf. (5.3))

ei|p := L
γp0,p
s0→s

(
e0

i

)
(5.9)

where γp0,p : J → U is an arbitrary continuous path through p0 and p, i.e., for
some s0, s ∈ J , we have γp0,p(s0) = p0 and γp0,p(s) = p. Below we shall prove that
the field {ei} of bases over U is normal for L on U .

At first, we shall prove the independence of ei|p from the particular continu-
ous path γp0,p. Let βa : Ja → U , a = 1, 2 and βa(sa) = p0 and βa(ta) = p for some
sa, ta ∈ Ja, a = 1, 2. For definiteness, we assume sa ≤ ta. (The other combinations

3Here we do not need a particular definition of γ−1 (cf. Remark 5.4). More precisely, if
γ : [s, t] → U , and γ−1 : [s′, t′] → U , for s, t, s′, t′ ∈ R, s < t, s′ < t′, and γ−1(s′) = γ(t), we shall

apply (5.8) in the form Lγ−1

s′→t′ =
(
Lγ

s→t

)−1
= Lγ

t→s.
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of ordering between s1, t1, s2, and t2 can be considered analogously.) Defining
β′

a := βa|[sa, ta], a = 1, 2 and using (5.7), (5.8), (5.6), and (5.2), we get

Lβ2
s2→t2 ◦Lβ1

t1→s1
= L

β′
2

s2→t2 ◦L
β′
1

t1→s1
= L

β′
2

s2→t2 ◦L
(β′

1)
−1

s1→t1 = L
(β′

1)
−1β′

2
s0→t0 = idπ−1(p),

where
(
β′

1

)−1
β′

2 : [s0, t0] → U is the product of
(
β′

1

)−1 and β′
2 and we have

used that, from the definition of
(
β′

1

)−1 and β′
2, is clear that

(
(β′

1)−1β′
2

)
(s0) =(

(β′
1)

−1β′
2

)
(t0) = p, i.e.,

(
β′

1

)−1
β′

2 is a closed path passing through p. Applying
the last result, (3.2), and (3.3), we obtain:

Lβ2
s2→t2e

0
i =

(
Lβ2

s2→t2 ◦ Lβ1
t1→s1

)
◦
(
Lβ1

s1→t1

)
e0

i = Lβ1
s1→t1e

0
i .

Since β1 and β2 are arbitrary, from here we conclude that the frame {ei},
defined via (5.9) on U , is independent from the particular path used in (5.9).

Now we shall prove that {ei} is normal for L on U , which will complete this
proof.

From the proof of Proposition 5.2 (compare (5.9) and (5.3)) follows that
{ei} is normal for L along any path in U passing through p0. Let γ : J → U
be such a path, s0 ∈ J be fixed, and β : [0, 1] → U be such that β(0) = p and
β(1) = γ(s0) =: p0. Defining γ± := γ|J± for J± := {s ∈ J, ±s ≥ ±s0}, we
conclude that {ei} is normal for L along βγ+ and βγ−1

− . Take, for example, the
path βγ+. If for some s′0, s

′, s∗ ∈ R is fulfilled (βγ+)(s′0) = p, (βγ+)(s′) = γ(s),
and (βγ+)(s∗) = p0, then, applying (5.9), (5.6), and (5.7), we find for s ≥ s0:

ei|γ(s) = L
βγ+

s′
0→s′

(
ei|p

)
= L

βγ+

s′
0→s′ ◦ L

βγ+

s∗→s′
0

(
ei|p0

)
= L

βγ+
s∗→s′

(
ei

∣∣
p0

)
= Lγ+

s0→s ◦ Lβ
0→1

(
ei|p0

)
= Lγ+

s0→s

(
ei|p

)
= Lγ

s0→s

(
ei|p

)
.

Analogously one can prove that ei|γ(s) = Lγ
s0→s

(
ei|p

)
for s ≤ s0 by using βγ−1

− in-
stead of βγ+. So, due to (3.2), the frame {ei} satisfies (4.1f) along γ. Consequently,
by Corollary 4.1, the frame so-constructed is normal for L along γ. �

Remark 5.5. According to [114, Proposition 3.4], the equality (5.6) is a conse-
quence of (5.7) and the reparametrization condition

Lγ◦τ
s→t = Lγ

τ(s)→τ(t), s, t ∈ J ′′ (5.10)

where J ′′ is an R-interval and τ : J ′′ → J is bijection. Hence in the formulation of
Theorem 5.3 we can replace the condition (5.6) with (5.10). So, we have:

Theorem 5.3′. A transport L is Euclidean on a path-connected set U ⊆ B if (5.2),
(5.7), and (5.10) are valid for every continuous path γ : J → U .
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Remark 5.6. A transport along paths satisfying (5.7) and (5.10) is in fact a parallel
transport (along paths). For details, see Section V.8.

The next result is analogous to Proposition 4.4. According to it, a frame
normal for L on U ⊆ B, if any, can be obtained by L-transportation of a fixed
basis over some point in U to the other points in U .

Proposition 5.5. If L is a Euclidean transport on a path-connected set U ⊆ B and
{e0

i } is a given basis in π−1(p0) for a fixed p0 ∈ U , then the frame {ei} over U
defined via

ei|p = Lγ
s0→s

(
e0

i

)
, (5.11)

where γ : J → U is such that γ(s0) = p0 and γ(s) = p for some s0, s ∈ J , is
normal for L on U .

Proof. By Theorem 5.1, the basis {ei|p} is independent of the particular path γ
used in (5.11). According to Theorem 5.3, the conditions (5.2), (5.6), and (5.7)
hold for L. Further, repeating step-by-step the last paragraph of the proof of
Theorem 5.3, we verify that {ei} is normal for L on U .

Alternatively, the assertion is a consequence of (3.21) and Proposition 5.6
presented a few lines below. �

A simple way to check whether a given frame is normal along some path is
provided by the following proposition.

Proposition 5.6. A frame {ei} along γ : J → B is normal for a linear transport
L along paths in (E, π, B), E being a C1 manifold, if and only if the liftings
êi : γ �→ ei( · , γ) are constant (along γ) with respect to the derivation D generated
by L:

Dγ êi = 0. (5.12)

Proof. If {ei} is normal for L along γ, equation (4.1f) is valid (see Corollary 4.2),
so (5.12) follows from (3.21). If (5.12) holds, by virtue of (3.21), its solution is4

ei|γ(s) = Lγ
s0→s

(
ei|γ(s0)

)
and consequently, by Proposition 4.4, the frame {ei} is

normal along γ. �

Recall (see the remark preceding Definition 2.1), the path γ in Proposition 5.6
cannot be an arbitrary continuous path in B as it must be in the set π◦Pk(E), with
Pk(E), k = 0, 1, being the set of Ck paths in E. Notice, the derivative in (5.12)
does not require B to be a manifold.

Of course, it is true that if (5.12) holds in a frame {ei} along every path
γ in U , the frame {ei} is normal for L on U . But it is more natural to find a
‘global’ version of (5.12) concerning the whole set U , not the paths in it. The
corresponding result is formulated below as Theorem 9.1 (see also Theorem 6.1).

4Equation (5.12) is an ordinary differential equation of first order with respect to the local
components of ei (see (3.23)).
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6. The case of a manifold as a base

Starting from this section, we consider some peculiarities of frames normal for
linear transports along paths in a vector bundle (E, π, M) whose base M is a
C1 differentiable manifold. Besides, the bundle space E will be required to be
a C1 manifold too. This will allow links to be made with the general results of
Chapter III concerning frames normal for derivations of the tensor algebra of the
vector space of vector fields over a manifold which, in particular, can be linear
connections.

The local coordinates of p ∈ M will be denoted by pµ, pµ := xµ(p). Here
and below the Greek indices α, β, . . . , µ, ν, . . . run from 1 to dimM and, as usual,
a summation from 1 to dimM on such indices repeated on different levels will be
assumed. The below-considered paths, like γ : J → M , are supposed to be of class
C1 and by γ̇(s) is denoted the vector tangent to γ at γ(s), s ∈ J , (more precisely
at s) i.e., γ̇ is the vector field tangent to γ provided γ is injective. By {Eµ} will be
denoted a frame along γ in the bundle space tangent to M , i.e., for every s ∈ J
the vectors E1|γ(s), . . . , Edim M |γ(s) form a basis in the space Tγ(s)(M) tangent to
M at γ(s). In particular, the frame {Eµ} can be a coordinate one, Eµ|p = ∂

∂xµ

∣∣
p
,

in some neighborhood of p ∈ γ(J). The transports along paths investigated below
are supposed to be of class C1 on the set of C1 paths in M .

Proposition 6.1. Let L be a linear transport along paths in (E, π, M), E and M
being C1 manifolds, and L be Euclidean on U ⊆ M (resp. along a C1 path γ : J →
M). Then the matrix Γ of its coefficients has the representation

Γ(s; γ) =
dim M∑
µ=1

Γµ(γ(s))γ̇µ(s) ≡ Γµ(γ(s))γ̇µ(s) (6.1)

in any frame {ei} along every (resp. the given) C1 path γ : J → U , where Γµ =[
Γi

jµ

]dim π−1(p)

i,j=1
are some matrix-valued functions, defined on an open set V con-

taining U (resp. γ(J)) or equal to it, and γ̇µ are the components of γ̇ in some
frame {Eµ} along γ in the bundle space T (M) tangent to M , γ̇ = γ̇µEµ.

Proof. By Theorem 5.2, the representation (5.4′) is valid in {ei} for some matrix-
valued function F 0 on U . Hence, if U is a neighborhood, equation (6.1) holds
for

Γµ(p) = F−1
0 (p)

(
Eµ(F 0)|p

)
(6.2)

with p ∈ U . In the general case, e.g., if U is a submanifold of M of dimension less
than the one of M , the terms Eµ(F 0)|U , µ = 1, . . . ,dimM , in the last equality
may turn to be undefined as the matrix-valued function F 0 is defined only on U .
To overcome this possible problem, let us take some C1 matrix-valued function
F , defined on an open set V containing U (resp. γ(J)) or equal to it, such that
F |U = F 0. Since (5.4) and (5.4′) depend only on the values of F 0, i.e., on the
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ones of F on U , these equations hold also if we replace F 0 in them with F . From
the so-modified equality (5.4′), with F for F 0, we see that (6.1) is valid for

Γµ(p) = F−1(p)(Eµ(F ))|p (6.3)

with p ∈ V . �
Consider now the transformation properties of the matrices Γµ in (6.1). Let

U be an open set, e.g., U = M . If we change the frame {Eµ} in the bundle space
tangent to M , {Eµ} �→ {E′

µ = Bν
µEν} with B =

[
Bν

µ

]dim M

µ,ν=1
being non-degenerate

matrix-valued function, and simultaneously the bases in the fibres π−1(p), p ∈ M ,
{ei|p} �→ {e′i|p = Aj

i (p)ej |p}, then, from (3.26) and (6.1), we see that Γµ transforms
into Γ′

µ such that

Γ′
µ = Bν

µA−1ΓνA + A−1E′
µ(A) = Bν

µA−1
(
ΓνA + Eν(A)

)
(6.4)

where A :=
[
Aj

i

]dim π−1(p)

i,j=1
is non-degenerate and of class C1.

Note 6.1. While deriving (6.4), we supposed (6.1) to be valid on M , i.e., for
U = M . If U 
= M , equation (6.1) holds only on U , i.e., for γ : J → U . Therefore
the result (6.4) is true only on U , but in this case the frames {ei} and {e′i}
must be defined on an open subset of M containing or equal to U . This follows
from (3.26) in which the derivative dA(s;γ)

ds = dA(γ(s))
ds enters. To derive (6.4), we

have expressed dA(γ(s))
ds as (Eµ(A))|γ(s)γ̇

µ(s) which is meaningful iff A is defined
on a neighborhood of each point in U . Consequently A, as well as {ei} and {e′i},
must be defined on an open set V ⊇ U . For this reason, below, when derivatives
like Eµ(A) appear, we admit the employed frames in the bundle space E to be
defined always on some neighborhood in M containing or equal to the set U on
which some normal frames are investigated.

The above considerations, when applied to parallel transports assigned to
linear connections (see below Section 11) in the tangent bundle (T (M), π, M), are
the cause for which in the definition of frames normal for a linear connection (see
Definition I.5.1 on page 37) is included the requirement they to be defined on a
neighborhood, possibly coinciding with U if U is a neighborhood.

Denoting by Γi
jµ the components of Γµ, we can rewrite (6.4) as

Γ′i
jµ =

dim M∑
ν=1

dim π−1(p)∑
k,l=1

Bν
µ

(
A−1

)i

k
Al

jΓ
k
lν +

dim M∑
ν=1

dim π−1(p)∑
k=1

Bν
µ

(
A−1

)i

k
Eν(Ak

j ).

(6.5)

Thus, we observe that the functions Γi
jµ are very similar to the coefficients of a

linear connection.1 Below, in Subsection 13.4, we shall see that this is not acci-
dental (compare (6.1) with (3.29)). These functions are also called coefficients of

1Compare (6.4) with (I.5.3) or (6.5) with (I.3.5). The equations in these pairs are identical
for dimM = dim π−1(p), p ∈ M , and B = A.
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the transport L. To make a distinction between Γi
j and Γi

jµ, we call the former
ones 2-index coefficients of L and the latter ones 3-index coefficients of L when
there is a risk of ambiguities. It should be emphasized on the fact that the 2-index
coefficients are defined with respect to a single frame {ei} along γ in the vector
bundle (E, π, M), while the 3-index coefficients are defined with respect to a pair
({ei}, {Eµ}) of frames, {ei} in the bundle space E of (E, π, M) and {Eµ} in the
bundle space T (M) of the bundle (T (M), π, M) tangent to M . Besides, if (6.1)
holds for every γ : J → U for a transport L, then, in the general case, there are
(infinitely) many such representations unless U an open set. For instance, if (6.1)
is valid for some Γµ, it is also true if we replace in it Γµ with Γµ + Gµ where the
matrix-valued functions Gµ are such that Gµγ̇µ = 0 for every γ : J → U . Hence,
generally, the 3-index coefficients of L depend also on U and are not unique due
to, e.g., the nonuniqueness of F in (6.3).

Prima facie one may think that the converse of Proposition 6.1 is true, but
this is not the general case, i.e., if in some frame equation (6.1) holds, then {ei}
is generally not normal unless some conditions are fulfilled. Thus (6.1) is only a
necessary, but, generally, not sufficient condition for a frame to be normal.

Theorem 6.1. A C2 linear transport L along paths is Euclidean on a neighborhood
U ⊆ M if and only if in every frame the matrix Γ of its coefficients has a repre-
sentation (6.1) along every C1 path γ in U in which the matrix-valued functions
Γµ, defined on an open set containing U or equal to it, satisfy the equalities(

Rµν(−Γ1, . . . ,−Γdim M )
)
(p) = 0 (6.6)

where p ∈ U and

Rµν(−Γ1, . . . ,−ΓdimM ) := −Eν(Γµ) + Eµ(Γν) + ΓµΓν − ΓνΓµ − Cκ

µνΓκ (6.7)

in a frame {Eµ} over U in the bundle space tangent to M , with Cκ
µν being the

structure functions of {Eµ}, [Eµ, Eν ] =: Cκ
µνEκ.

Remark 6.1. This result is a direct analogue of Theorem III.6.1 on page 157 in
the theory considered here.

Remark 6.2. If we change the frame {ei}, {ei} �→ {e′i = Aj
iej}, over U and

simultaneously the frame {Eµ}, {Eµ} �→ {E′
µ = Bν

µEν}, in the tangent bundle
space over U , from (6.7), (I.8.4), and (6.4), we get that the matrices Rµν transform
into

R′
µν = Bκ

µ Bλ
ν A−1RκλA. (6.8)

Therefore the conditions (6.6) have an invariant character, i.e., they are indepen-
dent of the particular choice of the frames (or coordinates) involved in them. The
last result also shows that the quantities Rµν depend on the frames {ei} and {Eµ}
on U and are completely independent of the their values outside U (if U 
= M) in
case they are defined there (see Note 6.1).
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Remark 6.3 (Important!). This theorem has a stronger version: the requirement
the representation (6.1) to hold can be dropped as it is a consequence of (6.6). We
skip this detail till Subsection 9.2 (see the proof of Theorem 9.1 and the comments
after it on page 269). Corollary 9.1 on page 269 is a formulation of the mentioned
stronger variant of Theorem 6.1 employing the concept of a ‘curvature’. The same
remarks are valid with respect to Theorem 6.2 on page 253 below.

Proof. Necessity. For a transport L Euclidean on U is valid (6.1) due to Propo-
sition 6.1. Moreover, we know from the proof of this proposition that Γµ admit
representation (6.3) for some C1 non-degenerate matrix-valued function F . The
proof of the necessity is completed by the following lemma.

Lemma 6.1. A set of matrix-valued functions {Γµ : µ = 1, . . . ,dimM}, of class
C1 and defined on a neighborhood V , admits a representation (6.3) iff the condi-
tions (6.6) are fulfilled for p ∈ V .

Proof of Lemma 6.1. A representation (6.3) exists iff it, considered as a matrix
linear partial differential equation of first order, has a solution with respect to F .
Rewriting (6.3) as

Eµ(F−1)|p = −Γµ(p)F−1(p), p ∈ V,

from Lemma II.4.1 on page 105 with N = M and Eµ for eµ, we conclude that the
solutions of this equation with respect to F−1 exist iff (6.6) holds. In fact, fixing
some initial value F−1(p0) = f0, we get (see Remark II.4.5)

F (p) = f−1
0 Y −1(p, p0;−Γ1, . . . ,−Γdim M ) (6.9)

where Y (p, p0; Z1, . . . , Zdim M ) is the solution of the initial-value problem

Eµ(Y )|p = Zµ(p)Y |p, Y |p=p0 = 1. (6.10)

Here Z1, . . . , Zdim M are continuous matrix-valued functions and 1 is the identity
(unit) matrix of the corresponding size. According to Lemma II.4.1, the prob-
lem (6.10) with Zµ = −Γµ has (a unique) solution (of class C2) iff the (integrabil-
ity) conditions (6.6) are valid. �

Sufficiency. Let (6.1) and (6.6) be valid. As a consequence of Lemma 6.1,
there is a representation (6.3) for Γ with some F . Substituting (6.3) into (6.1), we
get

Γ(s; γ) = F−1(γ(s))Eµ(F )|γ(s)γ̇
µ(s) = F−1(γ(s))

dF (γ(s))
ds

.

So, by Theorem 5.2 (see (5.4′) for F 0 = F |U ), the considered transport L along
paths is Euclidean. �

The just-proved Theorem 6.1 expresses a very important practical necessary
and sufficient condition for existence of frames normal on neighborhoods because
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the conditions (6.1) and (6.6) are easy to check for a given linear transport along
paths in bundles with a differentiable manifold as a base.

Now, combining (4.1c) and (6.1), applying Corollaries 4.1 and 4.2, and using
the arbitrariness of γ, we can formulate the following essential result.

Proposition 6.2. A necessary and sufficient condition for a frame to be normal
on a neighborhood U ⊆ M for a Euclidean on U linear transport along paths in
(E, π, M) is the vanishment of its 3-index coefficients, i.e.,

Γµ(p) :=
[
Γi

jµ

]dim π−1(p)

i,j=1
= 0 (6.11)

for every p ∈ U , where Γµ(p) define the (2-index) coefficients of the transport
via (6.1).

Remark 6.4. The assumption in this proposition for U to be a neighborhood is an
essential one. From it and the arbitrariness of γ follows that γ̇(s) is an arbitrary
vector in Tγ(s)(M) which, together with (6.1) and Γ(s; γ) = 0, implies (6.11). If
U is not a neighborhood, then, generally, such a conclusion can not be made. For
instance, if U is a submanifold of M and dim U < dimM , then γ̇(s) ∈ Tγ(s)(U) but
γ̇(s) 
∈ Tγ(s)(M)\Tγ(s)(U) as γ : J → U is a path in U . Therefore, in this example,
only dimU of the matrices Γ1, . . . ,Γdim M must vanish in a (suitable) frame normal
on U , the remaining dim M −dimU of them need not to be zeros on U . Obviously,
this assertion can be inverted, i.e., frames normal on a submanifold U exist iff in
them dimU of the matrices of the transport’s 3-index coefficients vanish on U
(in suitable coordinates or frames). More details for normal frames in which the
3-index coefficients of a linear transport vanish are presented in Section 12.

Because of Propositions 6.1 and 6.2, as we said above, the functions Γi
jµ are

convenient to be called also coefficients of the transport, like Γi
j . If there is a risk

of ambiguity whether we have in mind Γi
j or Γi

jµ, when speaking about trans-
port’s (or corresponding derivation’s) coefficients, we shall call them respectively
2-index and 3-index coefficients. Note that any linear transport has 2-index coef-
ficients while 3-index ones exist only for some of them; in particular such are the
Euclidean transports (see Proposition 6.1 and Theorem 6.2). Through the 3-index
coefficients can be defined concrete classes of, possibly Euclidean on some sets,
linear transports along paths in a given vector bundle with a manifold as a base.
For the purpose one should define a transport by the matrix (6.1) of its 2-index
coefficients in which Γµ are fixed matrix-valued functions over the whole base M .
In particular, if Γµ are the matrices of the coefficients of a linear connection in
the tangent bundle over M , we obtain in this way the class of parallel transports
generated by such connections in this bundle (see (3.29) and the assertion after it).

It should be emphasized, the 3-index coefficients Γi
jµ of a given linear trans-

port L admitting them are defined uniquely on U ⊆ M by (6.3) or (6.2) if (and
only if) U is an open subset of M , e.g., if U = M ; the same is valid for the trans-
formed coefficients (6.5). If U is not such, the 3-index coefficients of L contain an



252 Chapter IV. Normal Frames in Vector Bundles

arbitrariness connected with the one of the matrix-valued function F , appearing
in (6.3), which is subjected only on the condition F |U = F 0. Besides, if (6.1) holds
for some Γµ, it remains true if we replace in its right-hand side Γµ with Γµ + Gµ

where the matrix-valued functions Gµ are such that Gµ(γ(s))γ̇µ(s) = 0 for all C1

paths γ : J → U and s ∈ J . The mentioned arbitrariness will be described below
when U is a submanifold of M .

Now we are going to find an analogue of Theorem 6.1 when the neighborhood
U ⊆ M in it is replaced with a submanifold of the base M .

Let N be a submanifold of M and L a linear transport along paths in
(E, π, M) which is Euclidean on N . Let the C1 matrix-valued function F 0 deter-
mines the coefficients’ matrix of L via (5.4′). Suppose p0 ∈ N and (V, x) is a chart
of M such that V � p0 and the local coordinates of every p ∈ N ∩ V are x(p) =
(x1(p), . . . , xdim N (p), tdim N+1

0 , . . . , tdim M
0 ), where tρ0, ρ = dimN + 1, . . . ,dimM ,

are constant numbers (see the definition of a submanifold on page 7).

In the chart (V, x), we have dF 0(γ(s))
ds =

∑dim N
α=1

∂F 0
∂xα

∣∣∣
γ(s)

γ̇α(s), with γµ :=

xµ ◦ γ, for every C1 path γ : J → N and s ∈ J . From here and (5.4′), it follows
that (6.1) holds for

Γα(p) = F−1
0 (p)

∂F 0

∂xα

∣∣∣
p
, α = 1, . . . ,dimN (6.12)

and arbitrary Γdim N+1, . . . ,Γdim M since in the coordinates {xµ} is fulfilled γρ(s) =
tρ0 = const and hence

γ̇dim N+1 = · · · = γ̇dim M ≡ 0. (6.13)

Comparing (6.12) with (6.2) for Eµ = ∂
∂xµ , we conclude that Γα, given via (6.12),

are exactly the first dimN of the matrices Γµ = [Γi
jµ] of the 3-index coefficients

of the transport L in the pair of frames
({ei},

{
∂

∂xµ

})
. As we said, the rest of the

3-index coefficients of L (on N) are completely arbitrary. In particular, one can
choose them according to (6.3),

Γρ(p) = F−1(p)
∂F

∂xρ
, ρ = dimN + 1, . . . ,dimM, F |N = F 0, (6.14)

which leads to the validity of (6.3) in every frame, or, if the representation (6.1)
holds for every γ : J → M (this does not mean that L is Euclidean on M !), the
matrices Γρ can be identified with the ones appearing in (6.1) in the frame

{
∂

∂xµ

}
.

If {x′µ} are other coordinates on V like {xµ}, i.e., x′ ρ(p) = const for p ∈
N ∩ V and ρ = dimN + 1, . . . ,dimM , the change {xµ} �→ {x′µ}, combined with
{ei} �→ {e′i = Aj

iej} leads to

Γα �→ Γ′
α = Bβ

αA−1ΓβA + A−1 ∂A

∂x′α , Bβ
α :=

∂xβ

∂x′α , α, β = 1, . . . ,dimN

(6.15)
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on N ∩ V . So, equation (6.4) remains valid only for frames {Eµ} normal on N .
But using the arbitrariness of Γρ, we can force (6.4) to hold on N for arbitrary
frames defined on a neighborhood of N .

The above discussion implies that the condition (6.6) in Theorem 6.1, when
applied on a submanifold N , imposes restrictions on the transport L as well as
ones on the ‘inessential’ 3-index coefficients of L, like Γρ above, or on the matrix-
valued function F entering in (6.3) or in (6.14). Since the restrictions of the last
type are not connected with the transport L, below we shall ‘repair’ Theorem 6.1
on submanifolds in such a way as to exclude them from the final results.

Theorem 6.2. A linear transport L along paths is Euclidean on a submanifold
N of M if and only if in every frame {ei}, in the bundle space over N , the
matrix of its coefficients has a representation (6.1) along every C1 path in N
and, for every p0 ∈ N and a chart (V, x) of M such that V � p0 and x(p) =
(x1(p), . . . , xdim N (p), tdim N+1

0 , . . . , tdim M
0 ) for every p ∈ N ∩V and constant num-

bers tdim N+1
0 , . . . , tdim M

0 , the equalities(
RN

αβ(−Γ1, . . . ,−Γdim N )
)
(p) = 0, α, β = 1, . . . ,dimN (6.16)

hold for all p ∈ N ∩ V and

RN
αβ(−Γ1, . . . ,−ΓdimN )

:= Rαβ(−Γ1, . . . ,−Γdim M ) = −∂Γα

∂xβ
− ∂Γβ

∂xα
+ ΓαΓβ − ΓβΓα. (6.17)

Here Γ1, . . . ,Γdim N are first dim N of the matrices of the 3-index coefficients of L
in the coordinate frame

{
∂

∂xµ

}
in the tangent bundle space over N ∩ V . They are

uniquely defined via (6.12).

Remark 6.5. In the theory considered here, this result is a direct analogue of
Theorem III.8.1, point (i), on page 165.
Remark 6.6. It is intuitively clear, generally not all of the equations (6.16) are in-
dependent. One can expect only (dimN)[(dim N)−1]/2 of them to be independent
because of Rµν = −Rνµ, due to (6.7).
Remark 6.7. This theorem is, in fact, a special case of Theorem 6.1: if in the latter
theorem we put U = N , restrict the transport L to the bundle (π−1(N), π|N , N),
replace M with N , and notice that {x1, . . . , xdim N} provide an internal coordinate
system on N , we get the former one with Eα = ∂/∂xα. Because of the importance
of the result obtained, we call it ‘theorem’ and present below its independent proof.

Proof. If L is Euclidean on N , equation (6.1) holds in every frame on N (Proposi-
tion 6.1); in particular it is valid in the frame

{
∂

∂xµ

}
, induced by the chart (V, x), in

which, as was proved above, equation (6.12) is satisfied. The substitution of (6.12)
into (6.17) results in (6.16). Conversely, let (6.1) for γ : J → N and (6.16) be
valid. By Lemma 6.1 with N for M , from (6.16) follows the existence of a rep-
resentation (6.12) for some matrix-valued function F 0 on N . Substituting (6.12)
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into (6.1) and using that γ is a path in N and (6.13) is valid, in the frame
{

∂
∂xµ

}
,

we obtain:

Γ(s; γ) = Γµ(γ(s))γ̇µ(s) =
dim N∑
α=1

Γα(γ(s))γ̇α(s)

= F−1
0 (γ(s))

dim N∑
α=1

∂F 0

∂xα

∣∣∣∣
γ(s)

γ̇α(s) = F−1
0 (γ(s))

∂F

∂xµ

∣∣∣∣
γ(s)

γ̇µ(s)

= F−1
0 (γ(s))

dF (γ(s))
ds

= F−1
0 (γ(s))

dF 0(γ(s))
ds

where F is a C1 matrix-valued function defined on an open set containing N or
equal to it and such that F |N = F 0. Thus, by Theorem 5.2, the transport L is
Euclidean on N . �

Corollary 6.1. Every linear transport along paths in a vector bundle whose base
and bundle spaces are C1 manifolds, is Euclidean at every single point or along
every path without self-intersections.

Proof. See Theorem 6.2 for dim N = 0, 1, in which cases RN
αβ ≡ 0. �

It should be noted, the last result agrees completely with Proposition 5.1 and
Corollary 5.1.

7. Linear transports and normal frames in line bundles

The purpose of this section is to exemplify the above general considerations con-
cerning linear transports and normal frames on line vector bundles, i.e., ones with
one-dimensional fibres.

Let (E, π, M) be one-dimensional vector bundle over a C1 manifold M . Thus
the (typical) fibre of (E, π, M) can be identified with K and then the fibre π−1(x)
over x ∈ M will be an isomorphic image of K. Let γ : J → M be of class C1 and L
be a linear transport along paths in (E, π, M). A frame {e} along γ consists of a
single non-zero vector field e : (s; γ) → e(s; γ) ∈ π−1(γ(s))\{0}, s ∈ J , and in it the
matrix of Lγ at (t, s) ∈ J × J is simply a number L(t, s; γ) ∈ K, Lγ

s→t(ue(s; γ)) =
uL(t, s; γ)e(t; γ) for u ∈ K and s, t ∈ J . By Proposition 3.4, the general form
of L is

L(t, s; γ) =
f(s; γ)
f(t; γ)

(7.1)

where f : (s; γ) �→ f(s; γ) ∈ K\{0} is defined up to (left) multiplication with a
function of γ (Proposition 3.5). Respectively, due to (3.25), the matrix of the
coefficient(s) of L is

Γ(s; γ) =
∂L(t, s; γ)

∂s

∣∣∣
t=s

=
1

f(s; γ)
df(s; γ)

ds
=

d
ds

[
ln(f(s; γ)

]
(7.2)
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and (3.27) takes the form

L(t, s; γ) = exp
(
−

t∫
s

Γ(σ; γ) dσ

)
. (7.3)

A change e(s; γ) �→ e′(s; γ) = a(s; γ)e(s; γ), with a(s; γ) ∈ K\{0}, of the
frame {e} implies (see (3.11) and (3.26))

L(t, s; γ) �→ L′(t, s; γ) =
a(s; γ)
a(t; γ)

L(t, s; γ) (7.4a)

Γ(s; γ) �→ Γ′(s; γ) = Γ(s; γ) +
d
ds

[
ln(a(s; γ)

]
. (7.4b)

The explicit local action of the derivation D along paths generated by L is

Dγ
s λ =

(dλγ(s)
ds

+ Γ(s; γ)λγ(s)
)
e(s; γ) (7.5)

where λ ∈ PLift1(E, π, M) and (3.23) was used. Let us now look on the normal
frames on one-dimensional vector bundles.

A frame {e} is normal for L along γ (resp. on U) iff in that frame (7.1) holds
with

f(s; γ) = f0(γ) (7.6)

where γ : J → M (resp. γ : J → U) and f0 : γ �→ f0(γ) ∈ K\{0} (see Remark 4.2
and Proposition 4.1). Since, in a frame normal along γ (resp. on U), it is fulfilled

L(t, s; γ) = 1, Γ(s; γ) = 0 (7.7)

for the given path γ (resp. every path in U), in every frame {e′ = ae}, we have

L′(t, s; γ) =
a(s; γ)
a(t; γ)

, Γ′(s; γ) =
d
ds

[
ln(a(s; γ)

]
. (7.8)

In addition, for Euclidean on U ⊆ M transport L, the representation

Γ′(s; γ) = Γ′
µ(γ(s))γ̇′µ(s) (7.9)

holds for every C1 path γ : J → U and some Γ′
µ : V → K with V being an open

set such that V ⊇ U (Proposition 6.1). This means (see Theorems 5.1 and 5.2)
that (7.8) holds for

a(s; γ) = a0(γ(s)), (7.10)

where a0 : U → K\{0}, and, consequently, the equality (7.9) can be satisfied if we
choose

Γ′
µ = Eµ(a) (7.11)
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with a : V → K, a|U = a0 and {Eµ} being a frame in the bundle space tangent
to M which, in particular, can be a coordinate one, Eµ = ∂

∂xµ . Of course, if U is
not an open set, this choice of Γ′

µ is not necessary (see Section 6); for example,
the equality (7.9) will be preserved, if to the right-hand side of (7.11) is added a
function G′

µ such that G′
µγ̇′µ = 0.

By virtue of (6.4), the functions Γµ and Γ′
µ in two arbitrary pairs of frames

({e}, {Eµ}) and ({e′ = ae}, {E′
µ = Bν

µEν}), respectively, are connected via

Γ′
µ = Bν

µΓν +
1
a
E′

µ(a) = Bν
µ

(
Γν + Eν(ln a)

)
(7.12)

and, consequently, with respect to changes of the frames in the tangent bundle
space over M , when a = 1, they behave like the components of a covariant vector
field (one-form). Therefore, on an open set U , e.g., U = M , the quantity

ω = ΓµEµ, (7.13)

where {Eµ} is the coframe dual to {Eµ} (in local coordinates: Eµ = ∂
∂sµ and

Eµ = dxµ), is a 1-form over M (with respect to changes of the local coordinates on
M or of the frames in the (co)tangent bundle space over M). However, it depends
on the choice of the frame {e} in the bundle space E and a change e �→ e′ = ae
implies

ω �→ ω′ = ω + (Eν(ln a))Eν = ω + (E′
ν(ln a))E′ ν . (7.14)

Using the 1-form (7.13), we see that

Γ(s; γ) = ω|γ(s)(γ̇(s)) (7.15)

and (7.3) can be rewritten as

L(t, s; γ) = exp
(
−

γ(t)∫
γ(s)

ω

)
(7.16)

where the integration is along some path in U (on which the transport L is Eu-
clidean). Hence L (or L) depends only on the points γ(s) and γ(t), not on the par-
ticular path connecting them, as it should be (Theorem 5.1). The self-consistency
of our results is confirmed by the equation

Rµν |U = 0 (7.17)

which is a consequence of (7.11) and (6.7) and which is a necessary and sufficient
condition for the existence of frames normal on an open set U (Theorem 6.1).

We end this section with the remark that frames normal along injective paths
always exist (Corollary 5.1), but on an arbitrary submanifold N ⊆ M they exist
iff the functions Γµ satisfy the conditions (6.16) with x ∈ N in the coordinates
described in Theorem 6.2.
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8. Normal frames for derivations in
vector bundles with a manifold as a base

For a general bundle (E, π, B) whose bundle space E is C1 manifold, we call a
frame {ei} normal on U ⊆ B (resp. along γ : J → M) for a derivation D along
paths (resp. Dγ along γ) (see Definition 2.1 on page 219) if {ei} is normal on
U (resp. along γ) for the linear transport L along paths generating it by (3.19)
(see Proposition 3.7). We can also, equivalently, define a frame normal for D
(resp. Dγ) as one in which the components of D (resp. Dγ) vanish (see the proof
of Proposition 3.7, Proposition 4.2, and Corollary 4.2). A derivation admitting
normal frame(s) is called Euclidean.

In connection with concrete physical applications, far more interesting case
is the case of a bundle (E, π, M) with a differentiable manifold M as a base. The
cause for this is the existence of natural structures over M , e.g., the different tensor
bundles and the tensor algebra over it. Below we concentrate on this particular
case.

Definition 8.1. A derivation over an open set V ⊆ M or in (E, π, M)|V along
tangent vector fields is a mapping D assigning to every tangent vector field X over
V a K-linear mapping

DX : Sec1
(
(E, π, M)|V

) → Sec0
(
(E, π, M)|V

)
, (8.1)

called a derivation along X , such that

DX(f · σ) = X(f) · σ + f · DX(σ) (8.2)

for every C1 section σ over V and every C1 function f : V → K.

Example 8.1. The mapping X �→ ∇X |Tr;1
s (M), where ∇ is a linear connection and

Tr;1
s (M) = Sec1(T r

s (M), πr
s , M) is the set of C1 tensor fields of type (r, s) over M ,

is a derivation along tangent vector fields in the tensor bundle (T r
s (M), πr

s , M) of
type (r, s).

Obviously (see Definition 2.1), if γ : J → V is a C1 path, the mapping D : σ̂ �→
Dσ̂, with Dσ̂ : γ �→ D

γ
σ̂, where D

γ
σ̂ : s �→ D

γ

s σ̂ is defined via

D
γ

s (σ̂) =
(
(DXσ)|X=γ̇

)
(γ(s)), σ̂ : γ �→ σ ◦ γ, (8.3)

is a derivation along paths on the set of C1 liftings generated by sections of
(E, π, M)|V . From Section 2, we know that along paths without self-intersections
every derivation along paths generates a derivation of the sections of (E, π, M)
(see (2.11) and (2.12)). Thus to any derivation D along (tangent) vector fields on
V there corresponds, via (8.3), a natural derivation D along the paths in V on
the set of liftings generated by sections. These facts are a hint for the possibility
to introduce ‘normal’ frames for D. This can be done as follows.
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Let {ei} be a C1 frame in π−1(V ). We define the components or (2-index)
coefficients ΓX

i
j : V → K of DX by the expansion (cf. (2.3))

DXei = ΓX
j
i ej . (8.4)

So ΓX :=
[
ΓX

j
i

]
is the matrix of DX in {ei}.

Applying (8.2) to σ = σiei and using the linearity of DX , we get the explicit
expression (cf. (3.23))

DX(σ) =
(
X(σi) + ΓX

i
j σj

)
ei. (8.5)

A simple verification proves that the change {ei} �→ {e′i = Aj
iej}, with a

non-degenerate C1 matrix-valued function A =
[
Aj

i

]
, leads to (cf. (3.26))

ΓX :=
[
ΓX

i
j

] �→ Γ′
X :=

[
Γ′

X
i
j

]
= A−1ΓXA + A−1X(A), (8.6)

where X(A) :=
[
X(Aj

i )
]

and the frames {ei} and {e′i} (as well as A) are supposed
to be defined on an open subset of M containing or equal to U (see Note 6.1).
Conversely, if a geometrical object with components ΓX

i
j is given in a frame {ei}

and a change {ei} �→ {e′i = Aj
iej} implies the transformation (8.6), then there

exists a unique derivation along X , defined via (8.5), whose components in {ei}
are exactly ΓX

i
j (cf. Proposition 3.6).

Below, for the sake of simplicity, we take V = M , i.e., the derivations are
over the whole base M .

Definition 8.2. A frame {ei}, defined on an open subset of M containing or equal
to a set U , is called normal for a derivation D along tangent vector fields (resp.
for DX along a given tangent vector field X) on U if in {ei} the components of D
(resp. DX) vanish on U for every (resp. the given) tangent vector field X .

If D (resp. DX) admits frames normal on U ⊆ M , we call it Euclidean on U .
A number of results, analogous to those of Sections 4–6, can be proved for such
derivations. Here we shall mention only a few of them.

Proposition 8.1 (cf. Theorem 5.2). A derivation D along tangent vector fields
admits frame(s) normal on U ⊆ M iff in every frame its matrix on U has the
form

ΓX |U =
(
F−1X(F )

)∣∣
U

(8.7)

where F is a C1 non-degenerate matrix-valued function defined on an open set
containing U .

Proof. If {e′i} is normal on U for D, then (8.7) with F = A−1 follows from (8.6)
with Γ′

X |U = 0. Conversely, if (8.7) holds, then (8.6) with A = F−1 yields
Γ′

X |U = 0. �



8. Vector bundles with a manifold as a base 259

Proposition 8.2 (cf. Corollary 4.5). The frames normal on U ⊆ M for a Euclidean
derivation along vector fields (resp. given vector field X) are connected by linear
transformations whose matrices A are constant (resp. X(A) = 0) on U .

Proof. The result is a consequence of (8.6) for ΓX = Γ′
X = 0. �

Definition 8.3. A derivation D along (tangent) vector fields is called linear on U
if in some (and hence in any) frame its components admit the representation

ΓX
i
j(p) = Γi

jµ(p)Xµ(p) or ΓX = ΓµXµ (8.8)

where p ∈ U , Γµ =
[
Γi

jµ(p)
]dim π−1(p)

i,j=1
are matrix-valued functions on (a neighbor-

hood of) U , and Xµ are the local components of a vector field X in some frame
{Eµ} in the bundle space T (M) of the tangent bundle, X = XµEµ.

Remark 8.1. The invariant definition of a derivation linear on U is via the equation

DfX+gY = fDX + gDY (8.9)

where f, g : U → K and X and Y are tangent vector fields over U . But for the pur-
poses of this work the above definition is more suitable. Comparing Definitions 8.1
and 8.3 (see also (8.9)) with [23, p. 74, Definition 2.51] or with Definition 14.7 on
page 305, we see that a derivation along tangent vector fields is linear iff it is a
covariant derivative operator (covariant derivative) in (E, π, B)|U . Therefore the
concepts linear derivation along tangent vector fields and covariant derivative op-
erator (covariant derivative) coincide.

We call Γi
jµ 3-index coefficients of D or simply coefficients if there is no risk

of misunderstanding. It is trivial to check that under changes of the frames they
transform according to (6.5). It is easy to verify that to every linear derivation D
there corresponds a unique derivation along paths or linear transport along paths
whose 2-index coefficients are given via (6.1) with Γµ :=

[
Γi

jµ

]
being the matrices

of the 3-index coefficients of D.1 Conversely, to any such transport or derivation
along paths there corresponds a unique linear derivation along tangent vector fields
with components ((2-index) coefficients) given by (8.8), i.e., with the same 3-index
coefficients. So, there is a bijective correspondence between the sets of linear deriva-
tions along tangent vector fields and derivations (or linear transports) along paths
whose (2-index) coefficients admit the representation (6.1). It should be empha-
sized, if the above discussion is restricted to a subset U , i.e., only for paths lying en-
tirely in U , it remains valid iff U is an open set in M . Otherwise, if U is not an open
set, the correspondence between derivations along tangent vector fields and deriva-
tions or linear transports along paths via their 3-index coefficients is surjective in

1One can verify that the action of the derivation along paths induced by D on the liftings
generated by sections is given by (8.3).
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the right direction.2 In the opposite direction it is injective, if the 3-index coeffi-
cients of the derivations along paths are fixed, or/and to a single derivation along
paths may correspond different derivations along tangent vector fields, if the arbi-
trariness of the 3-index coefficients of the former derivations is taken into account.
This remark is important when the normal frames in the both cases are compared.

Proposition 8.3. A derivation along tangent vector fields is Euclidean on U iff it
is linear on U and, in every frame {ei} over U in the bundle space and every
frame {Eµ} over U in the tangent bundle space over U , the matrices Γµ of its
2-index coefficients have the form (6.3) for some non-degenerate C1 matrix-valued
function F on U .

Proof. The result is a corollary from Proposition 8.1 as X = XµEµ and (8.7)
imply (8.8) with Γµ := [Γi

jµ] = F−1Eµ(F ). �

Theorem 8.1 (cf. Theorem 6.1). Frames normal on a neighborhood U for a deriva-
tion D along vector fields exist iff it is linear on U and its 3-index coefficients
satisfy the conditions (6.6) on U .

Proof. By Proposition 8.3, a derivation D along vector fields is Euclidean iff (6.3)
holds for some F which, according to Lemma 6.1, is equivalent to (6.6). �

Proposition 8.4 (cf. Proposition 6.2). A frame is normal on U ⊆ M for some
linear derivation along tangent vector fields iff the derivation’s 3-index coefficients
vanish on U .

Proof. This result is a corollary of Definition 8.2, equation (8.8) and the arbitrari-
ness of X in it. �

Remark 8.2. The arbitrariness of U in this Proposition does not contradict Remark
6.4 as the restriction of a derivation along tangent vector fields to (a neighborhood
of) U is along vector fields X on U tangent to M , i.e., Xp∈Tp(M) with p∈U .

In this way we have proved the existence of a bijective mappings between the
sets of Euclidean derivations along paths and Euclidean linear transports along
paths. It is given via the (local) coincidence of their 3-index coefficients in some
(local) frames. Moreover, the normal frames for the corresponding objects of these
sets coincide. What concerns the frames normal for Euclidean derivations along
tangent vector fields, in them, by Proposition 8.4, vanish not only their 2-index
coefficients, but also the 3-index ones. Hence the set of these frames is, generally,
a subset of the one of frames normal for derivations or linear transports along
paths. More details on frames in which the 3-index coefficients of a derivations
or transport vanish will be presented in Section 12. These observations, combined
with Remark 8.1, are quite important because they allow in extenso transferring

2If Γµ and Γµ are the matrices of the 3-index coefficients of D and D, then they define a
single derivation along paths in U iff (Γµ − Γµ)γ̇µ = 0 for all C1 paths γ : J → U .
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of the results obtained for linear transports and derivations (along paths or along
tangent vector fields) to the theory of connections, parallel transports, and covari-
ant derivatives in general vector bundles. We shall return to this range of problems
in Section 14.

9. Curvature and normal frames

Until now the concept of a ‘curvature’, in connection with normal frames, appeared
several times in similar contexts. For the first time, we met it in Section II.4: the
vanishment of the curvature (I.3.11) of a linear connection is a necessary and suffi-
cient condition for the existence of frames normal on a neighborhood for the linear
connection on it (Theorem II.4.1 on page 104). Next, the curvature of a linear con-
nection appeared in Theorem II.5.2, point (i), on page 120 for analogous result
on submanifolds. Similar results for arbitrary derivations along vector fields on a
manifold are expressed by Theorems III.6.1, III.7.1, III.8.1, III.8.3, and III.8.4 in
which the curvature (III.2.12) of the derivation plays an essential role. One would
probably ask for the origin of the condition for (‘partial’) vanishment of the cur-
vature in all of these results. From algebraic view-point, this condition is nothing
else but the integrability condition for a system of partial differential equations
of first order, the rigorous result being expressed by Lemma II.4.1 on page 105
(see, in particular, equation (II.4.6) in it).1 Alternatively, from geometrical point
of view, this means the path-independence of the parallel transport, generated
by a (suitable) linear connection, along paths in some set (see Lemma II.5.1 on
page 112 and equations (II.5.1′) on page 113 and (II.5.1′′) on page 114).

All of the above-mentioned results have natural analogues in the theory of
frames normal for linear transports along paths (or derivations along paths or
along tangent vector fields). Practically they were derived, in algebraic terms, in
Sections 5 and 6. To the reformulation of a part of the corresponding assertions,
employing the concept of a ‘curvature’, is devoted the present section.

9.1. Curvature of linear transport or derivation along paths

Since there is a bijective correspondence between linear transports along paths and
derivations along paths (see Section 3), two equivalent ways for the introduction of
curvature can be pointed out. The algebraic approach is based on the consideration
of a ‘commutator’ of two derivations along two different paths passing through
one and the same point. Alternatively, in the geometrical approach, a vector is
transported along a closed path and the result of this transportation is investigated
when the path is contracted (tends) to a single point. Below we shall realize the
former approach as it is somewhat more direct and concise.

1From here the adjective ‘integrable’ as a synonym for ‘flat’ in connection with vanishing
curvature comes from.
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The direct transferring of the concept of a ‘curvature’ of a derivation along
vector fields (of the tensor algebra over a manifold), introduced via (III.2.12) (see
also (I.3.11) in the particular case of linear connections), to derivations along paths
is impossible as, due to (2.1c), the derivative along a path of a lifting is not a lifting.
For the purpose is required a kind of derivation along paths which preserves the
type of the objects on which it acts. Without going into details, we notice that
the only derivation of this kind, introduce until now and having the property
mentioned, is the section-derivation along paths generated by a derivation along
paths and defined via (2.11) and (2.12). Alternatively, the ‘commutator’ of two
derivations along paths should be suitable defined. Below we briefly sketch these
approaches to the concept of a curvature of linear transports along paths.

Let D be a C1 derivation along paths in a vector bundle (E, π, B), E being
C1 manifold, and D be the section-derivation generated by it (see page 221). Let
η : J × J ′ → B be an injective mapping, i.e., for every (s, t) ∈ J × J ′ there does
not exist (s′, t′) ∈ J × J ′ such that (s′, t′) 
= (s, t) and η(s′, t′) = η(s, t).

The (section-)curvature (operator) along η at (s, t) ∈ J × J ′ of a C1 section-
derivation D along paths, generated by a C1 derivation D along paths, is a mapping

Rη(s, t) : Sec2
(
(E, π, B)|η(J,J′)

) → π−1(η(s, t)) (9.1)

defined as follows. For every section σ ∈ Sec2
(
(E, π, B)|η(J,J′)

)
, define sections

σ1, σ2 ∈ Sec1
(
(E, π, B)|η(J,J′)

)
such that, for every (s, t) ∈ J × J ′,

σ1(η(s, t)) :=
(
Dη(s, · )(σ|η(s,J′))

)
(η(s, t)) = D

η(s, · )
t (σ̂) ∈ π−1(η(s, t))

σ2(η(s, t)) :=
(
Dη( · ,t)(σ|η(J,t))

)
(η(s, t)) = Dη( · ,t)

s (σ̂) ∈ π−1(η(s, t))

where the lifting σ̂ ∈ PLift(E, π, B) is such that σ̂ : γ �→ σ̂γ := σ ◦γ for every path
γ in η(J, J ′).2

By definition, the action of the mapping (9.1) on σ is(
Rη(s, t)

)
(σ) :=

(
Dη( · ,t)(σ1|η(J,t))

)
(η(s, t)) − (

Dη(s, · )(σ2|η(s,J′))
)
(η(s, t))

= Dη( · ,t)
s (σ̂1) − D

η(s, · )
t (σ̂2) (9.2)

where σ̂1, σ̂2 ∈ PLift(E, π, B)|η(J,J′) and σ̂a : γ �→ (σ̂a)γ := σa ◦ γ, a = 1, 2 for
every path γ in η(J, J ′).

Symbolically, by abuse of the notation, one may write

Rη(s, t) = Dη( · ,t) ◦ Dη(s, · ) − Dη(s, · ) ◦ Dη( · ,t)

but, as a consequence of (2.11), compositions like Dη( · ,t) ◦ Dη(s, · ) are not quite
correctly defined since the action of this expression on σ must be defined as
Dη( · ,t)(σ1|η(J,t)).

2The index 1 (resp. 2) in σ1 (resp. σ1) reflects that in the right-hand side of its definition the
first (resp. second) argument, i.e., s (resp. t), is fixed, i.e., considered as a parameter.
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Exercise 9.1. Suppose {ei(p)}, p ∈ η(J, J ′), is a basis in the fibre π−1(p). In
the frame {êi}, with êi : γ �→ (êi)γ : r �→ ei(r; γ) = ei(γ(r)), r ∈ J ′′, for a
path γ : J ′′ → η(J, J ′), the expansion (2.4) with s = r holds for every lifting
λ ∈ PLift1(E, π, B)|η(J,J′). Applying this formula, find explicit expressions for the
derivatives D

η(s, · )
t σ̂, D

η( · ,t)
s σ̂, D

η(s, · )
t σ̂2, and D

η( · ,t)
s σ̂1, entering in (9.2). Substi-

tuting the so-obtained expressions into (9.2), prove that the (section-)curvature
operator (9.1) is linear,

(Rη(s, t))(σ) =
(
(Rη(s, t))

)i

j
σj(η(s, t))ei(η(s, t)), (9.3)

and that its components in a frame {ei} are

(
(Rη(s, t))

)i

j
=

∂Γi
j(t; η(s, · ))

∂s
− ∂Γi

j(s; η( · , t))
∂t

+ Γi
k(s; η( · , t))Γk

j(t; η(s, · )) − Γi
k(t; η(s, · ))Γk

j(s; η( · , t)) (9.4)

where Γi
j(· · · ) are the components of the section-derivation D, or of the derivation

D generating it, in the frame {êi} (see (2.3)).

Having in mind the above introduction of the curvature of a section-deri-
vation, now we shall define the curvature (operator) of arbitrary derivation along
paths.

Let D be a C1 derivation along paths in a vector bundle (E, π, B), E being
C1 manifold, and η : J × J ′ → B be arbitrary, injective or not, mapping. Let
η̄ : J × J ′ → E be of class C2 and a lifting of η, π ◦ η̄ := η.

The curvature (operator) along η at (s, t) ∈ J × J ′ of the derivation D is a
mapping

Rη(s, t) : η̄ �→ (Rη(s, t))(η̄) ∈ π−1(η(s, t)) (9.5)

defined in the following way.
Let η̂1, η̂2 ∈ PLift2(E, π, B) and η̌1, η̌2 : J × J ′ → E be such that

η̂1(η(s, · )) := η̄(s, · ), η̌1(s, t) :=
(
Dη(s, · )(η̂1)

)
(t)

η̂2(η( · , t)) := η̄( · , t), η̌2(s, t) :=
(
Dη( · ,t)(η̂2)

)
(s).

By definition, the action of the curvature Rη(s, t) (along η at (s, t) of D) on η̄ is

(Rη(s, t))(η̄) :=
(
Dη( · ,t)(ˆ̂η2)

)
(s) − (

Dη(s, · )(ˆ̂η1)
)
(t) (9.6)

where the liftings ˆ̂η1, ˆ̂η2 ∈ PLift1(E, π, B) are such that3

ˆ̂η1(η(s, · )) := η̌2(s, · ), ˆ̂η2(η( · , t)) := η̌1( · , t).
3Notice the positions of the subscripts 1 and 2 in the next definitions.
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The explicit ‘local’ expression for the curvature Rη(s, t) can be found by
means of the expansion (2.4). Let {êi(p)}, p ∈ η(J, J ′), be a basis in π−1(p). In the
frame {ei}, with êi : γ �→ (êi)γ : r �→ ei(r; γ) = ei(γ(r)) for a path γ : J ′′ → η(J, J ′)
and r ∈ J ′′, we have (see (2.9))

Dη(s, · )(η̂1) =
[ ˙̂ηi

1(η(s, · )) + Γi
j( · ; η(s, · ))η̂j

1(s, · )
]
ei( · ; η(s, · ))

Dη( · ,t)(η̂2) =
[ ˙̂ηi

2(η( · , t)) + Γi
j( · ; η( · , t))η̂j

2( · , t)
]
ei( · ; η( · , t))

where Γi
j(s; γ) are the components of D in {êi} and (see (2.6))

˙̂ηi
1(η(s, · )) : t �→ ∂

(
η̂i
1(η(s, · ))(t))

∂t
=

∂η̄i(s, t)
∂t

, ˙̂ηi
2(η( · , t)) : s �→ ∂η̄i(s, t)

∂s
.

Using these results, (2.4), and the definitions of η̌1 and η̌2, we find:

η̌1(s, t) =
[∂η̄i(s, t)

∂t
+ Γi

j(t; η(s, · ))η̄j(s, t)
]
ei(t; η(s, · ))

η̌2(s, t) =
[∂η̄i(s, t)

∂s
+ Γi

j(s; η( · , t))η̄j(s, t)
]
ei(s; η( · , t)).

Finally, calculating the derivatives
(
Dη( · ,t)(ˆ̂η2)

)
(s) and

(
Dη(s, · )(ˆ̂η1)(t)

)
by means

of equation (2.4), using the relations (see (2.6))

˙̂̂
ηi
1(η(s, · )) : t �→ ∂

(ˆ̂ηi
1(η(s, · ))(t))

∂t
=

∂η̌i
2(s, t)
∂t

,
˙̂̂
ηi
2(η( · , t)) : s �→ ∂η̌i

1(s, t)
∂s

,

and the formulae just-obtained, from (9.6), we get

(Rη(s, t))(η̄) =
(
Rη(s, t)

)i

j
η̄jei(η(s, t)), (9.7)

where ei(s; η( · , t)) = ei(t; η(s, · )) = ei(η(s, t)) was taken into account, and

(
Rη(s, t)

)i

j
=

∂Γi
j(t; η(s, · ))

∂s
− ∂Γi

j(s; η( · , t))
∂t

+ Γi
k(s; η( · , t))Γk

j(t; η(s, · )) − Γi
k(t; η(s, · ))Γk

j(s; η( · , t)) (9.8)

which in a matrix form reads

Rη(s, t) :=
[(

Rη(s, t)
)i

j

]
=

∂Γ(t; η(s, · ))
∂s

− ∂Γ(s; η( · , t))
∂t

+ Γ(s; η( · , t))Γ(t; η(s, · )) − Γ(t; η(s, · ))Γ(s; η( · , t)). (9.9)

Consequently the curvature Rη(s, t) of a derivation D along paths is a linear
operator whose matrix elements (components) are (9.8) in {êi} and which coincide,
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for injective η, with the ones of the section-derivation D along paths generated by
D (see (9.4)), (

Rη(s, t)
)i

j
=

(
Rη(s, t)

)i

j
. (9.10)

This equality is not accidental: if η is injective and one puts η̄ = σ ◦ η for a C1

section σ over η(J, J ′), then, making the corresponding changes, one can trans-
form (9.7) into (9.3) with

(
Rη(s, t)

)i

j
=

(
Rη(s, t)

)i

j
.

Definition 9.1. The curvature (operator) along η : J×J ′ → B at (s, t) ∈ J×J ′ of a
C1 linear transport along paths is called the curvature (operator) along η : J×J ′ →
B at (s, t) ∈ J × J ′ of the generated by it via (3.19) derivation along paths.

Definition 9.2. The curvature (operator) of linear transports or derivations along
paths is a mapping R assigning to each transport or derivation and every η : J ×
J ′ → B and (s, t) ∈ J × J ′ the corresponding curvature Rη(s, t) along η at (s, t).

The following result is important in connection with the theory of normal
frames (see Proposition 6.1 on page 247), as well as for making a link with the
concept of a curvature of the linear connections.

Proposition 9.1. Let (E, π, M) be a vector bundle whose bundle space E and base
M are C1 manifolds, U ⊆ M , and the matrix of the 2-index coefficients of a linear
transport L or derivations D along paths has on U the form

Γ(s; γ) =
dim M∑
µ=1

Γµ(γ(s))γ̇µ(s) (9.11)

in every frame {ei} on U , where Γµ =
[
Γi

jµ

]
are some matrix-valued functions

on an open set containing U or equal to it, γ : J ′′ → U is of class C1, s ∈ J ′′,
and γ̇µ are the components of the tangent vector field γ̇ in some frame {Eµ} over
U in the tangent bundle space over M , γ̇ = γ̇µEµ. Then, for every C1 mapping
η : J × J ′ → U , the components of the curvature of L or D in {ei} along η at
(s, t) ∈ J × J ′ are

(
Rη(s, t)

)i

j
= Ri

jαβ(η(s, t)) (η′(s, t))α (η′′(s, t))β , (9.12)

where

Ri
jαβ := −Γi

jα,β + Γi
jβ,α − Γk

jαΓi
kβ + Γk

jβΓi
kα − Γi

jµCµ
αβ : U → K (9.13)

with [Eα, Eβ ] =: Cµ
αβEµ and f,µ := Eµ(f) for a C1 function f on U . Here η′( · , t)

and η′′(s, · ) denote the tangent vectors to the paths η( · , t) and η(s, · ), respectively.
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Proof. One should substituted (9.11) for the corresponding paths into (9.8), then
to use the equalities ∂

∂s

∣∣
η(s,t)

= (η′(s, t))αEα|η(s,t) = η′(s, t) and ∂
∂t

∣∣
η(s,t)

=

(η′′(s, t))βEβ |η(s,t) = η′′(s, t), and, at last, to apply (I.8.1).4 �
For future purposes, we shall rewrite (9.13) in a matrix form:

Rαβ :=
[
Ri

jαβ

]dim π−1(p)

i,j=1
= −Eβ(Γα) + Eα(Γβ) − ΓβΓα + ΓαΓβ − Cµ

αβΓµ (9.14)

for some point p in M (recall, dim π−1(p) is simply the (fibre) dimension of the
bundle).

We shall call the functions Ri
jαβ , given via (9.13), 4-index components of

the curvature with respect to the pair of frames ({ei}, {Eµ}). In this connection,
the matrix elements (Rη(s, t)i

j) are natural to be called 2-index components of
the curvature with respect to the frame {ei}. Evidently, the curvature of every
linear transport has 2-index components, while only the ones of transports with
coefficients’ matrix (9.11) have 4-index components. A straightforward calculation
shows that a change {ei} �→ {e′ = Aj

iej} implies

Rη(s, t) �→ R′ η(s, t) = A−1(η(s, t)Rη(s, t)A(η(s, t), (9.15)

while its combination with {Eα} �→ {E′
α = Bβ

αEβ} leads to

Rαβ �→ R′
αβ = Bµ

αBν
βA−1RµνA. (9.16)

So, the 4-index components of the curvature of a transport/derivation for
which (9.11) holds, of which kind are the Euclidean transports or derivations, are
independent of the particular mapping η by means of which they are defined, while
the 2-index components depend on the point at which they are calculated and on
the tangent vectors to η at it.

Proposition 9.2. Let (E, π, M), E and M being C1 manifolds, be a vector bundle
and L be a linear transport along paths in it for which (9.11) holds for every path
γ : J → U , U ⊆ M . If dimM = 0, 1, then the curvature of L identically vanishes
on every U ⊆ M .

Proof. See (9.13) for α = β = 1 (if dimM = 1) or remove the subscripts α and β
(and put Cµ = 0) in it (if dimM = 0). �

Example 9.1. A simple look over equations (9.13) on the preceding page and
(I.3.13) on page 26 reveals a striking similarity between them. Of course, this
is not accidental: if we take the tangent bundle (T (M), π, M) for (E, π, M) and
the covariant derivative along paths induced by some linear connection ∇ (see

4The computation is somewhat simpler if one proves (9.13) for a coordinate frame {Eα =
∂

∂xα } and then transforms the result, by means of (6.5) with A = 1, to an arbitrary frame

Eα = Bβ
α

∂
∂xβ and, at last, applies (I.8.3).
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Section III.10) for D, then (9.11) holds for the coefficients’ matrices Γµ of ∇ and,
consequently, the right hand sides of (9.13) and (I.3.13) coincide as now all indices
run from 1 to dim M and Γi

jk are the coefficients of ∇. We can express this result
by saying that the components of the curvature tensor of a linear connection ∇ are
identical with the (4-index) components of the curvature of the parallel transport
or covariant derivative along paths generated by ∇.

Example 9.2. The result of Example 9.1 can be proved in a basis-free way as
follows. Let ∇ be a linear connection on a manifold M , D be a derivation along
paths in (T (M), π, M) with matrix (9.11) in some (every) frame in which Γµ are
the matrices of the coefficients of ∇, and A, B ∈ X2(M). Suppose p ∈ M and a C2

mapping η : J ×J ′ → M be defined by the equations η(s0, t0) = p, η′(s0, t0) = Ap,
and η′′(s0, t0) = Bp for a fixed (s0, t0) ∈ J ×J ′. By means of (2.12), one can easily
prove that the section-derivation D generated by D is identical with the covariant
derivative along paths induced by ∇, D : γ �→ Dγ = ∇γ̇ for every injective path γ.
Applying this result and (9.2), we find

(Rη(s0, t0))(X) = [(R∇(A, B))(X)]|p, X ∈ X(M) (9.17)

where R∇ is the curvature (operator) of ∇, given by the right-hand side of (I.3.11)
(see also (III.2.12) for D = ∇).

Exercise 9.2. Prove that, if D is a linear derivation along vector fields of T 1(M)
(see Definition III.2.2 on page 145) and D is a derivation along paths in the
tangent bundle (T (M), π, M) for which (9.11) is valid with Γµ given via (III.2.9)
(with k = µ), then D : γ �→ Dγ = Dγ̇ and

(Rη(s0, t0))(X) = [(RD(A, B))(X)]|p, X ∈ X(M), p = η(s0, t0), (9.18)

where RD is the curvature (operator) of D defined via (III.2.12) and whose local
components are given by (III.2.14).5

Definition 9.3. A linear transport or derivation along paths is called flat, or curva-
ture free, or integrable (resp. on U) if its curvature vanishes on M (resp. on a set
U ⊆ M), i.e., Rη(s, t) = 0 for every η : J×J ′ → M (resp. for every η : J×J ′ → U).

Remark 9.1. It should be emphasized on a principal difference between the flatness
on U ⊆ B of a linear transport along paths in a bundle (E, π, B) and of a linear
connection or derivation along tangent vector fields on a manifold M . In the former
case, the curvature is zero on U along mappings η in U , i.e., η : J ×J ′ → U , while
in the latter one it vanishes only along vectors tangent to U , i.e., from the tangent
space Tp(M), p ∈ U . If (E, π, B) = (T (M), π, M) and U is a submanifold of M ,
the first case means that η′(s, t), η′′(s, t) ∈ Tη(s,t)(U) ⊆ Tη(s,t)(M), while in the
second one, we have η′(s, t), η′′(s, t) ∈ Tη(s,t)(M), i.e., η′ and η′′ are not generally
in the tangent bundle space over U of (T (U), π, U).

5For further generalization of these results, see Proposition 14.15.
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9.2. On the curvature of Euclidean transports along paths

The main result expressing the relation between curvature of and the frames nor-
mal for a linear transport along paths is the following one.

Theorem 9.1. Let (E, π, B), E being C1 manifold, be a vector bundle, L be a linear
transport along paths in it, and U ⊆ B. The transport L is Euclidean on U if and
only if it is flat on U , i.e., frames normal on U for L exist iff the curvature of L
along mappings in U is identically zero.

Remark 9.2. In some sense, this theorem is the ‘peak’ or ‘summit’ of the series of
similar Theorems II.5.2, III.7.1, III.8.1, and 6.1 which are its special cases.

Proof. Necessity. If L is Euclidean on U , by Definition 4.1′ or Proposition 4.1, its
coefficients vanish in every frame normal on U , Γi

j(r; γ) ≡ 0 for every γ : J ′′ → U
and r ∈ J ′′. Substituting this into equation (9.8) with η : J × J ′′ → U , we get
Rη(s, t) ≡ 0.

Sufficiency. According to the remark at the beginning of Section 5 (see the
paragraph containing equation (5.1) on page 240), we have to prove the existence
of solution of the normal frame equation

dA(γ(s))
ds

+ Γ(s; γ)A(γ(s)) = 0 (9.19)

in a frame {ei} on U with respect to A : U → GL(dim π−1(p), K), p ∈ B, for a flat
on U linear transport along every path γ : J → U .

Let V := J×· · ·×J (dim π−1(p)-times), χ : V → U , y ∈ V , and the mappings
χy

ij : J × J → U be defined by χy
ij(s, t) := χ(y)

∣∣
yi=s,yj=t

, s, t ∈ J , for j 
= i and
χy

ij(s, t) := χ(y)|yi=s for j = i.
The auxiliary system of partial differential equations

∂A(χ(y))
∂yj

= −Γ(yj ; χy
jl( · , yl))A(χ(y)) (9.19∗)

(the concrete value of the index l is insignificant: χy
jk( · , yk) = χy

jl( · , yl)), obtained
from (9.19) for γ = χy

jk( · , yk) and s = yj, always has (non-zero) solutions due to
the flatness of the transport L on U . Indeed, the integrability conditions for it [34]
are identically satisfied:

2
∂2

∂y[j∂yk]
A(χ(y))

=
∂

∂yj
[−Γ(yk; χy

kj( · , yj))A(χ(y))] − ∂

∂yk
[−Γ(yj ; χy

jk( · , yk))A(χ(y))]
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=
[
−∂Γ(yk; χy

kj( · , yj))
∂yj

+ Γ(yk; χy
kj( · , yj))Γ(yj; χy

jk( · , yk))

+
∂Γ(yj ; χy

jk( · , yk))
∂yk

− Γ(yj ; χy
jk( · , yk))Γ(yk; χy

kj( · , yj))
]
A(χ(y))

= −Rχy
jk(yj , yk)A(χ(y)) ≡ 0

where we have used the initial system (9.19∗) (for different l) several times,
χy

kj(·,yj)=χy
jk(·,yk), (9.9) for η=χy

jk, s=yj , and t=yk, and the flatness of L on U .
Let now A be a solution of the system (9.19∗) for y, χ, and χy

jk such that
yi0 = s ∈ J for some fixed i0, χ(y0) = γ(s) for some y0 ∈ V with yi0

0 = s,
and χy0

i0l( · , yl
0) = γ.6 Then the restriction of (9.19∗) at y0 for j = i0 is identical

with (9.19) and, consequently, the frame {e′i} with e′i|γ(s) := Aj
i (γ(s))ej |γ(s) is

normal along γ : J → U . �
Now we have at our disposal the machinery required to look on Theorems 6.1

on page 249 and 6.2 on page 253 from the view-point of transports’ curvature. Let
(E, π, M) be a vector bundle whose bundle space and base are C1 manifolds and
U ⊆ M . By Proposition 9.1, if the coefficients’ matrix of a linear transport along
paths has the form (9.11), the matrices of the 4-index components of the curvature
are (9.14) and consequently

Rµν(−Γ1, . . . ,−Γdim M ) = Rµν (9.20)

where Rµν(· · · ) are defined by (6.7).7 From this equality, the conclusion can be
made that in Theorem 6.1 the condition (6.6) can, equivalently, be replace by
the flatness of the transport on U . Moreover, in this theorem the validity of the
representation (6.1) can be dropped: it follows either from the Euclidness of the
transport (Proposition 6.1) or from the flatness (as by Theorem 9.1 the flatness
implies the Euclidness). This completes the proof of the following assertion which
is a stronger version of Theorem 6.1.

Corollary 9.1. A linear transport along paths in vector bundle (E, π, M), E and
M being C1 manifolds, is Euclidean on U ⊆ M iff it is flat on U or, equivalently,
iff the conditions (6.6) hold for p ∈ U .

Corollary 9.2. Let (E, π, M), E and M being C1 manifolds, be a vector bundle
and L be a linear transport along paths in it for which (9.11) holds for every path
γ : J → U , U ⊆ M . If dimM = 0, 1, then L is Euclidean on every set U ⊆ M .

Proof. See Proposition 9.2 and Theorem 9.1. �
6Such a choice of χy0

i0l is always (locally) possible; for the case when B is a C1 manifold, see

the paragraph containing equations (II.3.12) and (II.3.13).
7In the equality (9.20), we implicitly suppose that the matrix-valued functions Γµ, entering

in (9.11) and defining Rµν via (9.14), are identical with the matrices of the 3-index coefficients
of the transport which appear in (6.1). If U is not a (dim M)-dimensional submanifold of M , in
this way we introduce in the definition of Rµν an arbitrariness which is a consequence of the
one in the definition of Γµ; for some details, see the discussion after Proposition 6.2.
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The combination of the above results with the ones of Section 6 leads to a
necessary and sufficient condition for the flatness on U ⊆ M of a linear transport
whose coefficient matrix has a representation (9.11) on U . At first sight, one may
suppose L is flat on U iff

Rµν = 0 (9.21)

on U . But, as it is clear from (9.12), these equalities imply the flatness on U but the
opposite is generally not true unless U is a neighborhood, e.g., if U = M , or if on Γµ

are imposed some additional conditions. Besides, as we know from Section 6, the
equations (9.21) do not concern solely the transport under consideration, but they
also imply some restrictions on the arbitrariness in the definition of the transport’s
3-index coefficients. The elimination of the last restrictions on a submanifold of
M from (9.21) leads to the following result.

Proposition 9.3. A linear transport L along paths in (E, π, M) is flat on a sub-
manifold N of M if and only if for every p0 ∈ N and a chart (V, x) of M such that
V � p0 and x(p) = (x1(p), . . . , xdim N (p), tdim N+1

0 , . . . , tdim M
0 ) for every p ∈ N ∩V

and constant numbers tdim N+1
0 , . . . , tdim M

0 , the equalities (6.16) hold for p ∈ N ∩V
with RN

αβ given via (6.17) in which the matrices Γ1, . . . ,Γdim N , given via (6.12),
are the first dimN of the matrices of the 3-index coefficients of L in the coordinate
frame

{
∂

∂xµ

}
in the tangent bundle space over N ∩ V .

Proof. See Theorem 6.2 on page 253 and Theorem 9.1 or Corollary 9.1. �
The essence of Proposition 9.3 is that it provides a criterion for a flatness on a

submanifold of a linear transport along paths in terms of the 4-index components
of its curvature, if they exist.

An important consequence of Theorem 9.1 is that the combination of it and
any one of the necessary and sufficient conditions or assertions for the existence of
normal frames derived in Sections 5 and 6 results in a corresponding criterion or as-
sertion, respectively, for flatness of a linear transport or derivation along paths. For
example, a transport is curvature free iff its action depends only on the initial and
final points of the transportation, not on the particular path connecting them (cf.
Theorem 5.1); along every fixed path every transport is flat (see Corollary 5.1), etc.

A simple corollary of Theorems 9.1 and 5.1 is the following important crite-
rion for path-independence of a linear transport along paths.

Corollary 9.3. Let L be a linear transport along paths in a vector bundle (E, π, B)
and U ⊆ B. The transport L is path-independent over U , i.e., along paths in U ,
if and only if L is flat on U .

Proof. If L is path-independent over U , it is Euclidean on U(Theorem 5.1) and so
it is flat on U (Theorem 9.1). Conversely, if L is flat on U , it is Euclidean on U
(Theorem 9.1) and, consequently, it is path-independent over U (Theorem 5.1). �

In short, we can summarize the content of this section by stating that the sets
of Euclidean, flat, and path-independent linear transports along paths coincide.
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10. Torsion and normal coordinates

In the preceding chapters, we have had a number of chances to see that, if frames
normal for a linear connection or derivation of the tensor algebra on a manifold
exist, then normal coordinates exist iff the torsion of the connection or deriva-
tion, respectively, vanishes. Prima facie one can expect similar results for linear
transports or derivations along paths in vector bundles. But a simple look on the
corresponding definitions (I.3.12) and (III.2.13) of the torsion reveals a peculiarity
that can not be generalized to arbitrary vector bundles: they include the commuta-
tor of two tangent vector fields and the action of a derivation along one of them on
the another one. These operations are primary related to the bundle (T (M), π, M)
tangent to a manifold M and at present are not known suitable generalizations of
them for arbitrary vector bundles.1 Since it seems that the tangent bundles are
the only sufficiently general and frequently used bundles for which the concept of
a ‘torsion’ can be introduced, they will be considered below in the present section.

10.1. Torsion of linear transport or derivation along paths
in the tangent bundle over a manifold

Let M be a C1 manifold and (T (M), π, M) the bundle tangent to it. Suppose
η : J×J ′ → M is a C2 injective mapping. Denote by η′( · , t) and η′′(s, · ) for (s, t) ∈
J × J ′ the vector fields tangent to the paths η( · , t) : J → M and η(s, · ) : J ′ →
M , respectively. We consider η′ and η′′ as vector fields on η(J, J ′), η′, η′′ ∈
X(η(J, J ′)) = Sec((T (M), π, M)|η(J,J′)), such that

η′ : η(s, t) �→ η′
η(s,t) := η′(s, t) and η′′ : η(s, t) �→ η′′

η(s,t) := η′′(s, t)

for every (s, t) ∈ J × J ′.2

At last, if X ∈ X(η(J, J ′)), we denote with X̂ a lifting of paths X̂ ∈
PLift((T (M), π, M)|η(J,J′)) such that for every path γ : J ′′ → η(J, J ′), we have
X̂ : γ �→ X̂γ ∈ P(π−1(γ(J ′′))) with X̂γ : r �→ X̂γ(r) := X |γ(r), r ∈ J ′′. In particu-
lar, the equalities η̂′

η(s, · )(t) = η′(s, t) and η̂′′
η( · ,t)(s) = η′′(s, t) are valid.

The torsion (vector) along η : J × J ′ → M at (s, t) ∈ J × J ′ of a derivation
D along paths in the tangent bundle (T (M), π, M) is called the vector

T η(s, t) :=
(
Dη( · ,t)(η̂′′)

)
(s) − (

Dη(s, · )(η̂′)
)
(t) ∈ π−1(η(s, t)). (10.1)

1The analogue of a derivation along vector fields in a general vector bundle is the concept
of a derivation along paths but it acts on liftings of paths, (version: on sections (possibly along
paths)), not on paths or on the elements of the total bundle space. If the elements of the bundle
space are mappings (operators), under certain conditions, their commutator can be defined, but
this is an exceptional case.

2This is possible as η is supposed injective.



272 Chapter IV. Normal Frames in Vector Bundles

Using the operator Dγ
s (see Definition 2.1) and the one of the section-derivation

D generated by D (see (2.12)), we can write

T η(s, t) = Dη( · ,t)
s (η̂′′) − D

η(s, · )
t (η̂′)

=
(
Dη( · ,t)(η′′)

)
(η(s, t)) − (

Dη(s, · )(η′)
)
(η(s, t)).

(10.2)

Introducing a frame {Ei} on η(J, J ′), applying (2.4), and using the relation

∂η′ i(s, t)
∂t

− ∂η′′ i(s, t)
∂s

= Ci
kl(η(s, t))η′ k(s, t)η′′ l(s, t),

which is a consequence of the definitions of η′ and η′′ and the C2 differentiability
of η,3 from (10.2), we find the local expression4

T η(s, t) =
(
T η(s, t)

)i
Ei|η(s,t) (10.3)

where the components of the torsion in {Ei} are(
T η(s, t)

)i := Γi
j(s; η( · , t))η′′ j(s, t) − Γi

j(t; η(s, · ))η′ j(s, t)

− Ci
jk(η(s, t))η′ j(s, t)η′′ k(s, t), (10.4)

with Γi
j being the components of D in {Ei} and [Ej , Ek] =: Ci

jkEi.

Definition 10.1. The torsion (vector) along η : J × J ′ → B at (s, t) ∈ J × J ′ of
a linear transport along paths in the tangent bundle over a manifold is called the
torsion (vector) along η : J × J ′ → B at (s, t) ∈ J × J ′ of the generated by it
via (3.19) derivation along paths.

Definition 10.2. The torsion (operator) of linear transports or derivations along
paths is a mapping T assigning to each transport or derivation and every η : J ×
J ′ → B and (s, t) ∈ J × J ′ the corresponding torsion T η(s, t) along η at (s, t).

Proposition 10.1. If the coefficients of a linear transport along paths in the tangent
bundle (T (M), π, M) have on U ⊆ M the representation (9.11) along every path γ
in U in some (every) frame {Ei} on U , then the components of its torsion vector
along η : J × J ′ → U at (s, t) ∈ J × J ′ are(

T η(s, t)
)i = T i

jk(η(s, t))η′ j(s, t)η′′ k(s, t) (10.5)

with
T i

jk := −Γi
jk + Γi

kj − Ci
jk. (10.6)

Proof. Substitute (9.11) for γ = η( · , t), η(s, · ) into (10.4). �
3To derive this equality, calculate the commutator [η′, η′′] |η(s,t) in {Ei} and use [η′, η′′] = 0

as (η′(s, t))(f) = ∂f(η(s,t))
∂s

and (η′′(s, t))(f) = ∂f(η(s,t))
∂t

for a C1 function f on η(J, J ′).
4One can at first derive (10.4) in a coordinate frame and then, applying the corresponding

transformation laws, the result can be transformed into an arbitrary frame.
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Lemma 10.1. The representation (9.11) on page 265 holds on U ⊆ M , i.e., for
paths lying entirely in U , for some linear transport L along paths in the tangent
bundle (T (M), π, M) if and only if L along paths in U coincides with the parallel
transport generated by a linear connection.

Proof. If (9.11) holds, the matrices Γµ transform according to (6.4) with B = A
(as now (E, π, M) = (T (M), π, M)) and, consequently (see (I.5.3)), they are coef-
ficients’ matrices of a linear connection ∇. Therefore the derivation D along paths
generated by L coincides with the covariant derivative along paths generated by ∇.
Since the linear transport along paths generated by the last derivation is the par-
allel transport assigned to ∇ (see Definition I.3.2 on page 27 and Proposition 3.7),
the last transport coincides with L.

Conversely, from definitions (I.3.18) and (I.3.17) follows that, for every par-
allel transport generated by a linear connection ∇, the representation (9.11) is
valid if in it Γµ are the coefficients’ matrices of ∇. �

Lemma 10.1 explains the reason why in equation (10.5) appear the compo-
nents T i

jk of the torsion tensor of some linear connection with local coefficients
Γi

jk (see (I.3.14)).

Example 10.1. The torsion tensor T∇ of a linear connection ∇ can be introduced
by means of the torsion operator T of the assigned to it parallel transport or
covariant derivative along paths. Indeed, defining the mapping η : J × J ′ → M as
we did before equation (9.17), after a simple calculation, we find

T ηp(s0, t0) =
(
T∇(A, B)

)∣∣
p

(10.7)

where T∇ is exactly the torsion tensor of ∇ defined by (I.3.12) and with local
components (I.3.14), i.e., (10.6).

Example 10.2. If D is a linear derivation along vector fields (see Definition III.2.2)
and D is a derivation along paths in the bundle (T (M), π, M) tangent to M for
which (9.11) holds for the coefficients’ matrices Γµ of D, then the torsion of D
along ηp at (s0, t0) is

T ηp(s0, t0) =
(
TD(A, B)

)∣∣
p

(10.8)

with TD being the torsion of D given via (III.2.13) and with local components
given by (III.2.15).

Definition 10.3. A linear transport or derivation along paths in (T (M), π, M) is
called torsionless or torsion free (resp. on U ⊆ M) if its torsion (operator) vanishes
on M (resp. on U).

Remark 10.1 (Cf. Remark 9.1 on page 267). It should be emphasized on a principal
difference between the torsionless on U ⊆ B of a linear transport along paths in the
bundle (T (M), π, M) and of a linear connection or derivation along tangent vector
fields on a manifold M . In the former case, the torsion is zero on U along mappings
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η in U , i.e., η : J × J ′ → U , while in the latter one it vanishes only along vectors
tangent to U , i.e., from the tangent space Tp(M), p ∈ U . If U is a submanifold
of M , the first case means that η′(s, t), η′′(s, t) ∈ Tη(s,t)(U) ⊆ Tη(s,t)(M), while
in the second one, we have η′(s, t), η′′(s, t) ∈ Tη(s,t)(M), i.e., η′ and η′′ are not
generally in the tangent bundle space over U in (T (U), π, U).

Proposition 10.2. A linear transport (resp. section-derivation) along paths in the
tangent bundle (T (M), π, M) is torsionless over a submanifold N of M , i.e., along
paths in N , if and only if its restriction to the bundle space T (N) :=

⋃
p∈N Tp(N)

(resp. to Sec1(T (N), π|N , N)) coincides with the restriction to the same set of
the parallel transport (resp. covariant derivative) along paths in N generated by a
linear connection and which transport (resp. covariant derivative) is torsion free
on the mentioned set.

Proof. If D (resp. L) is a torsion free covariant derivative (resp. parallel transport)
along paths generated by a linear connection ∇, then, due to Lemma 10.1 (resp.
Definition I.3.2 and (I.3.17)), its components (resp. coefficients) have locally the
representation (9.11) in which Γµ are the coefficients’ matrices of ∇. Therefore the
torsion of D (resp. L) is given via (10.5) which vanishes on N , by virtue of (10.6),
(10.7), and the torsionless of D (resp. L).

Conversely, let D (resp. L) be a section-derivation (resp. linear transport)
along paths which is torsion free on the tangent bundle (T (N), π, N) over N .

At first, we consider the case dim N = dim M .
Let η : J × J ′ → N , (s, t) ∈ J × J ′, {Ei} be a frame on N , and Γi

j be
the components of D (resp. the coefficients of L) in {Ei}. From (10.3) and (10.4)
follows that the torsionless is equivalent to

Γi
j(s; η( · , t))η′′ j(s, t) = Γi

j(t; η(s, · ))η′ j(s, t) + Ci
jk(η(s, t))η′ j(s, t)η′′ k(s, t).

Since η is arbitrary, so are η′ and η′′ and, consequently, the last equation implies
the expansion5, 6

Γi
j(r; γ) = Γi

jk(r; γ)γ̇k(r), r = s, t and resp. γ = η( · , t), η(s, · )
for some functions Γi

jk (generally non-symmetric in j and k) which do not depend
on γ̇. Inserting this representation for Γi

j into the last equation, we get

Γi
kj(s; η( · , t)) = Γi

jk(t; η(s, · )) + Ci
jk(η(s, t))

as η′ and η′′ are arbitrary. Using, once again, the arbitrariness of η, hereof follows
that Γi

jk(r; γ) must depend on the combination γ(r), not on r and γ separately,

5From the differentiation of the last equality with respect to η′ i(s, t) or η′′ i(s, t) follows the
below-written expansion for Γi

j and the second derivative of the this equality with respect to

η′ i(s, t) and η′′ i(s, t) results in the equation presented after the expansion.
6Here and below the assumption that N is a neighborhood is essentially used as otherwise,

generally, from equality like Ai(t; η(s, · ))η′ i(s, t) = 0 does not follow Ai(t; η(s, · )) = 0.
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i.e., Γi
jk(r; γ) = Γi

jk(γ(r)). Therefore, we have:

Γi
j(r; γ) = Γi

jk(γ(r))γ̇k(r)

Γi
kj(γ(r)) = Γi

jk(γ(r)) + Ci
jk(γ(r))

for r = s, t and respectively γ = η( · , t), η(s, · ). Since η : J × J ′ → N is arbitrary,
the last two equations must hold for every path γ : J ′′ → N . The former of these
equations, combined with Lemma 10.1, implies that D (resp. L) is on N a covariant
derivative (resp. parallel transport) along paths assigned to a linear connection ∇
(with local coefficients Γi

jk) on N . From the latter equation, when substituted
into (10.6) or (I.3.14), follows that ∇ and the assigned to it parallel transport are
torsionless on N .

Let now N be a submanifold of M of dimension dimN < dim M .
Note 10.1. The proof of the theorem can be completed by noticing that N is a
manifold by itself (as it is a submanifold of M – see page 7) and, consequently,
to this case is valid the already proved theorem for dimN = dimM with N
for M . The reformulation of this observation in terms of submanifolds yields the
required result. The below-presented alternative and independent proof is consid-
erably longer but it reveals some features of the methods employed and parts of
it will be used later. If, at this point, this is not interesting for the reader, he/she
can skip the text after the present note till the end of this proof.

Suppose {Ei = ∂
∂xi } is the coordinate frame associated to a local coordinate

system {xi} in a neighborhood of η(s, t) in M such that xi(q) = ai = const ∈ K

for every i > dim N and q in a neighborhood of η(s, t) in N (see page 7). Then in
the above proof of the case with dimN = dimM one should put η′ i = η′′ i = 0 for
i > dim N as the range of η is in N . Taking this into account and repeating mutatis
mutandis the above lines, concerning the case dim N = dimM , we conclude that,
for every path γ : J ′′ → N , is fulfilled

Γi
j(r; γ) = Γi

jk(γ(r))γ̇k(r), j ≤ dimN, i = 1, . . . ,dimM

Γi
kj(p) = Γi

jk(p) + Ci
jk(p), j, k ≤ dimN, i = 1, . . . ,dimM, p ∈ N

and for j, k > dimN the functions Γi
jk : N → K are completely arbitrary. (Notice,

since γ is a path in N , we have γ̇k = 0 for k > dimN ; besides, Ci
jk = 0 as

Ei = ∂
∂xi .)
Let ∇ be a linear connection on (a neighborhood of) N whose coefficients

on N in {Ei} are equal to the above functions Γi
jk which for j, k > dimN are

arbitrarily fixed. Consider the restriction to Sec1(T (N), π|N , N) of the covariant
derivative (resp. to T (N) of the parallel transport) along paths in N assigned to
∇. According to (I.3.17) (resp. Definition I.3.2), it depends only on Γi

j(r; γ) =
Γi

j(γ(r)) with j ≤ dim N when applied on tensor fields (resp. tensors) over N as
a manifold, i.e., sections of the tangent bundle (T (N), π|N , N) over N (resp. in



276 Chapter IV. Normal Frames in Vector Bundles

the bundle space T (N)). Hence, by construction, this restriction coincides with
the one to the same set of the initial section-derivation D (resp. linear transport
L) along paths. As a consequence of the last result, it is torsionless. �

Proposition 10.2 has an equivalent version which is more suitable for the
most applications.

Proposition 10.2′. Let L (resp. D) be a linear transport (resp. section-derivation)
along paths in the tangent bundle (T (M), π, M) over a C1 manifold M and N be a
submanifold of M . Then L (resp. D) is torsionless on N if and only if it coincides
on N , i.e., along paths in N , with the torsionless on N parallel transport (resp.
the torsionless on N covariant derivative) along paths assigned to some linear
connection (on (a neighborhood of ) N).

Proof. This proof is identical with the one of Proposition 10.2 till, but not includ-
ing, its last paragraph. It should be replace by the following text.

Let ∇ be a linear connection on (a neighborhood of) N whose coefficients
Γ

i

jk on N in {Ei} are such that Γ
i

jk = Γi
jk for j, k ≤ dimN (Γi

jk are the

same as above) and Γ
i

jk = 0 for j, k > dimN .7 Then the parallel transport (resp.

covariant derivative) along paths in N depends only on Γ
i

jk with j, k ≤ dimN (see
Definition I.3.2 (resp. (I.3.17))) and, by construction, it coincides with the initial
transport L (resp. section-derivation D), due to which it is torsion free on N . �

Remark 10.2. Having in mind Remarks 9.1 and 10.1, we want to emphasize on
the fact that the vanishment on U ⊆ M of the curvature/torsion of the parallel
transport assigned to a linear connection ∇, generally, does not imply that ∇
is flat/torsionless. An exception is the case when U is a (dimM)-dimensional
submanifold of M .8

10.2. Holonomic normal frames in the tangent bundle

The main purpose of this subsection is the proof of the below-presented theorem
whose meaning is that, in the tangent bundle over a manifold, the flat torsionless
parallel transports (resp. covariant derivatives) along paths generated by linear
connections are the only linear transports (resp. section-derivations) along paths
admitting normal coordinates, i.e., holonomic normal frames. Notice, here the
flatness is required for the existence of the normal frames (Theorem 9.1).

Theorem 10.1. Let L be an arbitrary linear transport along paths in the tangent
bundle (T (M), π, M) over a C3 manifold M and L be flat over a neighborhood

7The condition Γ
i
jk = 0 for k > dimN is not necessary as Γ

i
jk appear only in the combination

Γ
i
jk γ̇k with γ in U , i.e., γ̇k = 0 for k > dimN in the coordinates used.
8These assertions are clearly seen from Corollary 11.1 and Remark 11.3 below in a case U is

a submanifold of M .
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U ⊆ M . Holonomic on U frames normal for L on U exist if and only if L is
torsionless over U or, equivalently, iff L coincides over U with the (flat and)
torsionless parallel transport assigned to a (flat and torsionless) linear connection
on U .

Proof. (i) It follows from Proposition 10.2′ and (9.17) that L is torsionless and
flat over (a submanifold, in particular neighborhood) U iff over U it coincides with
the parallel transport generated by a linear connection and which transport is flat
and torsion free on U .

(ii) If L admits a frame {Ei} which is holonomic and normal on U , i.e., such
that Ci

jk = 0 on (a neighborhood of) U and Γi
j = 0 on U , equation (10.4) yields

T η(s, t) = 0 for every η : J × J ′ → U . Hence, by definition, L is torsionless on U .
(iii a) At last, let on T (U) the transport L coincides with the flat torsion-

less parallel transport generated by a linear connection ∇ (on U).9 Then (see
Lemma 10.1) the coefficients of L are Γi

j(s; γ) = Γi
jk(γ(s))γ̇k(s), s ∈ J , for every

path γ : J → U with Γi
jk being the coefficients of the mentioned linear connec-

tion. Therefore the curvature (resp. torsion) of L is given via (9.12) and (9.13)
(resp. (10.5) and (10.6)) with i, j, α, β = 1, . . . ,dimM and the values of η in U .

(iii b) Since L is flat on U , it is Euclidean on U (Theorem 9.1) and, by
Theorem 5.2, its coefficients’ matrix on U in a frame {Ei} on U has the form
Γ(s; γ) = F−1

0 (γ(s))dF 0(γ(s))
ds for some non-degenerate matrix-valued function

F 0 : U → GL(K, dimM) of class C1 and every path γ : J → U . On U , we de-
fine a frame {E′

i} by E′
i =

(
F−1

0

)j

i
Ej .

Our intention is to prove that the frame {E′
i} is holonomic and normal on

U , i.e., [E′
j , E

′
k] =: C′ i

jkE′
i with C′ i

jk = 0 and Γ′ i
j = 0 on U . The functions C′ i

jk

are expressible via the analogous ones Ci
jk for {Ei}, [Ej , Ek] =: Ci

jkEi, through
equation (I.8.4) on page 69 with A = F−1

0 :

C′ i
jk = (F 0)i

l

[(
F−1

0

)m

j

(
F−1

0

)n

k
Cl

mn + 2E′
[j

(
F−1

0

)l

k]

]
.

After some simple algebraic manipulations, from here we get

C′ i
jk = (F 0)i

l

(
F−1

0

)m

j

(
F−1

0

)n

k
T l

mn = −T ′ i
jk (10.9)

where T i
jk are the components in {Ei} of the torsion tensor of ∇ given by (10.6)

and T ′ i
jk are the same ones in {E′

i}.10 Since the parallel transport generated by the

9Since U is a neighborhood, from here follows (see (10.7), (9.17), and Definition I.3.2 on
page 27) that ∇ is also flat and torsion free on U . Therefore, by Theorem II.4.3 on page 108,
∇ admits holonomic frames normal on U . As the 3-index coefficients of ∇ and of the parallel
transport assigned to it coincide, this transport is also Euclidean on U and the (holonomic)
frames normal for it and ∇ are identical. This completes the proof of the theorem. If the reader
is not interested from alternative proof and some other details, he/she can skip the rest of the
proof of Theorem 10.1, parts (iii b)–(iii d) below.

10From (10.6) follows that (10.9) is valid in a frame {E′′
i } iff Γ′′ i

jk = Γ′′ i
kj , in particular this

is true in every frame normal for ∇ on U .
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linear connection ∇ is supposed torsionless on U , the equality

C′ i
jk(η(s, t))(η′(s, t))′ j(η′′(s, t))′ k = 0 (10.10)

is valid for every η : J×J ′ → U as a consequence of (10.9), (10.5), and T η(s, t) = 0
on U . Here (η′)′ i and (η′′)′ i are the components of η′ and η′′ in {E′

i}.
(iii c) Taking into account that U is a neighborhood in M (and hence it is

(dimM)-dimensional submanifold of M) and the arbitrariness of η (which means
that η′(s, t) and η′′(s, t) are arbitrary vectors in Tη(s,t)(M)), from equation (10.10),
we obtain C′ i

jk|U = 0, i.e., {E′
i} is holonomic on U .

(iii d) The proof is completed by the observation that the frame {E′
i =

(F−1
0 )j

iEj} is normal on U . In fact, inserting the representation (5.4′) into the
transformation law (3.26) with A = F−1

0 , we find Γ′(s; γ) = 0 for every γ : J → U .
�

In the above proof of Theorem 10.1, we intentionally have singled out its
several parts, (i)–(iii d), and the intermediate equations (10.9) and (10.10). A su-
perficial look on them reveals that parts (ii)–(iii b) and (iii d) are valid for arbitrary
subset U ⊆ M as the initial assumption on U to be a neighborhood in M was
not used in them. On the contrary, the conclusions in part (iii c) rely entirely on
the supposition that U is a neighborhood in M as otherwise from (10.10) one can
not, generally, infer the holonomicity of the frame {E′

i}, C′ i
jk = 0 on some open set

containing or equal to U : if U is not a neighborhood in M , then, generally, η′(s, t)
and η′′(s, t) are in some proper subset of Tη(s,t)(M) (see, e.g., Proposition 11.3 be-
low). The origin of this situation comes from the fact that the torsionlessness on
U ⊆ M of the parallel transport generated by a linear connection ∇ is, generally,
weaker condition than the torsionlessness of ∇: the latter one implies the former
but the former, generally, does not lead to the latter one. This conclusion is com-
pletely similar to an analogous result concerning the curvature on a submanifold
N of M of linear connections which is expressed by Lemma II.5.1 on page 112:
the path-independence on N in it is equivalent to the flatness of the transport on
U , so it is equivalent to (II.5.1), not to the flatness of the connection on N (cf.
Remark II.5.1). At the end, the conclusions in part (i) rest on Proposition 10.2′

which is valid if U is a submanifold of M , not only a neighborhood in it, but it
may not hold on an arbitrary its subset.

On the base of the above comments, we can formulate the next two proposi-
tions which are stronger variants of different parts of Theorem 10.1.

Proposition 10.3. A linear transport along paths in the tangent bundle (T (M), π, M)
is flat and torsionless on a submanifold N of M if and only if it coincides over
N with the parallel transport generated by a linear connection on (a neighborhood
of ) N which transport is flat and torsionless over N .

Exercise 10.1. Prove, independently of (10.9), that the frame {E′
i = (F−1

0 )j
i Ej} is normal for ∇

on U . (Notice, here is important the supposition U to be a neighborhood.)
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Proof. See Proposition 10.2′ and (9.17) �

Proposition 10.4. If a linear transport along paths in (T (M), π, M) admits a frame
which is normal and holonomic on a set U ⊆ M , then it is flat and torsion free
on U .

Proof. See part (ii) of the proof of Theorem 10.1. �

Proposition 10.5. Let L be a linear transport along paths in the tangent bundle
(T (M), π, M). Let L be flat and torsionless over a neighborhood U in the manifold
M and the C1 non-degenerate matrix-valued function F 0 : U → GL(dim M, K)
generates the coefficients of L via (5.4′) in a frame {Ei} on U . Then:

(i) The frame {E′
i} with

E′
i =

(
F−1

0

)j

i
Ej (10.11)

is holonomic and normal for L on U .
(ii) All frames normal for L on U are holonomic.
(iii) All frames which are holonomic and normal for L on U are obtainable from

{E′
i} by linear transformations with coefficients constant on U .

Proof. (i) See parts (iii b)–(iii d) of the proof of Theorem 10.1
(ii) According to Corollary 4.5 on page 239, all frames normal for L on U

are {E′′
i = Bj

i E
′
j} with Bi

j |U = const. Hence these frames are holonomic on U ,
[E′′

j , E′′
k ] = 0, as the frame {E′

i} is such, [E′
j , E

′
k] = 0.

(iii) This part of the assertion follows from part (ii) and Corollary 4.5. �

Remark 10.3. The non-degenerate matrix-valued function F 0, appearing in equa-
tion (10.11), is not arbitrary: since the transport L is assumed torsionless on U
and U is a neighborhood, from (6.3) (see Theorem 5.2) and (10.6)) follows that
the matrix elements (F 0)i

j of F 0 must be solutions of the system of equations

−(F−1
0 )i

mEk(F 0)m
j + (F−1

0 )i
mEj(F 0)m

k − C′ i
jk = 0 (10.12)

on U , where C′ i
jk are given by (I.8.4) with A = F−1

0 . The constant solutions
of (10.12) correspond to frames holonomic and normal for the linear connection
generating the parallel transport with which L coincides on U .

Definition 10.4. Let L (resp. D) be a linear transport (resp. derivation) along
paths in the tangent bundle (T (M), π, M) over a C1 manifold M . A chart (V, x)
of M and the associated to it coordinate system {xi} are called normal (for L
(resp. D)) on a set W ⊆ V if the coordinate frame

{
∂

∂xi

}
is normal for L (resp.

D) on W .

Proposition 10.6. Let L be a linear transport along paths in the tangent bun-
dle (T (M), π, M). Let L be flat and torsion free on a neighborhood U in M and
F 0 : U → GL(dim, K) be of class C1 and generates on V the coefficients of L
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via (5.4′) in the frame
{

∂
∂yi

}
associate to a local chart (V, y) of M such that

V ⊆ U . Then all coordinates {xi} normal for L on V are given by

xi(p) = xi
0 +

p∫
p0

(F 0B
−1)i

j dyj = xi
0 + (B−1)k

j

p∫
p0

(F 0)i
k dyj (10.13)

where p ∈ V , p0 ∈ V is fixed, xi
0 ∈ K are constants, and B = [Bi

j ] is constant
non-degenerate matrix.

Proof. From the proof of Proposition 10.5 follows that {xi} is normal iff ∂
∂xi =

Bj
i (F

−1
0 )k

j
∂

∂yk for non-degenerate B = [Bj
i ] ∈ GL(dim M, K), which is equivalent

to (10.13). �

Exercise 10.2. Prove that the path-independence of the integral in (10.13) is a con-
sequence of the torsionless of L on U ⊇ V . (Cf. the proof of the path-independence
of the integrals in (II.5.14), or (II.5.3), or (11.13). For a rigorous proof, see (11.13)
below and the proof after it for A = BF−1

0 .)

Proposition 10.7. If L is torsionless linear transport along paths in the tangent
bundle (T (M), π, M) over a C1 real manifold M , then along every fixed injective
path γ : J → M exist holonomic frames (local coordinates) normal for L along γ.

Proof. By Corollary 5.1 and Proposition 5.5, the transport L admits frames de-
fined solely along γ and normal along γ. All of them, by Lemma III.10.1 on
page 194, can be extended in a holonomic way outside γ(J). �

Here we shall stop the investigation of the holonomic frames normal for linear
transports along paths in the tangent bundle over a differentiable manifold. The
reason is that these problems, as well as any ones concerning such transports on
submanifolds, can be reduced to similar problems for parallel transports (assigned
to linear connections) or to linear connections over the same manifold (see Propo-
sition 10.3). Besides, the problems for existence and description of the holonomic
frames are solved by Proposition 10.5. The explicit description of the coordinates
normal on a neighborhood is provided by Proposition 10.6. A similar result on
arbitrary submanifolds will be derived in Subsection 11.2.

11. Parallel transports in tangent bundles

The (flat and/or torsionless) parallel transports assigned to a linear connections
appeared several times in Section 10, when the theory of normal frames was con-
cerned. In the present section, we shall investigate the parallel transports (assigned
to linear connections) from the view-point of the general theory of linear trans-
ports along paths. In particular, we shall show that the parallel transports are
uniquely selected among the other transports along paths when normal frames are
involved.



11. Parallel transports in tangent bundles 281

11.1. The parallel transport as a transport along paths

The concept of a ‘parallel transport’, assigned to a linear connection over a man-
ifold M , was introduced by Definition I.3.2 on page 27 in Subsection I.3.3 where
some essential its properties were mentioned. They are enough to be proved that
every parallel transport, when restricted to tensors of a fixed type, is a special kind
of a linear transport along paths in the corresponding tensor bundle over M . To
save some writing, below we shall investigate only the case of the tangent bundle
(T (M), π, M) over a C1 manifold M but, mutatis mutandis (by adding additional
indices, e.g., replacing T (M) with T r

q (M)), the below-presented material can be
transferred on a tensor bundle (T r

q (M), πr
q , M) of arbitrary type (r, q) over M .

Let M be a C1 manifold, (T (M), π, M) be the tangent bundle over it,
γ : J → M be a C1 path, and P be the parallel transport assigned to a C0

linear connection ∇ on M . As we know (see Definition I.3.2), if a, b ∈ J and
a ≤ b, then Pγ|[a,b] : Tγ(a)(M) → Tγ(b)(M) and Pγ|[a,b](X0) = Xγ(b) for every
X0 ∈ Tγ(a)(M) and a vector field X (over γ(J)) which is the solution of ∇γ̇X = 0
with Xγ(a) = X0. A simple analysis reveals that the only place, where the ordering
of the real numbers a and b, a ≤ b, is used, is in the interval [a, b] in which, by
definition, its left end must be less than or equal to its right one. This restriction
in the definition of a parallel transport is, by our opinion, completely unnecessary
and can be removed by a suitable generalization or redefinition of the concept of
a ‘parallel transport’.

Definition 11.1. A parallel transport (along paths), assigned to a linear connection
∇, in the tangent bundle (T (M), π, M) is a mapping P : γ �→ P γ , γ : J → M
being a C1 path, where P γ , called parallel transport along γ, maps every pair
(a, b) ∈ J × J into a mapping

P γ
a→b : Tγ(a)(M) → Tγ(b)(M), (11.1)

called parallel transport along γ from a to b, such that if X0 ∈ Tγ(a)(M), then

P γ
a→b(X0) = Xγ(b) (11.2)

where X is a vector field over γ(J) defined as the unique solution of the initial-
value problem

∇γ̇X = 0 (11.3a)
Xγ(a) = X0. (11.3b)

Remark 11.1. Recall (see Remark I.3.3 on page 28), the vector field X defined
via (11.3) is generally multiple-valued at the points of self-intersection of γ, if
any. To restore the single-valueness, one should consider X as a lifting of γ in
(T (M), π, M), i.e., X : J → T (M) with π ◦ X = γ; in this case it is better to
write Xγ for X and Xγ(s) for Xγ(s), s ∈ J and the action of ∇γ̇ on Xγ is given
by (I.3.19) which is in a full agreement with (2.4) and (2.16) (see also (III.10.5)
and Section 13).
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Comparing Definitions I.3.2 and 11.1, we see that the parallel transports P
and P , introduced by them, are equivalent in a sense that each of them can be
expressed through the other one:

P γ
a→b =

{
Pγ|[a,b] for a ≤ b(
Pγ|[b,a]

)−1 for a ≥ b
(11.4a)

Pβ = P β
a→b for β : [a, b] → M, a ≤ b. (11.4b)

Proposition 11.1. The parallel transport P , as defined by Definition 11.1, is a
linear transport along paths in the tangent bundle (T (M), π, M).

Proof. Due to Definition 3.1 and (11.1), we have to check (3.2)–(3.4) with P for L,
which is almost trivial: the equality (3.2) is a simple consequence of the uniqueness
of the solutions of the initial-value problem (11.3) along γ written in terms of P ,
equation (3.3) follows from (11.2) with b = a and (11.3b) as X0 is arbitrary, and
the linearity condition (3.4) is a result of the linearity of equation (11.3a) as ∇γ̇

is a linear operator (see Definition I.3.1, points (ii) and (iii), or (I.3.17)). �
This quite simple result has two consequences which are important for us. On

one hand, the parallel transport (along paths and assigned to a linear connection)
provides a concrete and essential example of a linear transport along paths and,
on another hand, all results derived until now in the present chapter are valid for
the parallel transports (in the tensor bundles over a manifold).

Below, when talking about parallel transports, we shall have in mind the
ones introduced by Definition 11.1, not by Definition I.3.2. If there is a risk of
misunderstanding, we shall call such transports parallel transports along paths.1

It is well known, a parallel transport on a neighborhood U , i.e., along paths
in U , is path-independent iff the generating it linear connection is flat on U .
Analogous result on arbitrary submanifold N of M is expressed by Lemma II.5.1
on page 112. Proposition 11.1 ensures the formulation of this important assertion
in internal terms, i.e., ones involving only parallel transports.

Proposition 11.2. Let N be a submanifold of a C3 manifold M . A C1 parallel
transport is path-independent over N , i.e., along C1 paths in N , if and only if it
(considered as a linear transport along paths in (T (M), π, M)) is flat on N .

Proof. The result follows from Lemma II.5.1, Remark II.5.3 after its proof, and
equations (9.20) and (9.12). �

A little below (see Corollary 11.2), it will be proved the validity of Proposi-
tion 11.2 for arbitrary set U ⊆ M , not only for submanifolds of M .

Proposition 11.3. The parallel transports in the tangent bundle (T (M), π, M) are
the only linear transports along C1 paths in this bundle whose coefficients have the

1For some general relations between parallel transports, connections, and transports along
paths in differentiable bundles, the reader is referred to Section V.8.
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representation
Γ(s; γ) = Γk(γ(s))γ̇k(s) (11.5)

in any frame.

Proof. This is a reformulation of Lemma 10.1 on page 273. �

Proposition 11.4. If P is a parallel transport along paths in (T (M), π, M) assigned
to a linear connection ∇, then the generated by it derivation along C1 paths D,
defined via (3.19), is such that(

Dγ(X̂)
)
(s) = (∇γ̇X)|γ(s) (11.6)

where γ : J → M is a C1 path, X ∈ X(M), and X̂ ∈ PLift1(T (M), π, M) is
given by X̂ : γ �→ X̂γ : s �→ X̂γ(s) := Xγ(s), s ∈ J . The section-derivation D
corresponding to D coincides with the covariant derivative along injective C1 paths
generated by ∇:

Dγ = ∇γ̇ (11.7)

for every C1 path γ without self-intersections.

Proof. (Cf. the first part of the proof of Lemma 10.1.) Since P is a parallel trans-
port, the equality (11.5) holds in a frame {Ei} (Proposition 11.3) and in any
other frame {E′

i = Aj
iEj} the matrices Γ′

k are given by (6.4) with B = A := [Aj
i ]

and µ, ν = 1, . . . ,dimM as now (E, π, B) = (T (M), π, M). Hence Γk transform
according to (I.5.3), or (I.3.5) in components, which means that they are coeffi-
cients’ matrices of a linear connection ∇. Since the covariant derivative assigned to
∇ acts according to (I.3.17), in which exactly the components of (11.5) (see (11.5′)
below) appear, and the explicit action of Dγ

s is given by (3.23) with {Ei} for {ei},
we derive that Dγ

s (X̂) = (∇γ̇X)|γ(s), i.e., (11.6) holds.
The equality (11.7) is a consequence of (11.6) and (2.12) for injective path γ.

�
At this point, we want to mention a corollary from Propositions 11.3 and 11.4

which is quite important in the theory of (linear) connections and parallel trans-
ports: on the base of these propositions, the concept of a parallel transport can be
defined axiomatically, independently of the connection theory, and by its means the
notion of a (linear) connection can be introduced. For the purpose, Definitions 11.1
(or I.3.2) and I.3.1 should be replaced, respectively, by the following ones.

Definition 11.2. A parallel transport P along paths in (T (M), π, M) for a C1 man-
ifold M is a linear transport along paths in (T (M), π, M) the coefficients’ matrix
of which has the representation (11.5) in some (and hence in any) frame.

Definition 11.3. A linear connection (resp. assigned to a parallel transport P ) on
a manifold M (or in (T (M), π, M)) is a mapping ∇ assigning to every X ∈ X(M)
a mapping ∇X : X1(M) → X0(M) such that

(∇X(Y ))|p := Dγ
s (Ŷ ), Y ∈ X1(M), p ∈ M (11.8)
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where D is the derivation along paths corresponding via (3.19) to some parallel
transport in (T (M), π, M) (resp. to P ), γ : J → M is the integral path of X
through p, γ(s) = p for some s ∈ J , and Ŷ : γ �→ Ŷγ := Y ◦ γ.

Exercise 11.1. Prove that the mapping ∇, introduced via Definition 11.3, is in fact
a linear connection (restricted to the algebra of vector fields over M) according to
Definition I.3.1.

Exercise 11.2. Prove that the parallel transport assigned to a connection ∇ via
Definition 11.1 (or I.3.2) coincides with the one generating ∇ via (11.8).

Therefore we conclude that a linear connection (resp. parallel transport)
according to Definition I.3.1 (resp. I.3.2) is such with respect to Definition 11.3
(resp. 11.2) and vice versa, i.e., both definitions are equivalent. Thus we have at our
disposal two equivalent approaches to the theory of linear connections and parallel
transports in which one of these objects is taken (and axiomatically defined) as a
primitive one, while the other one is introduced on its base.

Proposition 11.5. In the representation (11.5) for the coefficient matrix of a parallel
transport, the matrices Γk are the coefficients’ matrices of the generating it linear
connection ∇, i.e., in components, we have

Γi
j(s; γ) = Γi

jk(γ(s))γ̇k(s) (11.5′)

with Γi
jk being the local coefficients of ∇.

Proof. In the proof of Proposition 11.4, we have demonstrated that Γk are coeffi-
cients’ matrices of a linear connection ∇. According to (3.23) and (2.3), the coef-
ficients of the parallel transport P assigned to ∇ coincide with the components of
the derivation D along paths generated by P . Combining this result with (11.6)
for P and (I.3.17), we see that the coefficients of P coincide with the ones given
by (11.5′) for the initial parallel transport. Hence both transports are identical. �

Remark 11.2. This statement does not contradict to the arbitrariness in the 3-
index coefficients of a linear transport along paths discussed in Section 6 because
the 2-index coefficients of a parallel transport have the form (11.5′) on any subset
U ⊆ M , i.e., for γ : J → U , with Γi

jk being the coefficients of ∇.

Proposition 11.6. In an arbitrary frame {Ei}, the curvature and torsion of a par-
allel transport along paths are

Rη(s, t) = [(R(η′, η′′)Ej) ⊗ Ej ]|η(s,t) (11.9)
T η(s, t) = [T (η′, η′′)]|η(s,t) (11.10)

where η : J × J ′ → M , (s, t) ∈ J × J ′, Ej := (Ej)∗ is the dual of Ej , and R and
T , given via (I.3.11) and (I.3.12), are respectively the curvature and torsion of the
linear connection generating the parallel transport.
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Proof. See (9.17) and (10.7), or Propositions 9.1 and 10.1 and use Proposition 11.5,
(I.3.13) and (I.3.14). �

Corollary 11.1. A parallel transport is flat or torsionless on a submanifold N of
M iff, respectively,

R(X, Y ) = 0 for X, Y ∈ Sec(T (N), π|N , N) (11.11)
T (X, Y ) = 0 for X, Y ∈ Sec(T (N), π|N , N) (11.12)

with R and T being respectively the curvature and torsion of the linear connection
generating the initial parallel transport.

Proof. See Proposition 11.6 for η : J × J ′ → N and use the arbitrariness of η. �

Remark 11.3 (Cf. Remarks 9.1 and 10.1). If the dimension of the submanifold N is
less than the one of M , dimN < dimM , then from R(X, Y ) = 0 or T (X, Y ) = 0
one can not conclude that R = 0 or T = 0, respectively, as, for vector fields
A, B in [Sec(T (M), π, M)]\[Sec(T (N), π|N , N)] 
= ∅, the equality R(A, B) = 0 or
T (A, B) = 0 may not hold. Therefore one should make a clear distinction between
flatness/torsionless of a parallel transport and of the linear connection generating
it: the latter implies the former one, but the opposite is, generally, not true.

11.2. Normal frames for parallel transports along paths

First of all, applying Theorems 9.1 and 5.1 for a parallel transport in the tangent
bundle (T (M), π, M) over a C1 manifold M , we obtain, respectively, the following
two propositions.

Proposition 11.7. A parallel transport is Euclidean on a set U ⊆ M , i.e., admits
frames normal along C1 paths in U , if and only if it is flat on U .

Proposition 11.8. A parallel transport is Euclidean on a set U ⊆ M iff it is path-
independent on U , i.e., its action along paths in U depends only on the initial and
final points of the transportation, not on the particular C1 path in U connecting
them.

Combining these assertions, we derive the following generalization of Propo-
sition 11.2.

Corollary 11.2. A parallel transport is path-independent over a set U ⊆ M iff it is
flat on U .

Alternatively, this result follows from Corollary 9.3 with (T (M), π, M) for
(E, π, B) and a parallel transport for L.

Proposition 11.9. A parallel transport P is Euclidean on a submanifold N of a
C1 manifold M if and only if the generating it linear connection ∇ is Euclidean
on N .
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Remark 11.4. This is untrivial result as (11.5) for Γ(s; γ) = 0 with γ : J → N
does not imply Γk = 0 if dimN < dimM .

Proof. The transport P is Euclidean on N iff it is path-independent on N (Propo-
sition 11.8) a criterion for which is the fulfillment of (II.5.1) with R being the
curvature of ∇ (Lemma II.5.1 on page 112 or Corollary 11.1). By Theorem II.5.2,
point (i), on page 120, the last condition is a necessary and sufficient one for the
existence of frames normal for ∇ on N . �

Proposition 11.10. If a linear connection ∇ admits frames normal on a set U ,
then all frames normal on U for ∇ are also normal on U for the parallel transport
P assigned to ∇. If U is a neighborhood, the opposite statement is true too, i.e.,
a frame normal on a neighborhood U for P is normal on U for ∇, and hence on
a neighborhood the frames normal for P and ∇ are identical.

Proof. The first part of the assertion follows from Propositions 11.3 and 11.4 and
Definitions 4.1, 4.2 and I.5.1. The second part is a consequence of the same propo-
sitions and definitions combined with the remark that, if U is a neighborhood,
in (11.5) the vector γ̇(s) is an arbitrary vector in Tγ(s)(M) and hence Γ|U = 0 is
equivalent to Γk|U = 0. �

The statement opposite to the first part of Proposition 11.10 is, generally not
true, i.e., in the general case not all, but only some, of the frames normal for a
parallel transport are also normal for the linear connection generating it. This is
clearly seen from (11.5) as well as from the (un)uniqueness Proposition I.5.2 and
Corollary 4.5. In fact, from these results follows that, if {Ei} and {E′

i} are frames
normal on U ⊆ M for ∇ or P resp., then E′

i = Aj
iEj where the matrix-valued

function A := [Aj
i ], defined on an open set containing U or equal to it or on U

resp., is such that A|U = const or (Ei(A))|U = 0 resp. Generally, the restriction
A|U = const is stronger than (Ei(A))|U = 0 and, consequently, the set of the
solutions of the equation A|U = const with respect to A is not greater than the
one of the (Ei(A))|U = 0.

Proposition 11.11. A linear transport along paths in (T (M), π, M) for a C1 man-
ifold M admits frames normal for it on U ⊆ M if and only if it coincides on U
with some parallel transport which is flat on U .

Proof. The sufficiency of the assertion is an obvious corollary of Proposition 11.7.
If a transport L in (T (M), π, M) is Euclidean on U , it is flat on U (Theo-

rem 9.1) and the matrix of its coefficients has the form (9.11) on U in every frame
over U (Proposition 6.1). Therefore, by virtue of Lemma 10.1, the transport L
coincides over U with some parallel transport which is flat on U as L is such. �

The last proposition demonstrates the ‘privileged’ place of the parallel trans-
ports amongst all linear transports along paths in the tangent bundle over a man-
ifold: they are the only ones which may admit normal frames, a necessary and
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sufficient condition for this being their flatness. Before going ahead with the nor-
mal frames, we want to prove an auxiliary statement which is a generalization
of Lemma II.5.2 on page 116 for transports along path in the tangent bundle
(T (M), π, M), which, in fact, are parallel transports in it.

Lemma 11.1. Let L be a linear transport along paths in (T (M), π, M) for a C3

manifold M , N be a submanifold of M , and L be flat and torsionless on N .
Every frame {Ei} defined on (resp. a neighborhood of ) N and L-transported on
N , i.e., Ei|γ(t) = Lγ

s→t(Ei|γ(s)) for γ : J → N and s, t ∈ J , can be expanded (resp.
redefined) outside of N in a holonomic way, i.e., for every p0 ∈ N there is a chart
(V, z) of M with V � p0 such that Ei|V̄ = ∂

∂zi

∣∣
V̄
, V̄ := V ∩ N . If dimN = 0 or if

N is real and dimN = 1, the condition {Ei} to be L-transported is not necessary.

Remark 11.5. According to Proposition 4.1, points (i) and (vi), any frame L-
transported on a set U is normal on U for L and vice versa (see also Defini-
tion 4.1′′).

Proof. Since the proof of the assertion is practically identical with the one of
Lemma II.5.2 on page 116, we shall point below only the new place requiring addi-
tional study in order to be obtained the needed proof from the one of Lemma II.5.2.
The notation below is the same as in the proof of Lemma II.5.2.

To prove the lemma, define A := [Aj
i ] : UN → GL(dimM, K) by the expansion

Ei|q =: Aj
i (q)

∂
∂xj

∣∣
q
, q ∈ UN , and simply repeat the proof of Lemma II.5.2 with A

for D.
The only new problem, arising in this way, is to be proved the path-inde-

pendence of the integral appearing in the definition of the looked for coordinate
functions zi, i.e., the integral in (see (II.5.4))

zi(p) = ai +

p0∫
q0

(
A−1(p)

)i

j
dpj +

(
A−1(p0)

)i

j
[xj(p) − xj(p0)]

+ f i
jk(p)[xj(p) − xj(p0)][xk(p) − xk(p0)]. (11.13)

The conditions for this independence are ∂2zi

∂x[a∂xb]

∣∣
UN

= 0 with a and b running
from 1 to dimN as the integration is performed along some path in N . To verify
these equalities, we shall proceed as follows.

Since {Ei} is normal on N for L (Remark 11.5), every vector field Ei, con-
sidered as a lifting of paths according to (2.8), i.e., Êi : γ �→ (Êi)γ : s �→ Ei|γ(s),

satisfies the equation DγÊi = 0 with D being the derivation along paths gener-
ated by L (Proposition 5.6). Writing this equation in the coordinate frame

{
∂̂

∂xi

}
,

where ∂̂
∂xi are liftings of paths, analogous to Êi above, and using (3.23), we get

dA(γ(s))
ds

= −Γ(s; γ)A(γ(s))
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as Ei = Aj
i

∂
∂xj . 2 Here Γ is the matrix of (2-index) coefficients of L in

{
∂

∂xi

}
. Since

γ is a path in N , in
{

∂
∂xi

}
we have γ̇k = 0 for k > dimN . Therefore in

{
∂

∂xi

}
is

fulfilled dA(γ(s))
ds = ∂A

∂xk

∣∣
γ(s)

γ̇k(s) = ∂A
∂xa

∣∣
γ(s)

γ̇a(s) and Γ(s; γ) = Γk(γ(s))γ̇k(s) =

Γa(γ(s))γ̇a(s), where Γk are the matrices of the 3-index coefficients of L in
{

∂
∂xi

}
(Proposition 6.1). Due to these equalities, the last displayed equation is equivalent
to

∂A

∂xa
= −ΓaA, a = 1, . . . ,dimN.

Now, repeating the calculation after (II.5.3) and using the last equation, we find

∂2yi

∂x[a∂xb]
=

∂

∂x[a

(
A−1

)i

b]
= . . . =

(
A−1Γ[a

)i

b]
=

(
A−1

)i

k
Γk

[ba].

The proof is completed by the observation that Γk
[ba] ≡ 0 is equivalent to the

torsionless of L in the coordinate frame
{

∂
∂xi

}
. In fact, by Corollary 11.1, the

torsionless is equivalent to (11.12), which in
{

∂
∂xi

}
reduces to T i

ab = 0 as Xk =
Y k = 0 for k > dimN and, consequently, (see (10.6)) −Γi

ab + Γi
ba = 0 since the

frame
{

∂
∂xi

}
is holonomic, Ci

jk = 0. �

Proposition 11.12. Let U ⊆ M , L be a linear transport along paths in the tangent
bundle (T (M), π, M), and L be flat on U . Then:

(i) If some frame normal for L on U is holonomic, then the transport L is
torsionless on U and coincides over U with some parallel transport which is
flat and torsionless on U .

(ii) If U is a submanifold of M and L is torsion free on U , then all frames normal
on U for L are holonomic or can be redefined outside U (if U 
= M) in such
a way that the redefined frames turn to be holonomic on U .

Proof. (i) The result follows from Propositions 10.4 and 11.11.
(ii) Since all frames normal on U for L are L-transported on U (Remark 11.5),

by Lemma 11.1 they are holonomic on U or can be redefined outside U so that
the redefined frames are holonomic on U . �

Corollary 11.3. A linear transport along paths in (T (M), π, M) admits holonomic
frame(s) normal on a submanifold N of M if and only if it coincides over N with
some parallel transport which is flat and torsionless on N .

Proof. See Proposition 11.12. �
Thus the moral is: the flat and torsion free parallel transports are the only

linear transports along paths in (T (M), π, M) admitting holonomic normal frames.

2If one does not want to use liftings of paths, the same result follows from DγEi = 0 with Ei

considered as a basic vector field and Dγ being the section-derivation corresponding to D along
injective path γ.
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Besides, all frames normal for such transports are holonomic or can be redefined
to be such.

Since all frames normal for a given flat linear transport are described via
Propositions 4.3 and Corollary 4.4, in the torsionless case, the explicit description
of all local coordinates normal on a submanifold is given via (see (11.13) and the
proof of Lemma 11.1)

zi(p) = ai +

p0∫
q0

(
B−1A−1(p)

)i

j
dpj +

(
B−1A−1(p0)

)i

j
[xj(p) − xj(p0)]

+ f i
jk(p)[xj(p) − xj(p0)][xk(p) − xk(p0)]. (11.14)

Here B ∈ GL(dim M, K) is a constant matrix,
{
Ei = Aj

i
∂

∂xj

}
is a frame nor-

mal on the submanifold, and the other notation being explained in the proofs of
lemmas II.5.2 and 11.1.

12. Strong normal frames

Let M be a manifold and (T (M), π, M) the tangent bundle over it. Let ∇ and P
be, respectively, a linear connection on M and the parallel transport along paths
in (T (M), π, M) generated by ∇ (see (3.29) and the statement after it). Suppose
∇ and P admit frames normal on a set U ⊆ M . Here a natural question arises:
what are the links between both types of normal frames, the ones normal for ∇
on U and the ones normal for P on U?

Recall (see Definitions I.5.1 and 4.1′ and equation (11.5′)), if Γi
jk are the

coefficients of ∇ in a frame {Ei}, the frame {Ei} is normal on U ⊆ M for ∇ or P
iff respectively

Γi
jk(p) = 0 (12.1)

Γi
j(s; γ) = Γi

jk(γ(s))γ̇k(s) = 0 (12.2)

for all p ∈ U , γ : J → U , and s ∈ J .
Two simple but quite important conclusions can be made from these equali-

ties: (i) The frames normal for ∇ are normal for P , the converse being generally
not valid, which is the main contents of Proposition 11.10, and (ii) in a frame
normal for ∇ vanish the 2-index as well as the 3-index coefficients of P .

Definition 12.1. Let P be a parallel transport in (T (M), π, M) and U ⊆ M . A
frame {Ei}, defined on an open set containing U , is called strong normal on U for
P if the 3-index coefficients of P in {Ei} vanish on U . Respectively, {Ei} is strong
normal along g : Q → M if it is strong normal on g(Q).

Obviously, the set of frames strong normal on U for a parallel transport P
coincides with the set of frames normal for the linear connection ∇ generating P .
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The above considerations can be generalized directly to linear transports for
which 3-index coefficients exist and are fixed.

Definition 12.2. Let E and M be C1 manifolds, U ⊆ M , and (E, π, M) be a vector
bundle over M . Let L (resp. D) be a linear transport (resp. derivation) along paths
in (E, π, M) admitting 3-index coefficients on U which are supposed to be fixed,
i.e., its coefficient matrix is of the form

Γ(s; γ) = Γµ(γ(s))γ̇µ(s) (12.3)

in every pair of frames {ei} in E and {Eµ} in T (M) defined on an open set
containing U or equal to it, where γ : J → U is of class C1 and Γµ := [Γi

jµ] are
the (fixed) matrices of the 3-index coefficients of L. A frame {ei}, defined on an
open set containing U or equal to it, is called strong normal on U for L (resp. D),
if in the pair ({ei}, {Eµ}) for some (and hence any) {Eµ} the 3-index coefficients
of L vanish on U . Respectively, {ei} is strong normal along g : Q → M if it is
strong normal on g(Q).

So, a frame {ei} is strong normal or normal on U if (cf. (12.1) and (12.2))
respectively

Γµ(p) = 0 (12.4)
Γ(s; γ) = Γµ(γ(s))γ̇µ(s) = 0 (12.5)

for all p ∈ U , γ : J → U , and s ∈ J . From these equations, is evident, a strong
normal frame is a normal one, the opposite being valid as an exception, e.g., if U is
a neighborhood. This situation is identical with the one for parallel transports in
(T (M), π, M) which is a consequence of the fact that Definition 12.2 incorporates
Definition 12.1 as its obvious special case.

The main difference between the cases of parallel transports and arbitrary
linear transports along paths is that for the former the condition (12.3) holds
globally, i.e., for every path γ : J → M , for some uniquely fixed Γµ, while for the
latter (12.3) is valid, generally, locally, i.e., for γ : J → U with U ⊆ M , and in
it Γµ are fixed but are not uniquely defined by the transport and may depend
on U (see Sections 6 and 11). The cause for this is that for a parallel transport,
equation (12.3) on M with uniquely defined Γµ follows from its definition, while if
for a given linear transport L this equation holds on U for some Γµ, it is also true
if we replace Γµ with Γµ +Gµ where the matrix-valued functions Gµ are subjected
to the condition Gµγ̇µ = 0 for every path γ in U . If U is an open set, then γ̇(s)
is an arbitrary vector in Tγ(s)(M), which implies Gµ|U = 0, i.e., in this case the
3-index coefficients of L are unique; just this is the case with a parallel transport
when U = M and its 3-index coefficients are fixed and, by definition, are equal to
the coefficients of the linear connection generating it.

If in Definition 12.2 one replaces D with a derivation D along tangent vector
fields and (12.4) with (8.8), the definition of a frame strong normal on U for D
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will be obtained. But, by Proposition 8.4, every frame normal on U for D is strong
normal on U for D and vice versa. Therefore the concepts of a ‘normal frame’ and
‘strong normal frame’, when applied to derivations along tangent vector fields,
are identical. Returning to the considerations in Section 8, we see that frames
(strong) normal for a derivation along tangent vector fields are strong normal for
some derivation or linear transport along paths and vice versa. For this reason,
below only strong normal frames for the latter objects will be investigated.

To make the situation easier and clearer, below the following problem will be
studied. Let (E, π, M) be a vector bundle over a C1 manifold M , V ⊆ M be an
open subset, U ⊆ V , and L be a linear transport along paths in (E, π, M) whose
coefficient matrix has the form (12.3) on V , i.e., for every C1 path γ : J → V .1

The problem to be investigated frames strong normal on U for L.
Let {ei} be a frame over V in E and {Eµ} a frame over V in T (M). A frame

{e′i = Aj
iej} over V in E is strong normal on U ⊆ V if for some frame {E′

µ} over V
in T (M) is fulfilled Γ′

µ|U = 0 with Γ′
µ given by (6.4). Hence {e′i} is strong normal

on U iff the matrix-valued function A = [Aj
i ] satisfies the (strong) normal frame

equation
(ΓµA + Eµ(A))|U = 0 (12.6)

where Γµ are the 3-index coefficients’ matrices of L in ({ei}, {Eµ}). This equation,
describing the matrix A = [Aj

i ] which provides a transition from an arbitrary to a
strong normal frame(s), is also a consequence of (5.1), (12.3), and the arbitrariness
of γ : J → V ⊇ U .

If on U exists a frame {ei} strong normal for L, then all frames {e′i = Aj
iej}

which are normal or strong normal on U can easily be described: for the normal
frames, the matrix A = [Aj

i ] must be constant on U (Corollary 4.5), A|U = 0, while
for the strong normal frames it must be such that Eµ(A)|U = 0 for some (every)
frame {Eµ} over U in T (M) (see Corollary III.3.1 or (12.6) with Γµ|U = 0).2

Comparing equations (12.6) and (III.3.5) or (I.5.4), we see that they are iden-
tical with the only difference that the size of the square matrices Γ1, . . . ,Γdim M ,
and A in (III.3.5) is dimM × dim M while in (12.6) it is v × v, where v is the
dimension of the vector bundle (E, π, M), i.e., v = dimπ−1(p), p ∈ M , which is
generally not equal to dimM . But this difference is completely insignificant from
the view-point of solving these equations (in a matrix form) or with respect to
the integrability conditions for them. Therefore all of the results of Chapter III
(or II) concerning the solution of the matrix differential equation (12.6) are (mu-
tatis mutandis) applicable to the investigation of the frames strong normal on a
set U ⊆ M .

The transferring of results from Chapter III is so trivial that their explicit
reformulations makes a sense if one really needs the corresponding rigorous as-

1From here follows the existence of unique 3-index coefficients of L on V which, under a
change of frames, transform into (6.5). We suppose the 3-index coefficients of L on U to be fixed
and equal to the ones on V when restricted to U.

2This conclusions agree with the discussion after the proof of Proposition 11.10.



292 Chapter IV. Normal Frames in Vector Bundles

sertions for some concrete purpose. For this reason, we describe below briefly the
general situation and one its corollary.

The only peculiarity one must have in mind, when such transferring is carried
out, consist in the observation that in this way can be obtained, generally, only
part of the frames normal for some linear transport, viz. the frames strong normal
for it. But such a state of affairs is not a trouble as we need a single normal frame
to construct all of them by means of Corollary 4.5.

Let n ∈ N, Jn be a neighborhood in Rn, and γn : Jn → M be a C1 locally
injective mapping. Then, from Theorem III.8.1 and Proposition III.8.1, we derive
the following theorem.

Theorem 12.1. A necessary and sufficient condition for the existence of frame(s)
strong normal on γn(Jn) for some linear transport along paths or derivation along
paths or along vector fields tangent to M , is its (3-index) coefficients to satisfy, in
some neighborhood (in Rn) of every s ∈ Jn, the equations(

Rµν(−Γ1 ◦ γn, . . . ,−Γdim M ◦ γn)
)
(s) = 0, µ, ν = 1, . . . , n (12.7)

where Rµν are given via (6.7) for xµ = sµ, µ, ν = 1, . . . , n with {sµ} being Carte-
sian coordinates in Rn.

It is almost evident, in the coordinates used, equation (12.7) is identical
with (6.16) for N = γn(Jn) and p = γn(s). Thus, on a submanifold or along
locally injective mappings, the existence of normal frames (for linear transports of
the considered type) implies the existence of strong normal frames.

From (12.7), an immediate observation follows: strong normal frames always
exist at every point (n = 0) or/and along every locally injective path (n = 1).
Besides, these are the only cases when strong normal frames always exist because
for them (12.7) is identically valid. On submanifolds with dimension greater than
or equal to two normal frames exist only as an exception if (and only if) (12.7)
holds. Notice, equations (12.7) express the flatness of the corresponding linear
transports (see Section 9, equation (9.14), or Corollary 9.1) or, if n = dim M ,
derivations (see Section III.2).

13. Linear transports assigned to

derivations in tangent bundles

Since the linear connections are a special kind of derivations along vector fields
(see Section III.2), one can expect a possible existence of linear transports along
paths whose relation to the derivations is similar to the one between parallel
transports and linear connections (see Subsection 11.1). Below we shall see that
such an expectation has a firm background. The aim of the present section is to be
clarified the links between the different derivations of the algebra of vector fields
over a manifold M and the linear transports along paths in the tangent bundle
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(T (M), π, M) over M . The next ideas and results have a natural generalization
in the case of arbitrary tensor bundles (or the algebraic tensor bundle) over M
which we leave to the reader.

13.1. Derivations along paths

Since the Definition 11.1 on page 281 of a parallel transport employs only the
covariant derivative along paths assigned to a linear connection, not directly the
connection, it can mutatis mutandis be transferred to arbitrary derivations along
paths. On this base most of the material in Section 11 could be suitably general-
ized. Here are some details of this procedure.

Let M be a C1 manifold, D be a derivation along (injective C1) paths of the
tensor algebra over M (see Definition III.10.1 on page 191), and γ : J → M be
injective and of class C1. Define a mapping L on the set P1(M) of C1 paths in
M , L : γ �→ Lγ , such that

Lγ : (s, t) �→ Lγ
s→t : Tγ(s)(M) → Tγ(t)(M) (13.1)

for s, t ∈ J and
Lγ

s→t(X0) = Xγ(t), X0 ∈ Tγ(s)(M) (13.2)

where the vector field X over γ(J) is the unique solution of the initial-value prob-
lem

DγX = 0 (13.3a)
Xγ(s) = X0. (13.3b)

Proposition 13.1. The mapping L : γ → Lγ, defined via (13.1)–(13.3), is a linear
transport along paths in the tangent bundle (T (M), π, M) over the manifold M .

Proof. Take into account (III.10.7) and repeat the proof of Proposition 11.1 with
L for P and Dγ for ∇γ̇ . �

Definition 13.1. The linear transport L along paths in (T (M), π, M), defined via
equations (13.1)–(13.3), will be called transport assigned to or generated by the
derivation D along paths (of T 1(M) or of T (M)).

On the base of (13.1)–(13.3), one can prove a number of properties of the
transport L assigned to D, e.g., Proposition 11.4 holds with L for P , D for the
linear connection ∇, and Dγ for ∇γ̇ . But such efforts, for deriving the properties
of L using only (13.1)–(13.3), are practically completely needless and the result of
them will be only new ways for derivation or proving the properties of the general
linear transports in (T (M), π, M). The cause for this situation is that the afore-
presented definitions of a linear transport (along injective C1 paths) assigned to
a derivation along paths is simply an equivalent way for defining what a linear
transport (along injective C1 paths) in the tangent bundle is.
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The above assertion can be proved, most easily, in some local frame {Ei} on
(a neighborhood of) γ(J) for an arbitrary injective C1 path γ : J → M .

Comparing the local expansions (III.10.7) on page 192 for (r, q) = (1, 0)
and (2.13) on page 221 for ei(s; γ) = Ei|γ(s) and σ = K, we see that they are
identical for every vector field K defined on γ(J) (or on a larger set). Therefore a
derivation along paths according to Definition III.10.1, when restricted to vector
fields, is in fact a section-derivation along paths in the tangent bundle, according to
the definition of the latter one on page 221, assigned to a derivation D along paths
in (T (M), π, M) (see Definition 2.1) whose local components Γi

j along γ coincide
with the functions Γi

j(s; γ) appearing in (III.10.7). For this reason, further the
derivations along paths of the algebra of C1 vector fields over M will be called
vector-derivations along paths. Thus we have proved the following result.

Proposition 13.2. For every vector-derivation D along paths of the algebra of vector
fields over a manifold M , there exists a unique derivation D along paths in the
tangent bundle (T (M), π, M) over M which generates it via (2.12). In a local
frame, D is explicitly defined via its local components which coincide with the ones
of D.

Remark 13.1. The components of D are defined along injective paths, but this is in-
significant for D which is defined along arbitrary, with or without self-intersections,
paths.

Denoting, in some frame {Ei}, by L(t, s; γ) the matrix of the transport
L assigned to a vector-derivation D along paths, from equations (13.2), (13.3),
and (III.10.7), we derive that it is the unique solution of the initial-value problem

∂L(t, s; γ)
∂t

= −Γ(t; γ)L(t, s; γ) (13.4a)

L(s, s; γ) = 1 (13.4b)

where s, t ∈ J and Γ := [Γi
j ] is the matrix of the components of D (or of D) in

{Ei}. So the explicit form of L is

L(t, s; γ) = Y (t, s0;−Γ( · ; γ))Y −1(s, s0;−Γ( · ; γ)) (13.5)

where Y is defined via (3.28) and s0 ∈ J is fixed.
At last, noticing that (13.5) is identical with (3.27), we conclude from Propo-

sition 3.6 that L is identical with the linear transport along paths generating D
via (3.19) and whose coefficients coincide with the components of D (or of D).
This result completes the proof of our statement that a linear transport along
paths assigned to a vector-derivation is simply a linear transport along injective
C1 paths in the tangent bundle and vice versa.
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13.2. Derivations along vector fields

From Section III.10, we know that to every derivation along vector fields whose
matrix in some (and hence in every – see (III.2.11)) frame {Ei} satisfies the con-
dition

ΓX(γ(s))|Xγ(s)=γ̇(s) = Γ(s; γ) (13.6)

for every (injective) C1 path γ : J → M and s ∈ J , there corresponds a vector-
derivation D along paths in (T (M), π, M) such that (see (III.10.2))

(DγV )(γ(s)) =
(dV i(γ(s))

ds
+ Γi

j(s; γ)V j
γ(s)

)
Ei|γ(s) (13.7)

for V ∈ X1(M).

Example 13.1. A kind of vector-derivation is the covariant derivative assigned to
a linear connection ∇ for which

ΓX(p) = Γk(p)Xk
p , (13.8)

where p ∈ M and Γk are the coefficients’ matrices of ∇. In this case, obviously,
equation (13.6) holds with

Γ(s; γ) = Γk(γ(s))γ̇k(s). (13.9)

Since to a vector-derivation along paths in the tangent bundle (T (M), π, M)
there corresponds unique linear transport along paths in the same bundle (see
Subsection 13.1), to every derivation D along vector fields of T (M), whose com-
ponents’ matrix satisfies the condition (13.6), there corresponds a linear transport
along paths generating the assigned to D vector-derivation D via (3.19) and (2.12).

So, the general scheme for generating a linear transport from a derivation
along vector fields is

derivation along vector fields satisfying (13.6)
→ vector-derivation along paths

→ linear transport along paths. (13.10)

A typical example, realizing this procedure, is the parallel transport assigned to a
linear connection. A modification of the scheme (13.10) for derivations along fixed
vector fields will be developed in the next subsection .

13.3. Derivations along fixed vector field

In the present subsection, we want to apply (possibly a modification of) the
scheme (13.10) to a derivation DX along a fixed vector field X of the tensor
algebra over a manifold M . Of course, such a derivation can not define a linear
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transport along arbitrary (C1) paths in (T (M), π, M) since X is fixed, not ar-
bitrary, vector field and hence (13.6) cannot hold for arbitrary path γ.1 As one
could expect, the transports corresponding to DX are along the integral paths of
X . Except this peculiarity, the other general considerations in Subsection 13.2 pre-
ceding (13.10) remain unchanged. Here are some details of the procedure assigning
a linear transport to a derivation along a fixed vector field.

Let X ∈ X1(M) be fixed and non-singular, X 
= 0. Let γp : J → M be
the integral path of X through p ∈ M , i.e., γp(s0) = p for some s0 ∈ J and
γ̇p(s) = Xγp(s) for all s ∈ J . Suppose DX is a derivation along X such that
the matrix of its components ΓX (in some and hence in any frame) satisfies the
condition (13.6) with γ = γp for every p ∈ M . Then, for every integral path γ
of X , it is defined a unique derivation Dγ along γ, explicitly given via (13.7).
(Note, Dγ is defined only along integral paths γ of X !) Repeating the proof of
Proposition 13.1 with γ being an integral path of X , we see that (13.1)–(13.3)
define a unique linear transport L along the integral paths of X in (T (M), π, M).
In a local frame, the matrix of L satisfies the initial-value problem (13.4) and its
explicit form is (13.5).

Thus the conclusion is: to every derivation along a fixed vector field X (which
is C1 and non-singular) of the tensor algebra over a manifold M , there corresponds
a unique linear transport along the integral paths of X in the tangent bundle over
M (provided (13.6) holds with an integral path of X for γ). Therefore, we have
the following modification of (13.10):

derivation along fixed vector field X

→ vector-derivation along the integral paths of X

→ linear transport along the integral paths of X . (13.11)

In this scheme, we intentionally dropped the condition (13.6). The reason is that
it works independently of (13.6): if (13.6) is not valid, the resulting derivation and
linear transport along the integral paths of X could depend also on the vector
field X in a neighborhood of the integral paths of X , not only on the values of
X on them. In other words, if (13.6) does not hold, the corresponding derivation
and linear transport along a particular integral path may depend not only on it
but also on a congruence of the integral paths of X in a neighborhood of the one
along which the derivation and transport act. This situation is not an exceptional
one, on the opposite, it is often met in concrete applications, first of all in the
theoretical physics.2 Below we shall present a list of important examples of this
kind.

1For a fixed X, the equality Xγ(s) = γ̇(s) cannot hold for arbitrary γ as it defines the integral
paths of X – see (I.2.19).

2In the physically-oriented literature, the situation is ‘inverse’ with respect to X: there is
given a congruence of (injective, C1, and regular) paths and X is defined as the vector field
tangent to the paths of that congruence.
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Recall (see Definition III.2.3), for every vector field X and derivation D along
vector fields, the decomposition DX = LX +SX , with D : X → DX and LX being
the Lie derivative along X , holds for some tensor field SX of type (1, 1). Since for
a linear connection ∇ this equality holds for

SX = ΣX , ΣX(Y ) := ∇XY − [X, Y ] = ∇Y X +T (X, Y ), Y ∈ X(M), (13.12)

with T being the torsion of ∇, for every derivation D along vector fields is fulfilled

DX = ∇X + SX − ΣX (13.13)

for (arbitrarily chosen) linear connection ∇ and some SX ∈ T1
1(M). Applying the

last decomposition and the explicit local expression (III.2.2), one can prove the
following statements.

Example 13.2. Let M be a manifold endowed with a linear connection ∇. To ∇
corresponds a decomposition (13.13) with

SX = ΣX (13.14a)

where X can be fixed, as well as arbitrary, and the condition (13.6) is valid.

Example 13.3. Let M be Einstein-Cartan manifold, i.e., one endowed with (gener-
ally said independent) Riemannian metric g and linear connection ∇. The Fermi–
Walker derivative [62, 119] is a one for which (13.13) holds with

SX = ΣX − 2QX . (13.14b)

Here X is fixed, (time-like,) C1, and unit vector field3 and QX ∈ T1
1(M) with

gim(QX)m
j :=

{
hk

i hl
j(g( · ,∇Ek

X))l + hm
i gmlT

l
jkXk + (g( · ,∇Ej X))i

}
[ij]

where hk
i := δk

i −Xk(g( · , X))i/g(X, X) and T i
jk are the components of the torsion

tensor of ∇.

Example 13.4. On a Riemannian manifold, the Fermi derivative assigned to its
metric g [62] corresponds to the choice

SX = Σ{}
X − 2QX (13.14c)

where X is a fixed, (time-like,) C1 and unit vector field, the index {} means that
the connection is with respect to the Christoffel symbols (I.4.14) formed from g,
QX ∈ T1

1(M), and (QX)i
j := X i(g( · ,∇{}

X X))j .

3The choice g(X, X) = +1 or g(X, X) = −1 depends on the accepted signature of g: the
former (resp. latter) one corresponds to a positive (resp. negative) ‘time’ eigenvalue of g in a
diagonal form.
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Example 13.5. On a Riemannian manifold, the Truesdell derivative assigned to its
metric g [120, 121] is obtained from (13.13) for4

SX = θ · δ. (13.14d)

Here X is a fixed, C1 and null or unit vector field (which could be time-like or
space-like), θ :=

∑
i(∇EiX)i is the expansion of X , and δ is the unit tensor with

local components δj
i (in any frame).

Example 13.6. On a Riemannian manifold, the Jaumann derivative assigned to its
metric g [122] is described via (13.13) with

SX = Σ{}
X − ω. (13.14e)

Here X is a fixed C1 and null or unit vector field (which could be time-like or
space-like), ω ∈ T1

1(M) and5

gikωk
j :=

{
(g( · ,∇{}

Ej
X))i − (g( · ,∇{}

∇{}
Ej

X
X))i

}
[ij]

.

The above list of particular derivations (along, possibly, fixed vector fields)
obtained via (13.13) can easily be completed by the Lie derivative [19, 89, 119],
modified Fermi-Walker and Frenet-Serret derivatives [98], etc.

Excluding the case of linear connections, all of the above-mentioned deriva-
tives are along a fixed vector field and, generally, the condition (13.6) is not sat-
isfied for them. Consequently, the derivations and linear transports along the in-
tegral paths of X corresponding to them depend, generally, on a congruence of
integral paths, not only on the particular integral path along which they act. Re-
gardless of this, these derivations and the corresponding transports find a number
of important applications.

Exercise 13.1. Following the implications in (13.10) (or in (13.11)), prove that
from (13.13) and (13.14a)–(13.14e) can be obtained respectively: the parallel trans-
port assigned to a linear connection (covariant derivative) of the tensor algebra of
a manifold [11, 19], Fermi-Walker transport [62, 119], Fermi transport [62], Trues-
dell transport [120,121], and Jaumann transport [122]. This list of transports can
be completed with the Lie transport [19,119], modified Fermi-Walker and Frenet-
Serret transports [98], etc.

13.4. Normal frames

In Subsections 13.1–13.3, it was demonstrated how to different derivations of the
tensor algebra over a manifold can be assigned linear transports along paths in

4The choice of ∇ is insignificant as ∇X − ΣX = LX .
5The sign before the second term in the right-hand side of the next equality must be opposite

to the one of the eigenvalue of the ‘time’ term of g in a diagonal form.
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the tangent bundle over it. Hence to every such derivation can be assigned two
kinds of normal frames: the ones corresponding to it as a derivation and the ones
corresponding to the linear transports generated by the derivations. These frames
were introduced and investigated respectively in Chapter III and in the present
one. Since a simple observation reveals that the derivations’ components coincide
with the coefficients of the linear transports generated by the derivations, one
can expect the existence of some links between both sorts of normal frames. More
precisely, relying on the considerations in Section 12, we can assert that the frames,
normal for derivations along paths or (arbitrary) vector fields, are strong normal
for the linear transports generated by these derivations. What concerns the frames
normal for derivations along a fixed vector field, it is easy to be proved that they
are also normal for the linear transports (along the integral paths of the vector
field) generated by this kind of derivations and vice versa. The opposite link is
partially valid in a sense that if a linear transport generated by a derivation admits
normal frames, then some (or all) of them, viz. the strong normal ones, are normal
for the corresponding derivation generating the initial transport.

In this way, we have came to the following important

Conclusion 13.1. All of the results, concerning normal frames and obtained in
Chapter III for different derivations of the tensor algebra over a manifold, are
mutatis mutandis valid for the frames (strong) normal for the (corresponding)
linear transports along paths in the tangent bundle over the same manifold.

The afore-presented conclusions can also be confirmed by the next consid-
erations some of which are valid for general vector bundles with a manifold as a
base, not only for the tangent bundle over a manifold.

From Proposition 6.1 and Theorem 6.2, we know that only linear trans-
ports/derivations along paths with (2-index) coefficients given by (6.1) admit nor-
mal frames. Besides, from equations (6.1) and (6.4), it follows that frames normal
on a subset U ⊆ M for such transports/derivations along paths exist if and only
if the matrix differential equation (5.1), or, equivalently,[

γ̇µ(ΓµA + Eµ(A))
]∣∣

U
= 0, (13.15)

has a solution for every γ : J → U with respect to A.6 In fact, the equations (6.16)
are the integrability conditions for (13.15).7 Evidently, the same is the situation
with derivations along tangent vector fields (see Section 8) when, due to (8.6),
such a derivation admits frames normal on U iff the equation(

ΓXA + X(A)
)∣∣

U
= 0, (13.16)

6If such A exist in a frame {ei}, then the frame {e′i = Aj
i ej} is normal on U and vice versa;

see (6.4).
7If (6.6) hold and U is a neighborhood, then A = Y (p, p0;−Γ1, . . . ,−Γdim M )A0, A0 being

non-degenerate matrix.
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ΓX being the derivation’s matrix along a vector field X , has a solution with respect
to A. As we proved in Section 8, if X is arbitrary and tangent to the paths in U ,
this equation is equivalent to (13.15) with Γµ being the matrices of the 3-index
coefficients of the derivation; if X is completely arbitrary, (13.16) is equivalent to
equation (13.17) below.

Now it is time to recall that, from mathematical view-point, the material
of Chapter III is actually devoted precisely to the solution of the normal frame
equation (

ΓµA + Eµ(A)
)∣∣

U
= 0 (13.17)

which is equivalent to (13.15) if U is a neighborhood. The fact that in Chapter III
are studied frames normal for derivations of the tensor algebra over a manifold
M is inessential because the equations describing the matrices by means of which
is performed the transformation from an arbitrary frame to a (strong) normal
one are the same in this chapter and in Chapter III. The only difference is what
objects are transformed by means of the matrices satisfying (13.16): in the present
chapter these are the frames in the restricted bundle space π−1(U) ⊆ E, while
in Chapter III they are the tensor bases over U , in particular the ones in the
bundle tangent to M . In Chapter III, the only explicit use of the derivations of
the tensor algebra over M was to define their components (2-index coefficients) and
the transformation law for the latter. Since this law (see (III.2.11) and (III.10.9))
is identical with (8.6),8 all results concerning the 2- and 3-index coefficients of
derivations of the tensor algebra over M and the ones of derivations along tangent
vectors in vector bundle (E, π, M) coincide.

Thus, we have came to the following very important conclusion.

Conclusion 13.2. All of the results of Chapter III, concerning derivations along
vector fields, their components, and frames normal for them, are mutatis mu-
tandis valid (as investigated in the present chapter) for linear transports along
paths, derivations along paths or along tangent vector fields, their coefficients (or
components), and the frames (strong) normal for them in vector bundles with a
differentiable manifold as a base.

The only change, if required, to transfer the results is to replace the term
‘derivation along vector fields’ with ‘derivation along tangent vector fields’, or
‘derivation along paths’, or ‘linear transport along paths’ and, possibly, the term
‘normal frame’ with ‘strong normal frame’.

Because of the widespread usage of covariant derivatives (linear connections),
we want to mention them separately regardless of the fact that this case was com-
pletely covered in Chapters II and III. As a consequence of (3.29), the covariant
derivatives are derivations linear on the whole base M (as well as on any its
subset). Thus for them the condition (6.1) is identically satisfied. Therefore, by

8The transformation laws (3.26) and (6.4) can be considered, under certain conditions, as
special cases of (8.6).
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Theorem 6.2, a covariant derivative (or the corresponding parallel transport) ad-
mits normal frames on a submanifold U ⊆ M iff (6.16) holds on U . Consequently,
every covariant derivative admits normal frames at every point or along given
(smooth locally injective) path. However, only the flat covariant derivatives on U
admit frames normal on U if U is a neighborhood (dimU = dimM).

In the theoretical physics, we find applications of a number of linear trans-
ports along paths: parallel [11, 19], Fermi-Walker [62, 119], Fermi [62], Trues-
dell [120, 121], Jaumann [122], Lie [19, 119], modified Fermi-Walker and Frenet-
Serret [98], etc. Our results are fully applicable to all of them, in particular for all
of them there exist frames normal at a given point or/and along (smooth locally
injective) paths.

14. Links with the theory of
connections and parallel transports

The goal of this section is twofold: on one hand, we would like to clarify the rela-
tions between the linear transports along paths and parallel transports in general
vector bundles and, on another hand, to transfer the results obtained for connec-
tions and parallel transports in vector bundles, thus generalizing the material from
Sections 11–13 concerning mainly the tangent bundle over a manifold. A part of
these problems will be generalized further in Chapter V from the view-point of
general connection theory on differentiable bundles.

The book [23] will be used consistently for reference purposes below. This is
due to the fact that in it is elaborated an axiomatical approach to the concept
of a parallel transport in vector bundles (whose bundle and base spaces are C∞

manifolds) and on this base the connection theory is studied. Such an exposition
perfectly matches our aims, as pointed at the beginning of Section 3.

In the present section (E, π, M) will denote a vector bundle whose bundle
and base spaces, E and M , are C∞ manifolds, N stands for a C∞ manifold, and
g : N → M is supposed to be of class C∞. In general, for the consistency with [23],
all manifolds and mappings between them are supposed to be of class C∞ in this
section.1

14.1. Parallelism structures, connections and
covariant derivatives

In this subsection the (axiomatical) definition of a parallel transport and its links
with the concepts of connection and covariant derivative from [23] are reproduced

1Such a supposition is too strong. For the most of the material that follows, smoothness of class
C2 (and sometimes C1) is sufficient. (Smoothness of class C3 is required if normal coordinates,
if any, are concerned.)
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and briefly reviewed. We have chosen the pointed definition from [23] for two rea-
sons: (i) in the sense of [23, Theorems 2.28 and 2.33] it provides an equivalent de-
scription of the notion of a connection on vector bundles, and (ii) in the available to
the author literature, the book [23] provides the most advanced and well-developed
axiomatical approach to the notion of a parallel transport (in vector bundles).

Definition 14.1 (cf. [23, Definition 2.7]). Let (E, π, M), E and M being C∞ man-
ifolds, be a vector bundle and β : [a, b] → M , a, b ∈ R with a ≤ b, be a C∞ path
in M . A mapping P associating to each pair (u, β), u ∈ π−1(β(a)), a (unique) C∞

lifting of β from M to E is called a parallelism structure (or a system of parallel
transport) in (E, π, M) if the following five conditions are satisfied:

(i) Existence. The value Pβ
u of P at (u, β), P : (u, β) �→ Pβ

u, is such that

P
β
u(a) = u (14.1)

(and, by definition, Pu : β �→ Pβ
u : [a, b] → E with π ◦ Pβ

u = β), i.e., Pβ
u is a

lifting of β through u starting exactly from the point u ∈ π−1(β(a)).
(ii) Linearity and invertability. The mapping

Pβ : π−1(β(a)) → π−1(β(b)) (14.2)

defined by
Pβ(u) := P

β
u(b) (14.3)

for every u ∈ π−1(β(a)) is a vector space isomorphism. It is called parallel
transport along β : [a, b] → M (assigned to P). The parallel transport along
the inverse path β− : [a, b] → M , β− : s �→ β−(s) := β(a + b − s) for each
s ∈ [a, b], is

Pβ−
=

(
Pβ

)−1
. (14.4)

(iii) Parameterization independence. Let ϕ : [c, d] → [a, b] be C∞ function such
that ϕ(c) = a and ϕ(d) = b. Then

P
β◦ϕ
u = P

β
u ◦ ϕ. (14.5)

(iv) C∞ dependence on initial conditions. For every open set U ⊆ M and each
C∞ mapping f : T (U) → M such that f(0p) = p, p ∈ U , with 0p being the
zero vector in Tp(U) = Tp(M), the mapping

f̃ : T (U) × π−1(U) → E, f̃ : (X, u) �→ P
α
u(1), α(s) := f(sX) (14.6)

where (X, u) ∈ T (U) × π−1(U) and s ∈ [0, 1], is of class C∞.
(v) Initial uniqueness. If p ∈ M and the C∞ paths α, β : [0, 1] → M are such

that α(0) = β(0) = p and2 α̇(0) = β̇(0), then for each u ∈ π−1(p) the tangent
vectors to the paths Pα

u , Pβ
u : [0, 1] → E at the point s = 0 coincide:

˙̂
Pα

u(0) =
˙̂

P
β
u(0). (14.7)

2The tangent vectors α̇(0) and β̇(0) are considered as defined by one-sided derivative operators
– see (I.2.3).
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The parallelism structures are an equivalent way for describing general con-
nections on vector bundles. To formulate this statement in a rigorous way (see
Theorem 14.1 below), we have to present some preliminary material.

Definition 14.2. A lifting (or lift) β̄ : [a, b] → E of a C∞ path β : [a, b] → M ,
π ◦ β̄ = β, is said to be parallel with respect to a parallelism structure P in a vector
bundle (E, π, M) if β̄ = P

β

β̄(a)
; respectively, the paths Pβ

u, with u ∈ π−1(β(a))
and β : [a, b] → M , in E are called parallel (with respect to P). A section σ ∈
Sec(E, π, M) is parallel along β (with respect to P) if the lifting β̂ = σ ◦ β is
parallel (with respect to P).

Definition 14.3 (cf. [23, Definition 2.26]). A connection on vector bundle (E, π, M)
is a (dim M)-dimensional distribution T h(E) : E → T (E) such that:

(i) For each u ∈ E the value T h
u (E) of T h(E) at u, T h(E) : u �→ T h

u (E), is in the
tangent space Tu(E) and is (direct) complement to its vertical component
T v

u (E) := Tu

(
π−1(π(u))

)
, i.e., to the space tangent to the fibre π−1(π(u))

through u:
Tu(E) =: T h

u (E) ⊕ T v
u (E). (14.8)

(ii) The spaces T h
u (E) are homogeneous in a sense that

µc∗
(
T h

u (E)
)

= T h
µc(u)(E) = T h

cu(E), c ∈ K (14.9)

where µc : E → E with µc : u �→ cu and µc∗ := (µc)∗ is the differential of µc.

Let us set T v(E) := ∪u∈ET v
u (E). By abuse of the notation, we put T h(E) to

denote also the union ∪u∈ET h
u (E). Thus, we have the direct decomposition

T (E) = T h(E) ⊕ T v(E). (14.10)

Remark 14.1. A connection on the tangent bundle (T (M), πT , M) over M is called
(linear) connection on M . For some details, see below Proposition 14.5 and Re-
mark 14.3.

Definition 14.4. The spaces T h
u (E) and T v

u (E) are called horizontal and vertical,
respectively, space (tangent to E at u); the vectors of these spaces are called
respectively horizontal and vertical vectors.

Definition 14.5 (cf. [23, Definition 2.27]). Let T h(E) be a connection on (E, π, M).
A lifting f̄ : N → E of a C∞ mapping f : N → M , N being a manifold, is
horizontal with respect to T h(E) (or is T h(E)-horizontal) if f̄∗(Tp(N))) ⊆ T h

f̄(p)
(E)

for every p ∈ N , i.e., the induced tangent mapping f̄∗ of f̄ sends the vectors tangent
to N at p to horizontal vectors (tangent) at f̄(p). In particular, a path β̄ in E,
which is a lifting of the path π ◦ β̄ in M , is horizontal if its tangent vector field is
a path in T h(E).
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Definition 14.6. If T h(E) is a connection on (E, π, M), the (T h(E)-)horizontal
lifting of a vector field X ∈ X(M) = Sec(T (M), πT , M) is the unique vector field
X̄ ∈ X(E) = Sec(E, π, M) such that X̄u ∈ T h

u (E) and X̄ and X are π-related, i.e.,
π∗ ◦ X̄ = X ◦ π.

Proposition 14.1. Let T h(E) be a connection on some vector bundle (E, π, M) and
β : [a, b] → M be a C∞ path in M. For every t0 ∈ [a, b] and u ∈ π−1(β(t0)), there
exists a unique T h(E)-horizontal lifting β̄ of β to E such that β̄(t0) = u.

Proof. See [23, Proposition 2.32 on p. 59]. �

Theorem 14.1 (cf. [23, Theorems 2.28 and 2.33]). Each given parallelism structure
P in a vector bundle (E, π, M) determines a connection T h(E) on (E, π, M) such
that a path β̄ in E is a parallel lifting of the path β = π ◦ β̄ in M with respect to P

if and only if β̄ is horizontal with respect to T h(E), i.e., iff ˙̄β is a path in T h(E).
Conversely, if T h(E) is a connection on a vector bundle (E, π, M), the system of
T h(E)-horizontal liftings to E of the C∞ paths in M is a parallelism structure in
(E, π, M) and, besides, the connection on (E, π, M) determined by it according to
the previous assertion is just T h(E).

Proof. See [23, pp. 55–61]. �
The last theorem is a rigorous expression of the assertion that a parallelism

structure in a vector bundle is equivalent to a connection on the same bundle.
By its means one can easily prove some important properties of the parallelism
structures.

Proposition 14.2. Let P be a parallelism structure in vector bundle (E, π, M) and
β : [a, b] → M be a C∞ path. For each c ∈ [a, b] and u ∈ π−1(β(a)),

P
β
u(λ) = P

β|[a,c]
u (λ), λ ∈ [a, c]. (14.11)

Proof. Let T h(E) be the connection on (E, π, M) determined by P as in Theo-
rem 14.1. Since Pβ

u and P
β|[a,c]
u are parallel liftings of respectively β and β|[a,c]

through u, they are the unique T h(E)-horizontal liftings of respectively β and
β|[a,c] through u. Consider the restricted lifting Pβ

u

∣∣
[a,c]

. As π ◦ (
Pβ

u

∣∣
[a,c]

)
= β|[a,c]

and Pβ
u

∣∣
[a,c]

(a) = Pβ
u(a) = u, it is a T h(E)-horizontal lifting through u and, due to

the uniqueness of such liftings (see Proposition 14.1), we have

P
β
u

∣∣
[a,c]

= P
β|[a,c]
u ( 14.11′)

which is equivalent to (14.11). �

Proposition 14.3. Let P be a parallelism structure in (E, π, M), the path β : [a, b] →
M be C∞, and u ∈ π−1(β(a)). For each c ∈ [a, b],

P
β
u(λ) = P

β|[c,b]

P
β|[a,c]
u (c)

(λ), λ ∈ [c, b]. (14.12)
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Proof. Let T h(E) be the connection on (E, π, M) determined by P according to
Theorem 14.1. Since Pβ

u and P
β|[c,b]

P
β|[a,c]
u (c)

are parallel liftings of β through u and

of β|[c, b] through P
β|[a,c]
u (c), respectively, they are the unique T h(E)-horizontal

liftings of β through u and of β|[c, b] through P
β|[a,c]
u (c), respectively. Evidently π ◦(

Pβ
u|[c, b]

)
= β|[c, b] and Pβ

u(c) = P
β|[a,c]
u (c) (see (14.11) with λ = c). Hence Pβ

u|[c, b]
is a T h(E)-horizontal lifting of β|[c,b] through P

β|[a,c]
u (c) and, by Proposition 14.1,

it coincides with P
β|[c,b]

P
β|[a,c]
u (c)

, i.e.,

P
β
u

∣∣
[c,b]

= P
β|[c,b]

P
β|[a,c]
u (c)

(14.12′)

which is tantamount to (14.12). �
Now we shall consider briefly the description of parallelism structures (and

hence connections) on vector bundles in terms of covariant derivatives.

Definition 14.7. Let (E, π, M), E and M being C∞ manifolds, be a K-vector
bundle and g : N → M , N being C∞ manifold, be of class C∞. A mapping
∇ : X(N) × Liftg(E, π, M) → Liftg(E, π, M) is called a covariant derivative (or
covariant derivative operator) in (E, π, M) along g if for every U, V ∈ X(N) and
X, Y ∈ Liftg(E, π, M) the mapping ∇ : (U, X) �→ ∇UX has the properties:

(i) ∇U+V X = ∇UX + ∇V X ;
(ii) ∇fUX = f∇UX, f ∈ F(N);
(iii) ∇U (X + Y ) = ∇UX + ∇UY ;
(iv) ∇U (hX) = U(h)X + h∇UX, h ∈ F1(N).

The mapping ∇X : X(N) → Liftg(E, π, M), associated to a covariant derivative
∇ and such that ∇X : U �→ (∇X)(U) := ∇UX , is called covariant differential of
X (along g) and the lifting ∇UX of g is called covariant derivative (along g) of
X with respect (or along) U . If u ∈ Tp(N), p ∈ N , we set ∇uX := (∇UX)p with
U ∈ X(N) such that Up = u, which is well-defined due to (i) and (ii).

Two important special cases are worth singling out. If N = M and g = idM ,
then ∇ is called covariant derivative in (E, π, M). Besides, if in addition E =
T (M), i.e., if ∇ is a covariant derivative in the tangent bundle over M , then ∇ is
called covariant derivative on M .

To formulate the second main result of this subsection, Theorem 14.2 below,
we shall briefly present some preliminary material.3

Put π∗E := π∗(E) := {(ζ, ξ)|ζ, ξ ∈ E, π(ζ) = π(ξ)}.4 Evidently, π∗E is a
vector space. We assert that π∗E is isomorphic to the vertical component T v(E) :=
∪u∈ET v

u (E) = ∪u∈ETu

(
π−1(π(u))

)
of the bundle space T (E). To prove this, define

3For details, see [23]. A reader familiar with [23] or equivalent material can skip the text from
this point to Theorem 14.2.

4The set π∗(E) is the bundle space of the pullback of (E, π, M) along π [23, p. 8].
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g : π∗E → T v(E) by g : (ζ, ξ) �→ gζξ := α̇(0) where (ζ, ξ) ∈ π∗ and α is a path in E
given via α : t �→ α(t) := ζ+tξ, t ∈ R. The mapping g is a vector space isomorphism
and its inverse is g−1 : w �→ (ζ, ξ), w ∈ T v(E) ⊂ T (E), where ζ := πT (E)(w) ∈ E,
πT (E) being the projection of the tangent bundle (T (E), πT (E), E) over E, and ξ is
a point in π−1(π(ζ)), considered as a manifold, such that its coordinates in some
fixed local coordinates {xi} are equal to the local coordinates of w (as an element
of T v

ζ (E) ⊂ Tζ(E)) in the associated frame
{

∂
∂xi

}
at ζ.

Denote by pr2 : T v(E) → E a mapping assigning to each w ∈ T v(E) the “sec-
ond component” of the element of π∗(E) corresponding to w via g, i.e., pr2(w) := ξ
if w = gζξ for some (unique) (ζ, ξ) ∈ π∗(E).

If T h(E) is a connection on a vector bundle (E, π, M), every vector w ∈ T (E)
has, according to (14.8), a unique decomposition w = wh+wv, where, if w ∈ Tu(E)
for some u ∈ E, wh ∈ T h

u (E) and wv ∈ T v
u (E) are, respectively, the horizontal

and vertical components of w. The connection mapping κ : T (E) → E of T h(E)
is defined by κ : w �→ κ(w) := pr2(wv) = pr2(w − wh) for each w ∈ T (E).

Theorem 14.2. Let T h(E) be a connection on some vector bundle (E, π, M), the
mapping κ : T (E) → E be its connection mapping, and g : N → M , where N
is C∞ manifold, be of class C∞. The mapping ∇ : X(N) × Liftg(E, π, M) →
Liftg(E, π, M) given by ∇ : (U, X) �→ ∇UX := κ(X∗(U)) for every (U, X) ∈
X(N) × Liftg(E, π, M) is a covariant derivative in (E, π, M) along g. Besides,
a lifting X ∈ Liftg(E, π, M) is parallel (with respect to the parallelism structure
assigned to T h(E) via 14.1) if and only if ∇UX = 0 for all U ∈ X(N) and if
h : L → N for a C∞ manifold L, then ∇(X ◦h) = (∇X)◦h∗ where the first (resp.
second ) ∇ is along g ◦ h (resp. g). Conversely, if ∇ is a covariant derivative in
(E, π, M) (along idM ), then there exists a connection T h(E) on (E, π, M) such
that X∗(v) ∈ T h(E) for given X ∈ Sec(E, π, M) and v ∈ T (M) if and only if
∇vX = 0.

Proof. See [23, pp. 74–77]. �

Corollary 14.1 (cf. [23, Corollary 2.59]). A covariant derivative ∇ in a vector
bundle (E, π, M) determines a parallelism structure P in it such that a lifting
X ∈ Liftβ(E, π, M) of a C∞ locally injective path β : [a, b] → M is parallel (along
β with respect to P) iff

∇β̇X = 0. (14.13)

Remark 14.2. Regardless of the appearance of equation (14.13) in the book [23,
Corollary 2.59], its left-hand side is not well defined without special explanations
which are not given in [23], where implicitly is assumed β to be injective, as in our
text until now. The problem is that the mapping ∇V , V ∈ X(M), in particular
∇v with v ∈ T (M) or ∇β̇(s), s ∈ [a, b], acts on sections of (E, π, M), which are
liftings of g = idM to E, not on liftings of paths or on a lifting of a particular path
such as X ∈ Liftβ(E, π, M). Besides, the symbol ∇β̇ is not defined as β̇ is a lifting
of β to T (M) and, if β has self-intersections, it cannot be considered as a vector
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field on β([a, b]). For these reasons, the symbol ∇β̇X is incorrect. For injective
path β, the symbol ∇β̇X may be defined as a section of (E, π, M)|β([a,b]) such
that ∇β̇X : β(s) �→ ∇β̇(s)X := (∇V X̌)β(s), s ∈ [a, b], where V ∈ X(M) satisfies
Vβ(s) := β̇(s) and X̌ ∈ Sec(E, π, M) is such that X̌ : β(s) �→ X̌β(s) := X(s). If β is
not injective, i.e., if it has self-intersections, then ∇β̇X , with X ∈ Liftβ(E, π, M),
should be regarded as a lifting of β to E, ∇β̇X ∈ Liftβ(E, π, M), such that

(∇β̇X) : s �→ (∇β̇X)(s) :=
(dX i(s)

ds
+ Γi

jµ(β(s))Xj(s)β̇µ(s)
)
ei(β(s)) (14.14)

where the notation is explained in the paragraphs containing equations (14.18)–
(14.21) below. In a case of injective path β both definitions agree in a sense that
∇β̇(s)X̌ = (∇β̇X)(s), i.e., the value of ∇β̇X , as a section over β([a, b]), at β(s) is
equal to the value of ∇β̇X , as a lifting of β, at s ∈ [a, b].

Proof. The operator ∇, by the second part of Theorem 14.2, determines a connec-
tion T h(E) in (E, π, M) which in turn, by Theorem 14.1, determines a parallelism
structure P in (E, π, M) (via the T h(E)-horizontal liftings of the C∞ paths in
M). Since a path in E is parallel with respect to P iff it is T h(E)-horizontal, X is
parallel iff ẊX(s) ∈ T h

X(s)(E) for each s ∈ [a, b]. Denoting by D := d
dt ∈ X(R) the

tangent vector field to R, we can write [7, Section 1.23 (e)] ẊX(s) = X∗|s(D|s).
So, X is parallel iff

ẊX(s) = X∗|s(D|s) ∈ T h
X(s)(E). (14.15)

Suppose β is injective and denote by β−1 : β([a, b]) → [a, b] the mapping in-
verse to β on the image β([a, b]). Since β̇(s) = β∗|β(s)(D|s), we have5 D|s =(
β∗|β(s)

)−1(β̇(s)) =
(
(β−1)∗|β(s)

)
(β̇(s)). Substituting this in ẊX(s) = X∗|s(D|s),

we get
ẊX(s) = [(X ◦ β−1)∗|β(s)](β̇(s)) (14.16)

for every injective path β : [a, b] → M and s ∈ [a, b]. Let X̌ ∈ Sec(E, π, M) be
such that X̌ |β([a,b]) := X ◦ β−1.6 Now the condition (14.15) is tantamount to
X̌∗|β(s)(β̇(s)) ∈ T h

X(s)(E) which, by the last assertion of Theorem 14.2, is equiva-
lent to

∇β̇(s)X̌ := (∇V X̌)|β(s) = 0 (14.17)

where V ∈ X(M) and V |β(s) := β̇(s). At the end, if we identify X̌ along β with
X , as X̌ : β(s) �→ (X ◦ β−1)(β(s)) ≡ X(s), the last equality can be rewritten
as (14.13).

Let now β : [a, b] → M be locally injective and, for each s ∈ [a, b], the symbol
Js denotes the maximal subinterval Js ⊆ [a, b] containing s, Js � s, such that

5Here and below we apply the formula (ϕ ◦ ψ)∗|p = ϕ∗|ψ(p) ◦ ψ∗|p, where ψ : L → M ,

ϕ : M → N , L, M , and N are C1 manifolds and p ∈ L; see [7, Section 1.25 (c)].
6The existence of a C∞ section X̌ with the property mentioned can be easily proved by

applying [15, Lemma 5 on p. 28] to the components of X̌ in some frame over β([a, b]).
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βs := β|Js is injective. Repeating the above procedure, we see that Xs := X |Js

is parallel along βs iff ∇β̇s(t)X̌s = 0, t ∈ Js, with X̌s ∈ Sec(E, π, M) such that
X̌s|βs(Js) = X̌s|β(Js) := X ◦β−1

s . From the derived further local expression (14.20)
follows that ∇β̇s1(t)X̌s1 = ∇β̇s2(t)X̌s2 for s1, s2 ∈ [a, b], Js1 ∩ Js2 
= ∅, and t ∈
Js1 ∩Js2 and, moreover, ∇β̇s(t)

X̌s = X̂(t), where the lifting X̂ ∈ Liftβ(E, π, M) is
locally given by the right-hand side of (14.14). At the end, if, as above, we identify
X̌s with X |Js , we can set ∇β̇s(t)Xs = X̂|Js which is a local version of (14.14) and,
consequently, (14.13) is a global variant of ∇β̇s

X̌s = 0, s ∈ [a, b]. �

Theorems 14.1 and 14.2 and Corollary 14.1 imply

Conclusion 14.1. The concepts of parallelism structure, connection, and covariant
derivative respectively in, on, and in a vector bundle are equivalent: given any one
of them, the other two can appropriately be assigned to it.

By abuse of the language but without risk of ambiguity, the covariant deriva-
tives are called connections (as in Definition I.3.1 on page 21), the reason being
the last conclusion.

Before closing this long introductory subsection, we would like to write some
local expressions and decompositions which will essentially be used further.

Let ∇g be a covariant derivative in a vector bundle (E, π, M) along a C∞

mapping g : N → M , where E, M , and N are C∞ manifolds. Let U be an open
subset in N . Suppose {Eµ|µ = 1, . . . ,dimN} is a frame in T (N) over U and
{ei|i = 1, . . . , π−1(p), p ∈ M} is a frame, possibly depending on g, along g|U in E,
i.e., for each q ∈ N , {Eµ|q} is a basis in Tq(N) and {ei(q; g)} is a basis in π−1(g(q))
(along g). Notice, Eµ are vector fields over U in T (N), while ei( · ; g) : q �→ ei(q; g)
are liftings of g.

For every V ∈ X(U) and Xg ∈ Liftg((E, π, M)|U ), we write the expansions
(p ∈ M)

V = V µEµ ≡
dim N∑
µ=1

V µEµ, Xg = X i
gei( · ; g) ≡

dim π−1(p)∑
i=1

X i
gei( · ; g)

for some C∞ functions V µ, X i
g : U → K. Applying the properties (i)–(iv) of Defi-

nition 14.7 and using that ∇g
V Xg ∈ Liftg((E, π, M)|U ) (here and below g is not a

summation index!), we get

∇g
V (Xg) = V µ

[
Eµ(X i

g) + Γi
jµ( · ; g)Xj

g

]
ei( · ; g) (14.18)

where the summation over µ(, ν, . . .) is from 1 to dim N and over i(, j, . . .) is from
1 to dim π−1(p), p ∈ M . Here the functions Γi

jµ( · ; g) : U → K are defined by
(cf. (I.3.1))

∇Eµ(ej( · ; g)) =: Γi
jµ( · ; g)ei( · ; g) (14.19)
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and are called local coefficients of the covariant derivative ∇g with respect to the
pair of frames ({Eµ}, {ei}).

If ∇ is a covariant derivative in (E, π, M), ∇ = ∇ idM , then the argument
g(= idM ) above will be omitted, i.e.,

∇V (X) = V µ(Eµ(X i) + Γi
jµXj)ei (14.20)

where X ∈ Sec((E, π, M)|U ), ei are considered as vector fields, and the functions
Γi

jµ : U → K, U ⊆ M , are given via (cf. (I.3.1))

∇Eµ(ej) =: Γi
jµei. (14.21)

Proposition 14.4. Every derivation Dγ in (E, π, M) along a fixed C1 path γ : J →
M with coefficients (cf. (2.9) and (6.1))

Γi
j( · ; γ) = Γi

jµ( · ; γ)γ̇µ, (14.22)

where Γi
jµ( · ; γ) : J → K, is a covariant derivative in (E, π, M) along γ with

respect to γ̇.

Proof. Compare (14.18) with (2.9) or check the properties described in Defini-
tion 14.7 with γ and Dγ for g and ∇, respectively, invoking the definition of Dγ

(see Definition 2.1 on page 219). �

Proposition 14.5. A linear connection ∇ in the tangent bundle over a manifold M
is a covariant derivative in this bundle (along the identity mapping idM ).

Proof. Compare (14.18) with (I.3.2) and (I.3.3) for r = s = 1 or restrict Defi-
nition I.3.1 on page 21 to the tangent bundle over M and check the properties
described in Definition 14.7. �

Remark 14.3. If one starts with the general theory of connections on vector bun-
dles, Proposition 14.5 should be converted into a definition, i.e., in such an ap-
proach a linear connection on a manifold is defined as a connection on its tangent
bundle and, by abuse of the language, the associated covariant derivative is also
called linear connection on the same manifold. For details, see [23, p. 93 ff].

Suppose the frames {Eµ} and {ei} are subjected simultaneously to the fol-
lowing changes

Eµ|q �→ E′
µ|q = Bν

µ(q)Eν |q, ei(q; g) �→ e′i(q; g) = Aj
i (q; g)ej(q; g) (14.23)

where q ∈ N , and B := [Bν
µ] and A( · ; g) := [Aj

i ( · ; g)] are non-degenerate matrix-
valued functions of class C∞. (In what follows, it is sufficient A( · ; g) to be of class
C1 or C2 and B to be arbitrary of class at most C2.) A straightforward calcula-
tion, based on (14.19), reveals that the change (14.23) leads to the transformation
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Γi
jµ �→ Γ′ i

jµ with

Γ′i
jµ( · ; g) =

dim N∑
ν=1

dim π−1(p)∑
k,l=1

Bν
µ

(
A−1( · ; g)

)i

k
Al

j( · ; g)Γk
lν( · ; g)

+
dim N∑
ν=1

dim π−1(p)∑
k=1

Bν
µ

(
A−1( · ; g)

)i

k
Eν(Ak

j ( · ; g)). (14.24)

This means that the functions Γ′i
jµ( · ; g) are the coefficients of ∇g in the new

pair of frames ({E′
µ}, {e′i}), ∇g

E′
µ
(e′j( · ; g)) = Γ′i

jµ( · ; g)e′i( · ; g). Introducing the
matrices of the coefficients of ∇g (the coefficients’ matrices of ∇g) Γµ( · ; g) :=[
Γi

jµ( · ; g)
]dim π−1(p)

i,j=1
, p ∈ M , we can rewrite (14.24) in a more compact form:

Γ′
µ( · ; g) = Bν

µ[A−1( · ; g)Γν( · ; g)A( · ; g) + A−1( · ; g)Eν(A( · ; g)]. (14.25)

The reader may have notice that, up to notation and meaning of the sym-
bols, (14.24) and (14.25) are identical with (6.5) and (6.4), respectively. We shall
comment on this fact later in subsection 14.3.

If one is dealing with a connection in a bundle (E, π, M) (along idM ), the
argument g(= dM ) should be deleted in equations (14.23)–(14.25) in accordance
with (14.20) and (14.21).

Now we shall derive the parallel transport equation in a given vector bundle
(E, π, M) (cf. [23, p. 77, Exercise 1]).

Let ∇ be a covariant derivative in (E, π, M) and P be the determined by it
parallelism structure according to Corollary 14.1. By the same corollary, a section
X ∈ Sec(E, π, M) is parallel along β : [a, b] → M iff ∇β̇X = 0. Writing this
equation in a pair of frames ({Eµ}, {ei}), {Eµ} in T (M) and {ei} in E, and
applying (14.20), we get

β̇(X i) + Γi
jµXjβ̇µ = 0 (14.26)

along β, or
dX i(β(s))

ds
+ Γi

jµ(β(s))Xj(β(s))β̇µ(s) = 0 (14.26′)

with s ∈ [a, b], β̇(s) = β̇µ(s)Eµ|β(s) ∈ Tβ(s)(M), and X = X iei.
Relying on the results obtained, we can partially generalize Definition 14.2

as follows.7

Definition 14.8. Let ∇g be a covariant derivative in a vector bundle (E, π, M) along
a mapping g : N → M . A lifting X ∈ Liftg(E, π, M) is called parallel (with respect
to ∇g) if ∇g

V X = 0 for every V ∈ X(N). A lifting X of g to E is called parallel
(with respect to ∇g) along a path β : [a, b] → N in N (not in M !) if ∇g

β̇
X = 0.

7For the rest of the generalization of Definition 14.2, vide infra Definition 14.9 on the facing
page.
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Exercise 14.1. Verify the consistency of Definitions 14.8 and 14.2.

Exercise 14.2. By repeating mutatis mutandis the procedure leading to equa-
tions (14.26) and (14.26′), prove that a lifting Xg ∈ Liftg(E, π, M) is parallel
along β iff in any pair of frames ({Eµ}, {ei}), with {Eµ} in T (N) (not in T (M))
and {ei} in E, is valid

β̇(X i
g) + Γi

jµ( · ; g)Xj
g β̇µ = 0 (14.27)

along β : [a, b] → N , or

dX i
g(β(s))
ds

+ Γi
jµ(β(s); g)Xj

g(β(s))β̇µ(s) = 0 (14.27′)

were s ∈ [a, b], β̇(s) = β̇µ(s)Eµ|β(s) ∈ Tβ(s)(N), and Xg = X i
gei( · ; g).

14.2. Parallel transports in vector bundles

This subsection is devoted to some problems connected with the axiomatical def-
inition of parallel transports in vector bundles.

Definition 14.9. The parallel transport P in a vector bundle (E, π, M) correspond-
ing (assigned) to a parallelism structure P in (E, π, M) is a mapping P : β �→ Pβ

assigning to every C∞ path β : [a, b] → M in M the parallel transport along β
defined by P via (14.2) and (14.3).

Proposition 14.6. The parallel transport is reparameterization invariant in a sense
that, if β : [a, b] → M and ϕ : [c, d] → [a, b] is C∞ and such that ϕ(c) = a and
ϕ(d) = b, then

Pβ◦ϕ = Pβ (14.28)

Proof. See (14.3) and (14.5). �
Define the product (or the product path αβ) of two paths α : [a, b] → M and

β : [b, c] → M with α(b) = β(b) by8

α · β := αβ : [a, c] → M, αβ(s) :=

{
α(s) for s ∈ [a, b]
β(s) for s ∈ [b, c]

. (14.29)

The product of paths is associative but not commutative.

Definition 14.10. Suppose α : [a, b] → M and β : [b, c] → M are of class C∞ and
α(b) = β(b). If the product path αβ is not C∞ at the point s = b, the parallel
transport along αβ is defined to be composition of the parallel transports along
the constituent paths:

Pαβ = Pβ ◦ Pα. (14.30)
8In [23, p. 51] the product αβ is denoted by β ∗α; this is a matter of convention. See also the

comments in [23, Section 2.16].
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More generally, if αi : [ai, ai+1] → M , i = 1, . . . , k with k ∈ N\{1}, are C∞ paths,
αi(ai+1) = αi+1(ai+1) for i = 1, . . . , k − 1, and the product path α1 · · ·αk is not
C∞ at the points a2, . . . , ak−1, then by definition

Pα1···αk = Pαk ◦ · · · ◦ Pα1 . (14.31)

Remark 14.4. In (14.30) and (14.31) we use the equality sign (=) instead of the
equal by definition one (:=) because they are valid also in the case when, respec-
tively, αβ and α1 · · ·αk are C∞ paths (not only C∞ piecewise as assumed above)
which will be proved later; but the validity of, e.g., (14.30) for a C∞ path αβ is a
theorem, not a definition (see Proposition 14.8).
Remark 14.5. Suppose α : [a, b] → M is (finite) C∞ piecewise path, i.e., there are
k ∈ N\{1} and numbers a1, . . . , ak+1 ∈ [a, b] such that a = a1 < a2 < · · · <
ak+1 = b, the paths αi := α|[ai,ai+1], i = 1, . . . , k are C∞, and α is not C∞ at the
points a2, . . . , ak−1. Since

β = (β|[b1,b2]) · · · (β|[bk,bk+1]) (14.32)

for every β : [c, d] → M and b1, . . . , bk+1 ∈ [c, d] such that c = b1 < b2 < · · · <
bk+1 = d, we have α = α1 · · ·αk and, by (14.31),

Pα = Pαk ◦ · · · ◦ Pα1 . (14.33)

Therefore the parallel transport along a piecewise C∞ path is equal to the compo-
sition (in the corresponding order) of the parallel transports along the C∞ parts
of the initial path.

Proposition 14.7. If P is a parallel transport assigned to a parallelism structure P

in a vector bundle, β : [a, b] → M is C∞, and c ∈ [a, b], then

Pβ = Pβ|[c,b] ◦ Pβ[a,c] (14.34)

Proof. The equality (14.34) is a consequence of (14.12) with λ = b and equa-
tion (14.3). �

Proposition 14.8. The equalities (14.30) and (14.31) are valid for C∞ (and, by
definition, for piecewise C∞) paths αβ and α1 · · ·αk respectively.

Proof. Apply (14.34) with αβ for β and use (14.29). �

Let us recall, in the approach of [23], which was followed in the previous
subsection and until now in the present one, the concept of a parallel transport is
a secondary one as it was defined on the base of the one of a parallelism structure
(or, equivalently, connection or covariant derivative). Now we want to revert the
situation by showing that the parallel transport can be defined in an indepen-
dent axiomatic way as a consequence of which the parallelism structures (and,
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hence, connections and covariant derivatives) can be introduced on its ground.9

Before giving the corresponding definition, we would like to mention that there are
three groups of axioms when one tries to define a parallel transport axiomatically.
First, there are axioms of a “functional type” describing the parallel transport
as a mapping on the set of paths, which we assume to be of class C∞ for the
consistency with [23] but, generally, this is a too strong restriction. These axioms
are well known and appear in practically identical form in different works. Below
they are written as (14.35)–(14.38). The second group describes the “smoothness
properties” of the parallel transport. The concrete axioms in it vary significantly
in the different works depending on their particular aims. Here we choose them in
a way consistent with the properties of the parallelism structures (see (14.39) and
(14.40) below). The last group includes axioms describing the compatibility of the
parallel transport with other structures, if any, such as metric, (almost) complex
structure, etc. This group is not a subject of this investigation, so we admit it to
be empty. As an example of such a type of axiom, we point the condition (I.4.2)
on page 35 for a linear connection which means that the parallel transport does
not change the scalar products of the vectors when they are transported by its
means.

Definition 14.11. Let (E, π, M) be a vector bundle. A parallel transport in the
bundle (E, π, M) is a mapping P assigning to each path β : [a, b] → M a mapping

Pβ : π−1(β(a)) → π−1(β(b)) (14.35)

such that:

(i) Pβ is a vector space isomorphism;
(ii) if ϕ : [c, d] → [a, b] is C∞ and ϕ(c) = a and ϕ(d) = b, then

Pβ◦ϕ = Pβ ; (14.36)

(iii) if β− is the path inverse to β,

Pβ−
=

(
Pβ

)−1; (14.37)

(iv) if α : [c, a] → M , α(a) = β(a) and αβ is the product of α and β,

Pαβ = Pβ ◦ Pα; (14.38)

(v) under the hypotheses preceding equation (14.6) in condition (iv) of Defini-
tion 14.1, the mapping

f̃ : T (U) × π−1(U) → E, f̃ : (X, u) �→ Pα(u), α(s) := f(sX), (14.39)

where (X, u) ∈ T (U) × π−1(U) and s ∈ [0, 1], is of class C∞;
9A reader interested in the earliest essential published account on this problem should read

the paper [31].
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(vi) if α, β : [0, 1] → M , α(0) = β(0), α̇(0) = β̇(0), ᾱu(t) := Pα|[0,t](u), and
β̄u(t) := Pβ|[0,t](u) for u ∈ π−1(α(0)) and t ∈ [0, 1], then

˙̄α(0) = ˙̄β(0). (14.40)

The following theorem says that, when talking of a parallel transport, it is
insignificant whether we have in mind Definition 14.11 or Definition 14.9.

Theorem 14.3. The parallel transport P corresponding to a parallelism structure P

according to Definition 14.9 is a parallel transport in a sense of Definition 14.11.
Conversely, if P is a parallel transport according to Definition 14.11, then the
mapping P : (u, β) �→ Pβ

u, β : [a, b] → M , u ∈ π−1(β(a)), where the mapping
Pβ

u : [a, b] → E is given by
P

β
u(t) = Pβ|[a,t], (14.41)

is a parallelism structure such that the assigned to it parallel transport according to
Definition 14.9 coincides with P, i.e., given P, there is P generating it via (14.3).

Proof. Suppose P is a parallelism structure and P is the assigned to it parallel
transport. The properties (14.36) and (14.38) ware already established in Propo-
sitions 14.6 and 14.8, while (14.35), (14.37), and point (i) of Definition 14.11 are
valid due to Definition 14.1, condition (ii). The conditions (v) and (vi) of Defi-
nition 14.11 are simple reformulation of, respectively, conditions (iv) and (v) of
Definition 14.1.

Conversely, it is almost completely trivial to be verified that the mapping P

defined via (14.41), in which P is a parallel transport according to Definition 14.11,
satisfies all of the conditions mentioned in Definition 14.1. For instance, (14.5)
follows from

P
β◦ϕ
u (s) = P(β◦ϕ)|[a,s](u) = Pβ|[ϕ(a),ϕ(s)] = P

β
u(ϕ(s)), s ∈ [a, b],

while Pβ
u(a) = Pβ|[a,a](u) = u is a result of

Pβp = idπ−1(p), βp : [a, a] = {a} → {p} ∈ M (14.42)

which is a consequence of Pβp = Pβpβ−
p = Pβ−

p ◦ Pβp = (Pβp)−1 ◦ Pβp = idπ−1(p)

as βpβ
−
p = βp = β−

p . We leave to the reader to check the other properties. At
last, by (14.3), the parallel transport P̄ corresponding to P is given via P̄β(u) :=
Pβ

u(b) = Pβ|[a,b](u) = Pβ(u) for every u ∈ π−1(β(a)) and β : [a, b] → M , which
means P̄ = P. �

The fundamental meaning of the last theorem is that the concept of a parallel
transport in a vector bundle is equivalent to the one of a parallelism structure in
it and, consequently, to the ones of connection on it or a covariant derivative in it.

In the present, as well as in the previous, subsection all mappings (manifolds,
and other structures) were supposed to be of classes C∞. This is sufficient, but not
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necessary for proving the results. Most of them remain valid when C1 or C2 (and
rarely C3) smoothness is supposed. To simplify the formulation of some results,
as well as to keep in touch with [23], further in this section we also suppose C∞

smoothness. But a careful reader can reformulate the material by counting the
necessary class of smoothness really required.

14.3. Parallel transports and linear transports along paths

The main aim of this subsection is to be shown that the parallel transports can
be considered as linear transports along paths. Once this is proved, one can freely
apply the results, concerning normal frames for linear transports along paths,
to arbitrary parallel transports and, as a consequence of the results obtained, to
parallelism structures, connections and covariant derivatives in/on vector bundles.

Proposition 14.9. Let (E, π, M) be a vector bundle and P be a parallel transport in
it. If γ : J → M , with J being R-interval, the mapping P : γ �→ P γ : (s, t) �→ P γ

s→t,
s, t ∈ J , such that

P γ
s→t =

{
Pγ|[s,t] for s ≤ t(
Pγ|[t,s])−1 for s ≥ t

, (14.43)

is a linear transport along paths in (E, π, M).

Note 14.1. Compare this result with Proposition 11.1, as well as equation (14.43)
with (11.4a).

Proof. We have to check the conditions in Definition 3.1 with P for L: equa-
tion (3.1) follows from (14.35), (3.3) is a consequence of (14.42), while (3.4) is true
as Pγ|[a,b], a, b ∈ J , a ≤ b, is a vector space isomorphism between π−1(γ(a)) and
π−1(γ(b)). At last, (3.2) is a corollary of (14.38) as, for every path γ : J → M ,
γ|[a, c] = (γ|[a, c])|[a,b](γ|[a, c])|[b,c] = γ|[a,b]γ|[b,c] for all a, b, c ∈ J such that
a ≤ b ≤ c (see (14.32)). �

Exercise 14.3. Prove that (14.43) is equivalent to

P γ
s→t = F−1(t, γ) ◦ F (s, γ) (14.43′)

where

F (r, γ) :=

{
Pγ|[r,a] for r ≤ a(
Pγ|[a,r]

)−1 for r ≥ a
, r = s, t

for some fixed a ∈ [min(s, t), max(s, t)]. (Hint: use the equality (14.32) and invoke
equation (14.38).) Then Proposition 14.9 follows from Proposition 3.1.

It is almost evident, (14.43) can be inverted, i.e., P can be expressed via P
(cf. (11.4b)):

Pβ = P β
a→b for β : [a, b] → M , a ≤ b. (14.44)
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Therefore the mapping P provides an equivalent description of the parallel trans-
port P, the only difference being that P is defined along arbitrary paths γ : J → M .
We shall call P parallel transport along paths if we want to emphasize its difference
from P but, if it is not important and there is not a risk of ambiguities, P will
simply be called parallel transport as P.

At this point a natural problem arises: when a linear transport along paths is
a parallel transport (along paths)? Since this problem is aside from our main topic
and its solution will not be used further in the present work, we shall consider it
quite briefly.10 For the purpose one should, using (14.43) or (14.44), express all of
the properties of a parallel transport P mentioned in Definition 14.11 through the
parallel transport P along paths corresponding to P.

Lemma 14.1. If P is a linear transport along paths in a vector bundle (E, π, M)
and it satisfies the conditions

P γ◦ϕ
s→t = P γ

ϕ(s)→ϕ(t), s, t ∈ J ′′, (14.45)

where γ : J → M and ϕ : J ′′ → J is orientation preserving diffeomorphism, and

P
γ|J′
s→t = P γ

s→t, s, t ∈ J ′, (14.46)

where J ′ ⊆ J is a subinterval, then the mapping P : β �→ Pβ, β : [a, b] → M , given
via (14.44) satisfies the conditions (14.35) and (i)–(iv) of Definition 14.11. Con-
versely, given a mapping P satisfying the last mentions conditions, the mapping
P : γ �→ P γ : (s, t) �→ P γ

s→t, γ : J → M , s, t ∈ J , defined via (14.43) is a linear
transport along paths possessing the properties (14.45) and (14.46).

Proof. Necessity: (14.35) follows from (3.1), (i) is a consequence of equations
(3.4) and (3.5), (14.36) is a corollary of (14.45), (14.37) is a result of (14.45) with
ϕ(t) = a + b − t, t ∈ [a, b] and (3.5), and, at last, in the proof of (14.38) the
conditions (14.46), (14.45) and (3.4) are involved: Pαβ = Pαβ

c→b = Pαβ
a→b ◦ Pαβ

c→a =
P

(αβ)|[a,b]
a→b ◦ P

(αβ)|[c,a]
c→a = P β

a→b ◦ Pα
c→a = Pβ ◦ Pα.

Sufficiency: The fact that P is a linear transport along paths was es-
tablished in Proposition 14.9 in which proof the conditions (v) and (vi) of Def-
inition 14.11 were not used. Taking for definiteness s ≤ t, the proof of (14.45)
and (14.46) is respectively:

P γ◦ϕ
s→t = P(γ◦ϕ)|[s,t] = Pγ|[ϕ(s),ϕ(t)] = P γ

ϕ(s)→ϕ(t)

P
γ|J′
s→t , = P(γ|J′)|[s,t] = Pγ|[s,t] = P γ

s→t.

The case s ≥ t can be proved similarly. �

10For some details and a more general discussion of the situation, see [115] and Section V.8
below.
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Theorem 14.4. If P is a parallel transport, then the mapping P : γ �→ P γ : (s, t) �→
P γ

s→t, γ : J → M , s, t ∈ J , defined by (14.43) is a linear transport along paths
satisfying (14.45), (14.46) and the conditions:

(a) under the hypotheses preceding (14.6) in condition (iv) of Definition 14.1, the
mapping

f̃ : T (U) × π−1(U) → E, f̃ : (X, u) �→ Pα
0→1(u), α(s) := f(sX),

(14.47)
where (X, u) ∈ T (U)× π−1(U) and s ∈ [0, 1], is of class C∞;

(b) if α, β : [0, 1] → M , α(0) = β(0), α̇(0) = β̇(0), ᾱu(t) := Pα
0→t(u), and

β̄u(t) := P β
0→t(u) for u ∈ π−1(α(0)) and t ∈ [0, 1], then

˙̄α(0) = ˙̄β(0). (14.48)

Besides, the corresponding to P via (14.44) mapping is a parallel transport co-
inciding with P. Conversely, if P is a linear transport along paths satisfying the
conditions (14.45)–(14.48), the mapping P : β �→ Pβ given via (14.43) is a parallel
transport along paths; moreover, the corresponding to P via (14.43) linear transport
along paths coincides with P .

Proof. See Lemma 14.1 and reformulate conditions (v) and (vi) of Definition 14.11
in terms of the mapping P . �

Thus we can make two important conclusions:

Conclusion 14.2. The parallel transports along paths are the only linear transports
along paths having the special properties (14.45)–(14.48).

Therefore, we can give the following definition of a parallel transport along
paths which, by Theorem 14.4 is equivalent to the one presented above.

Definition 14.12. A parallel transport along paths in a vector bundle (E, π, M) is
a linear transport along paths in it satisfying the conditions (14.45)–(14.48).

Conclusion 14.3. The parallel transports along paths provide an equivalent descrip-
tion of the parallel transports and, consequently, of the parallelism structures, con-
nections, and covariant derivatives. Therefore any result concerning linear trans-
ports along paths, in general, or parallel transports along pats, in particular, can
mutatis mutandis be formulated equivalently in terms of parallel transports, par-
allelism structures, connections, or covariant derivatives.

Let ∇g be a covariant derivative in a vector bundle (E, π, M) along g : N →
M and Γµ( · ; g) =

[
Γi

jµ( · ; g)
]

be the matrix of its coefficients in a pair of frames
({Eµ}, {ei}), over a set U × g(U) ⊆ N × M , {Eµ} being a frame in T (N) over
U ⊆ N and {ei} being a frame over g(U) in E.

Comparing the transformation equations (14.25) on page 310 and (6.4) on
page 248, or equivalently (14.24) and (6.5), one can notice from the first sight a
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striking similarity between them: the only formal difference being that in equa-
tion (14.25) the indices µ, ν, . . . run from 1 to dimN and the matrix-valued func-
tion A( · ; g) : U → GL(dim(π−1(p)), K), U ⊆ N , p ∈ M , stands for A : W →
GL(dim(π−1(p)), K), W ⊆ M . This analogy is a hint to be considered the quan-
tities (cf. (6.1))

Γ(s; γ, g) :=
[
Γi

jµ(γ(s); g)γ̇µ(s)
]dim π−1(p)

i,j=1
= Γ(γ(s); g)

:=
dim N∑
µ=1

Γµ(γ(s); g)γ̇µ(s) ≡ Γµ(γ(s); g)γ̇µ(s), (14.49)

where γ : J → N is a C1 path and s ∈ J , which under a change ({Eµ}, {ei}) �→
({E′

µ = Bν
µEν}, {e′i = Aj

i ej}) transform into (see (14.25) and cf. (3.26))

Γ′(s; γ, g) = A−1(γ(s); g)Γ(γ(s); g)A(γ(s); g) + A−1(γ(s); g)
∂A(γ(s); g)

∂s
. (14.50)

Prima facie one may think, relying on the Proposition 3.6 on page 232, that
there is a (unique) linear transport along paths in some bundle over N whose 2-
index coefficient matrix is Γ(s; γ, g). To clarify the situation, it must be emphasized
on the fact that the path γ is in N (not in M) while the ‘transport’ should act
between some of the fibres of (E, π, M), viz. the ones over g(N). Hence the bundle
in which the hypothetical transport should act must have N as a base while its
bundle space must be a subspace of E, viz. π−1(g(N)). Besides, the fibre over
q ∈ N must be π−1(g(q)). This is admissible iff g is injective, g(q1) 
= g(q2) for
each q1, q2 ∈ N such that q1 
= q2, in which case g is bijective on the image g(N)
and vice versa, i.e., if g : N → M is C∞ and g|N : N → g(N) is bijection.

The results obtained in the above analysis can be summarized in the following
assertion.

Proposition 14.10. Let ∇g be a covariant derivative in a vector bundle (E, π, M)
along an injective mapping g : N → M and g−1 : g(N) → N be the inverse of g on
the image g(N) ⊆ M . If Γµ( · , g) are the coefficients’ matrices of ∇g in a pair of
frames ({Eµ}, {ei}), then there exists a unique linear transport gP along paths in
the vector bundle (π−1(g(N)), πN , N) with πN := g−1 ◦ (π|π−1(g(N))) such that in
{ei} the matrix of its (2-index) coefficients is given by (14.49) for every C1 path
γ : J → N or, equivalently, such that in ({Eµ}, {ei}) its 3-index coefficients coin-
cide with the coefficients of ∇g. Conversely, to every linear transport along paths
in (π−1(g(N)), πN , N) with given 3-index coefficients Γi

jµ( · ; g), there corresponds
a unique covariant derivative ∇g in (E, π, M) with coefficients Γi

jµ( · ; g).

Proof. See the above discussion, Proposition 3.6 on page 232, and the definition
of the 3-index coefficients of a linear transport along paths in Section 6. �
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Remark 14.6. Notice, in the case N = M and g = idM , i.e., when a covariant
derivative in (E, π, M) is considered, the bundle (π−1(g(N)), πN , N), in which
the transport gP determined by Proposition 14.9 acts, coincides with the initial
bundle (E, π, M).

Proposition 14.11 (cf. Proposition 11.4). Let gD be the derivation along paths cor-
responding via (3.19) to the linear transport gP along paths described in Propo-
sition 14.10. If Xg is a lifting of g to E and X̂g is a lifting of the paths in N to
π−1(N) in the bundle (π−1(g(N)), πN , N) such that X̂g : γ �→ Xg ◦ γ for every C1

path γ : J → N , then, for each s ∈ J ,(
gDγ(X̂g)

)
(s) := gDγ

s (X̂g) =
(∇g

γ̇(Xg)
)
(γ(s)). (14.51)

Proof. Invoke (3.23), (14.18), and (14.49). �

Remark 14.7. In a case of a covariant derivative ∇ in (E, π, M), i.e., for N =
M and g = idM , equation (14.51) reads Dγ

s (X̂) = (∇γ̇(X))|γ(s) for every X ∈
Sec(E, π, M) and X̂ ∈ PLift(E, π, M) such that X̂ : γ �→ X̂γ : s �→ Xγ(s). In
the tangent bundle case, (E, π, M) = (T (M), π, M), the last equality is identical
with (11.6).

The above result, combined with Proposition 11.4 on page 283 is a tip for the
existence of some connection between gP and the parallel transport determined
by ∇g.

Definition 14.13 (see Definitions 14.2 and 14.8). Suppose the symbols (E, π, M),
N , g, ∇g, and gP have the same meaning as in Proposition 14.10. A path γ̄ : J →
π−1(g(N)) ⊆ E is called parallel (along γ := πN ◦ γ̄ : J → N) with respect to ∇g if

γ̄(t) = gP γ
s→tγ̄(s) (14.52)

for some (and hence for any) s ∈ J and all t ∈ J ; respectively, in this case γ̄
is called a parallel (along γ with respect to ∇g) lifting of γ. A lifting λ of the
paths in N to paths in π−1(g(N)) is called parallel with respect to ∇g if for any
γ : J → N , the path λγ , λ : γ �→ λγ , is parallel along γ with respect to ∇g. A
section σ ∈ Sec(π−1(g(N)), πN , N) is parallel along γ : J → N (resp. on U ⊆ N)
with respect to ∇g, if the lifting σ̂ : γ �→ σ̂γ = σ ◦γ is parallel along the given path
γ (resp. along every path γ : J → U) with respect to ∇g.

Proposition 14.12. Let ∇g and gP be as in Proposition 14.10. A lifting Xg ∈
Liftg(E, π, M) is parallel (resp. along γ : J → N) with respect to ∇g if and only if
the lifting of paths X̂g ∈ PLift(π−1(g(N)), πN , N) with X̂g : γ �→ Xg ◦ γ , γ : J →
N , is parallel on N (resp. along the given path γ) with respect to ∇g.

Proof. See Definitions 14.8 and 14.13 and use (3.21), on page 231, and (14.51). �
So, allowing some freedom of the language, we can say that equation (14.52)

describes, besides the parallel paths in π−1(g(N)), also the parallel sections of
(π−1(g(N)), πN , N), and the parallel liftings of g to E ⊇ π−1(g(N)).
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Proposition 14.13. Let ∇ be a covariant derivative in a vector bundle (E, π, M)
and P be the determined by it parallelism stricture according to Corollary 14.1 on
page 306. The linear transport idMP along paths in (E, π, M) determined by ∇
according to Proposition 14.10 (with N = M and g = idM ) coincides with the
parallel transport P along paths corresponding to P via (14.3) and (14.43), i.e.,
P = idMP .

Proof. Let γ : J → M be a C1 path, s0 ∈ J , and u0 ∈ π−1(γ(s0)). We have to
show that the liftings γ̄ and γ̄ ′ : J → E of γ, given via

γ̄(t) := P γ
s0→t(u0), γ̄ ′(t) := idMP

γ

s0→t(u0), t ∈ J

are identical, γ̄ = γ̄ ′. It is trivial to see, the path γ̄ is parallel with respect to
P (see Definition 14.2). Therefore, by Corollary 14.1, ∇γ̇ γ̄ = 0 or, in component
form (see (14.14) or (14.26′))

dγ̄i(t)
dt

+ Γi
jµ(γ(t))γ̇µ(t) = 0 (14.53)

where Γi
jµ are simultaneously 3-index coefficients of P and coefficients of ∇ (see

Proposition 14.10). According to (3.20) and (3.21), the path γ̄ ′ satisfies the equa-
tion Dγ

t γ̄ ′ = 0, D being the derivation along paths generated by idMP (see Def-
inition 3.2 on page 230), which, due to (3.23) and (6.1), coincides with (14.53)
with γ̄ ′ for γ̄. Hence (the components of) γ̄ and γ̄ ′ are solutions of identical
first order ordinary differential equations passing through one and the same point
u0 = γ̄(s0) = γ̄ ′(s0). Consequently, by the uniqueness of the solutions of such
equations, γ̄ = γ̄ ′, which, due to the arbitrariness of γ, s0, and u0, implies
P = idMP . �

14.4. Normal frames for parallel transports,
connections and covariant derivatives

The conclusions made in the previous subsection enable all of the general results
and definitions related to linear transports along paths in vector bundles to be
transferred, with appropriate changes, to the theory of connections, parallelism
structures, parallel transports, and covariant derivatives in/on these bundles. In
particular, such a procedure can be realized with respect to the theory of normal
frames (and, possibly, coordinates) for linear transports along paths. Below we
turn our attention to its brief description. To save some space and writing, we
shall perform it with respect to the parallel transports (along paths) and covariant
derivatives, which are most suitable for our purposes, but, applying Theorems 14.1,
14.2, 14.3, and 14.4, one can reformulate the material in terms of parallelism
structures or connections.

Definition 14.14 (see Definitions 4.1–4.4). Let P be a parallel transport along
paths in a vector bundle (E, π, M). A frame normal for P along γ : J → M
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(resp. on U ⊆ M) is called normal along γ (resp. on U) for the parallel transport
P, parallelism structure P, or/and connection T h(E) determined by it. If such
frames exist, P , P, P, and/ or T h(E) are called Euclidean along γ (resp. on U).
A frame strong normal for P (on an open set containing or equal to U) is called
strong normal for P, P, and/or T h(E).

Definition 14.15 (cf. Definition I.5.1). Let (E, π, M) be a vector bundle, g : N →
M , ∇g be a covariant derivative in (E, π, M) along g, and U ⊆ N , where E, M ,
and N are manifolds. A frame {ei} in E, defined over an open set containing or
equal to g(U), is called normal for ∇g on U , if for some (and hence for any –
see (14.25) or Conclusion 14.5 below) frame {Eµ} in T (N) over U , the coefficients
of ∇g in the pair of frames ({Eµ}, {ei}) vanish everywhere on U . Respectively, a
frame {ei} is normal for ∇g along ϕ : Q → N , Q 
= ∅, if it is normal on ϕ(Q) ⊆ N .

Obviously, it is valid

Conclusion 14.4. Definition 14.14 transfers all problems concerning frames normal
for parallelism structures, parallel transports, and connections to similar problems
for a special type of linear transports along paths, viz. to the parallel transports
along paths, to which are applicable all of the results from Sections 3–9.

As a result of this conclusion, we are not going to consider the mentioned
in it type of problems here. Of course, the additional conditions (14.45)–(14.48),
singling out the parallel transports along paths from the other linear transports
along paths, lead to some specific properties of the corresponding normal frames.
But their concrete description is out of the main subject of the present book.
However, below some of these special properties will be described (implicitly)
when frames normal for covariant derivatives will be explored.

Let us now turn our attention to the frames normal for covariant derivatives.
We distinguish these frames from the ones described by Definition 14.14 because
the class of these frames is, generally, larger than the one of the letter. As we
shall see below, a frame normal for a covariant derivative ∇ in a vector bundle is
strongly normal for the corresponding to ∇ (or determining ∇) parallel transport
P along paths. The relations between the frames normal for ∇ and P is similar to
the ones described in Section 12 in the case of linear connections on a manifold.

Suppose (E, π, M) is a vector bundle, g : N → M is of class C∞, ∇g is a
covariant derivative in (E, π, M) along g, U ⊆ N , {Eµ|µ = 1, . . . ,dimN} is a
frame over U in T (N), and {ei|i = 1, . . . ,dimπ−1(p), p ∈ M} is a frame over
an open set V containing or equal to g(U) ⊆ M in E. Let B = [Bν

µ]dim N
µ,ν=1 and

A = [Aj
i ]

dim π−1(p)
i,j=1 , be non-degenerate matrix-valued functions on V and g(V ),

respectively, and A be of class C1. The frame {e′i = Aj
iej} over V ⊇ g(U) in E

is normal for ∇g on U iff there can be found A and B such that in the pair of
frames ({Eµ}, {ei}) the coefficients Γ′ i

jµ of ∇g vanish on U . According to the
transformation law (14.25), the frame {e′i} is normal for ∇g on U iff the normal
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frame equation (cf. (I.5.4) on page 39 or (12.6) on page 291)

(Γµ( · ; g)A + Eµ(A))|U = 0 (14.54)

holds. From here two quite fundamental conclusions can be made:

Conclusion 14.5. The choice of the frame {Eµ} over U in T (N) involved in the
definition of a frame normal for a covariant derivative along a mapping is com-
pletely insignificant (see (14.54) and (14.25)): a frame normal for one such choice is
normal for any other choice. From general positions, this choice may be important
only when one tries to solve equation (14.54) with respect to A as it may lead to
a simplification as well as to a complication of the concrete form of the equation.
So, it is a matter of convenience to select a particular frame {Eµ} when exploring
frames normal for covariant derivatives along mappings.

Conclusion 14.6. The more important result is that (14.54) is identical with
equation (12.6) (with µ = 1, . . . ,dimN while in Section 12 is supposed µ =
1, . . . ,dimM) describing the frames strongly normal on U for linear transports
along paths with fixed 3-index coefficients. Therefore the discussion after (12.6) in
Section 12 can be repeated word by word if we replace in it the base manifold M
with the manifold N (which is the domain of the mapping g : N → M along which
is the covariant derivative ∇g) and the phrase “frame(s) (strong) normal on . . .
for . . . ” with “frame(s) normal for ∇g”. In short, this results in the conclusion
that all of the results of Chapter III (or II) concerning the solution of the matrix
equation (14.54) are mutatis mutandis valid with respect to frames normal for
covariant derivatives along mappings.

In particular, we can assert the existence of frames normal at any fixed point
q ∈ N , i.e., for U = {q}, or along any C1 locally injective path γ : J → N ,
i.e., for U = γ(J); also the frames normal on U , if any, are connected via linear
transformations such that their matrices A satisfy the equation Eµ(A)|U = 0 for
some (and hence any) frame {Eµ} in T (N) over an open set containing or equal
to U , etc.

Thus the general, and possibly unexpected, inference is encoded in

Conclusion 14.7. The methods developed for the investigation of frames normal
for linear connections on manifolds and the ones for linear transports along paths
in vector bundles are completely applicable for the exploration of frames normal
for covariant derivatives along mappings and frames strongly normal for linear
transports along paths; moreover, all kinds of problems concerning the last two
types of frames can be solved by the methods mentioned.

This conclusion is in full agreement with the ones at the end of the last
paragraph of Section 8 and with Remark 8.1 on page 259.

Now it is time to formulate and solve the problem: what are the links between
frames normal for a covariant derivative and the determined by (or determining
it) parallel transport?



14. Connections and parallel transports 323

Proposition 14.14. Let ∇g and gP be as in Proposition 14.9 on page 315. The
frames normal on U ⊆ N for ∇g are strong normal on U for gP and vice versa.

Proof. See Definitions 14.15 and 12.2 and invoke Proposition 14.9. �

14.5. On the role of the curvature

This subsection shows that the curvature of a connection (or parallel transport or
covariant derivative) plays with respect to the normal frames the same role as the
curvature of a linear connection (transport) with respect to this kind of frames.

The curvature tensor field or simply curvature of a connection T h(E) on a
vector bundle (E, π, M) is a mapping [23, Section 2.43]

R : X(M) × X(M) × E → E

such that, given U, V ∈ X(M) and ξ ∈ E,

R : (U, V, ξ) �→ R(U, V )ξ := −pr2
(
([Ū , V̄ ] )v

ξ

)
. (14.55)

Here: pr2 : T v(E) → E was defined on page 306, Ū and V̄ are the horizontal
liftings to E of U and V respectively (see Definition 14.6), ([Ū , V̄ ] )ξ is the com-
mutator of Ū and V̄ at ξ, and the superscript v denotes the vertical compo-
nent of a vector in T (E) with respect to T h(E). If X ∈ Sec(E, π, M), we set
R(U, V )X ∈ Sec(E, π, M) with (R(U, V )X)(p) := R(U, V )(X(p)), p ∈ M .

For us will be important that R is tensorial in all its three arguments, it is
skewsymmetric in the first two arguments, and, if ∇ is a covariant derivative in
(E, π, M) which determines T h(E), then11

R(U, V )X =
(
R∇(U, V )

)
(X) ≡ R∇(U, V )X (14.56)

where X ∈ Sec(E, π, M) and R∇ : Sec(E, π, M) → Sec(E, π, M) is a mapping
given by

R∇(U, V ) := [∇U ,∇V ] −∇[U,V ] = ∇U ◦ ∇V −∇V ◦ ∇U −∇[U,V ] (14.57)

and it is called curvature (operator) of the covariant derivative ∇. Notice, in the
tangent bundle case, (E, π, M) = (T (M), π, M), the last formula reduces to the
Definition (I.3.11) on page 25, as one can expect.

Let {Eα|α = 1, . . . ,dimM} be a frame in T (M) over a set W ⊆ M and
{ei|i = 1, . . . ,dimπ−1(p), p ∈ M} be a frame in E over W . The components
Ri

jαβ and (R∇)i

jαβ of the curvatures R and R∇, respectively, are defined by

R(Eα, Eβ)ej =: Ri
jαβei, R∇(Eα, Eβ)ej =: (R∇)

i

jαβei.

Obviously, due to (14.56), if ∇ induces T h(E), then Ri
jαβ = (R∇)i

jαβ

11For the proof of these assertions, as well as for other properties of the curvature, see [23,
p. 67 ff and p. 82 ff].
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Exercise 14.4. Let R∇ be the curvature of a covariant derivative in a vector bundle
(E, π, M). Applying (14.56), (14.20), and (14.21), prove that

(R∇)
i

jαβ := −Γi
jα,β +Γi

jβ,α −Γk
jαΓi

kβ +Γk
jβΓi

kα −Γi
jµCµ

αβ : W → K (14.58)

where [Eα, Eβ ] =: Cµ
αβEµ and f,µ := Eµ(f) for a C1 function f on U .

Proposition 14.15. Let ∇ be a covariant derivative in a vector bundle (E, π, M)
and P be the corresponding to it unique linear transport along paths according
to Propositions 14.10 (which coincides with the parallel transport assigned to the
parallelism structure P described in Corollary 14.1). The components (R∇)i

jαβ of
the curvature R∇ of ∇ coincide with the 4-index components Ri

jαβ of the curvature
of P (defined by (9.13) in Proposition 9.1 on page 265):

(R∇)
i

jαβ = Ri
jαβ . (14.59)

Moreover, if sR is the curvature of the section-derivation corresponding to the
derivation along paths generated by P (see Subsection 9.1), then[

(R∇(U, V ))(X)
]∣∣

p
=

(
sRη(s0, t0)

)
(X), (14.60)

where: U, V ∈ X(M), X ∈ Sec(E, π, M), p ∈ M , η : J × J ′ → M is of class
C2, η(s0, t0) = p for some (s0, t0) ∈ J × J ′, η′(s0, t0) = Up and η′′(s0, t0) =
Vp with η′( · , t0) and η′′(s0, · ) being the tangent vectors to η( · , t0) and η(s0, · ),
respectively.

Proof. Equation (14.59) follows from (14.58), (9.13), and the coincidence of the
coefficients of ∇ and the 3-index coefficients of P (by Proposition 14.10). To verify
the relation (14.60), one should simply repeat the derivation of equality (9.17) on
page 267 with the only difference that now ∇ is a covariant derivative in (E, π, M)
and (E, π, M) should stand for the tangent bundle (T (M), π, M). �

Call a connection, covariant derivative, or parallel transport (along paths) flat
(on W ⊆ M) if their curvatures vanish (on W ). If a connection, covariant deriva-
tive, and parallel transport (along paths) are connected as above supposed, then
the results obtained demonstrate that the flatness of one of these three quantities
implies the flatness of the remaining two of them.

Of course, all general results of Section 9, in particular the ones connecting
curvature and normal frames, are completely applicable to the parallel transports
along paths in vector bundles as they are a special type of linear transports along
paths (Theorem 14.4 on page 317). But Proposition 14.15, combined with the
results of Subsection 14.4, permits something more:

Conclusion 14.8. The material of Section 11, excluding the one concerning torsion
and normal coordinates, can mutatis mutandis, practically in extenso, be general-
ized to the case of parallel transports (along paths) in general vector bundles. To
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this end one should replace the tangent bundle (T (M), π, M) with a vector bundle
(E, π, M), the linear connection ∇ on M with a connection ∇ in (E, π, M), and
to make some other, not so important changes.

This transferring of results is so trivial that the explicit formulation of the
corresponding assertions makes sense if they are really required for some purpose.

Exercise 14.5. Reformulate some important inferences of Section 11, such as the
analogues of Propositions 11.1–11.4 and 11.9–11.11, for parallel transports (along
paths) in general vector bundles.

A partial generalization to arbitrary vector bundles admits the material of
Section 13, but this is almost out of the subject of this book.

15. Autoparallel paths

The geodesics in a C2 manifold M endowed with a C0 linear connection ∇ are C1

paths whose tangent vector undergoes parallel transport along them by means of
the parallel transport P assigned to ∇ (see Definition I.3.5 on page 30). If P is
the parallel transport along paths corresponding to P via (11.4a), then a C1 path
γ : J → M is geodesic iff

γ̇(s) = P γ
s0→sγ̇(s0) (15.1)

for some (and hence any) s0 ∈ J and all s ∈ J , by virtue of (I.3.20). Obviously, this
equality can be taken as a base for a new, but equivalent, definition of a geodesic
path.

Denote by P ∈ PLift(T (M), π, M) the lifting of paths generated by P via
equation (3.20) with u0 = γ̇(s0) and P for L, viz., for some s0 ∈ J ,

P : γ → Pγ : s → Pγ(s) := P γ
s0→sγ̇(s0). (15.2)

Evidently, the equality (15.1) is equivalent to

Pγ = γ̇, (15.3)

where γ̇ : s �→ γ̇(s) is considered as a lifting of γ to T (M).
If τ ∈ PLift(T (M), π, M) denotes the lifting of paths

τ : γ �→ τγ := γ̇, (15.4)

which may be called tangent lifting of paths, the equality (15.3) is tantamount to

∇D
γ
τ = 0 (15.5)

as a result of the equality (3.21) on page 231. Here ∇D is the derivation along
paths in (T (M), π, M) generated by P via (3.19). Its components Γi

j coincide
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with the coefficients of P (Proposition 3.7 on page 233) and along γ : J → M in a
frame {Ei} in T (M) over γ(J) are

Γi
j(s; γ) = Γi

jk(γ(s))γ̇k(s), s ∈ J (15.6)

where Γi
jk are the coefficients of ∇ in {Ei} (see, e.g., Propositions 11.3 and 11.4).

The above conclusions can be summarized in the following assertion.

Proposition 15.1. A C1 path in a C2 manifold endowed with C0 linear connection
is geodesic if and only if it satisfies any one (and hence all) of the equivalent
equations (15.1), (15.3) and (15.5).

Remark 15.1. Applying equation (3.23) on page 231 one can prove that, due
to (15.4) and (15.6), the equation (15.5) is an equivalent invariant form of the
equation (I.3.22) of geodesic paths (see also equations (15.11) and (15.12) below).
Thus (15.1), (15.3) and (15.5) are equivalent versions of the geodesic equation.
Also the equation (15.5) is a rigorous version of (I.3.21) on page 30 for arbitrary,
with or without self-intersections, paths (see Remark I.3.8 on page 31): if γ is not
injective, one should define the symbol ∇γ̇ γ̇ as ∇D

γ
τ , ∇γ̇ γ̇ := ∇D

γ
τ , otherwise,

for an injective path γ, the lifting γ̇ of γ is equivalent to a vector field γ(s) �→ γ̇(s)
on γ(J) and ∇γ̇ γ̇ has its usual meaning if we identify this field with γ̇.

One should observe, in (15.1), (15.3), and (15.5) are involved only the parallel
transport P along paths and the generated by it derivation along paths ∇D, not
directly the linear connection ∇. This observation hints to the existence of a gen-
eralization of the concept of geodesic paths to more general ones when P is replace
with arbitrary linear transport along paths in the tangent bundle (T (M), π, M)
over M . The following definition is a rigorous realization of such an idea.

Definition 15.1. Let M be a C2 manifold and L be a C0 linear transport along
paths in its tangent bundle (T (M), π, M). Call a C1 path γ : J → M autoparallel
with respect to L if

γ̇(s) = Lγ
so→s(γ̇(s0)) (15.7)

for some (and hence any) s0 ∈ J and all s ∈ J .

Remark 15.2. For other meaning of the term ‘autoparallel path’, see Remark I.3.7
on page 30.

Proposition 15.2. The autoparallel paths with respect to a parallel transport along
paths generated by a linear connection coincide with the geodesics of this connec-
tion.

Proof. Compare (15.1) with (15.7) and invoke Proposition 15.1. �
Similarly to the above considerations, we can rewrite (15.7) as

Lγ = γ̇ (15.8)

or
Dγτ = 0 (15.9)
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where
L : γ �→ Lγ : s �→ Lγ(s) := Lγ

s0→sγ̇(s0), (15.10)

τ is the tangent lifting of paths given via (15.4), and D is the derivation along
paths generated by L via (3.19). The derivation of these equations is in fact the
proof of the following proposition (cf. Proposition 15.1).

Proposition 15.3. A C1 path γ in C2 manifold is autoparallel with respect to a C0

linear transport along paths in the tangent bundle over that manifold if and only
if for it any one (and hence both) of the equivalent conditions (15.8) and (15.9) is
(are) valid.

From practical view-point, the equation of autoparallels (15.9) is quite suit-
able for the study of the (local) properties of the autoparallels. In particular this
concerns its representation in a frame {Ei} along γ in T (M). As a consequence
of (3.23) on page 231 with λ = τ and (15.4), in {Ei}, the equation (15.9) is
equivalent to

dγ̇i(s)
ds

+ Γi
j(s; γ)γ̇j(s) = 0 (15.11)

where Γi
j are the (local) coefficients of the transport L in {Ei}. In the special case

when {Ei} is the frame induced by some local coordinates {xi}, Ei = ∂
∂xi , the last

equation transforms into

d2γi(s)
ds2

+ Γi
j(s; γ)

dγj(s)
ds

= 0 (15.12)

where s ∈ J must be such that γ(s) is in the domain of {xi} and γi := xi ◦ γ.
In the case of a parallel transport, L = P when (15.6) holds, equations (15.11)

and (15.12) reduce, respectively, to the equations (I.3.22) and (I.3.23) of the
geodesics. Therefore they, as well as (15.9), should be called equation(s) of the
autoparallel paths. It is clear, the equation of the autoparallels is a system of or-
dinary differential equations with respect to the local coordinates of the paths (in
some local coordinates). The concrete order and type of this system depends on
the transport L through its coefficients Γi

j . The investigation of the autoparallels’
equation is out of the subject of our work. Below we present only one (almost
trivial) result that generalizes the well know theorem that the geodesics are de-
scribed via linear equations in normal coordinates (see the paragraph containing
equation (II.2.15) on page 83 or, e.g., [11, Chapter III, Proposition 8.3]).

Proposition 15.4. Let M be C2 manifold and L be a C0 linear transport along
paths in its tangent bundle (T (M), π, M). Suppose L admits an autoparallel path
γ : J → M such that Lγ

s→t = idπ−1(γ(s)) for all s, t ∈ J with γ(s) = γ(t), i.e., the
mapping γ(s) �→ Lγ(s) = γ̇(s) (see (15.10) or (15.9)) is a single-valued vector field
over γ(J). Then, in any frame {Ei} normal along γ for L, the components γ̇i(s)
of γ̇(s) ∈ Tγ(s)(M) are constant, i.e., we have

γ̇(s) = aiEi (15.13)
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for some numbers ai ∈ K. Besides, if L is torsionless, γ is injective and (V, x) is
a chart normal along γ for L, then

xi(γ(s)) = ais + bi, γ̇(s) = ai ∂

∂xi
(15.14)

where {xi} is the associated to (V, x) normal coordinate system, s ∈ J is such that
γ(s) ∈ V , and ai, bi ∈ K are constant numbers.

Remark 15.3. The condition Lγ
s→t = idπ−1(γ(s)) for all s, t ∈ J with γ(s) = γ(t),

by Proposition 5.2 on page 240, is a criterion for the existence of frames normal
along γ while, by Proposition 10.7, the torsionless of L and the injectiveness of γ
ensure the existence of coordinates normal along γ.

Proof. Recall, by definition, the coefficients Γi
j of L vanish in a normal frame or

in normal coordinates. So, evidently, (15.13) (resp. (15.14)) is the general solution
of the equations of autoparallels (15.11) (resp. (15.12)) in a normal frame (resp.
normal coordinate system {xi}). �

Consequently, in the sense of Proposition 15.4, the autoparallel paths in a
manifold with a transport in its tangent bundle are the analogues of the straight
lines (resp. geodesics) in a Euclidean space En (resp. manifold with a linear con-
nection).

16. On a fibre bundle view at quantum mechanics

The purpose of this section is to be given an idea of the fibre bundle formulation
of nonrelativistic quantum mechanics which essentially employs the theory of lin-
ear transports along paths in vector bundles; the reader can find in [127–131] a
detailed exposition of this approach to quantum mechanics. In particular, it will
be demonstrated below that the bundle Schrödinger and Heisenberg pictures of
motion are (locally) identical in a suitable normal frame

The reader should be aware that some of the considerations below will not
be quite rigorous from mathematical view-point. This is a result of the fact that
Hilbert bundles of generally infinite fibre dimension will be used. Correspondingly,
we will be dealing with infinite matrices applying the rules known from the theory
of finite matrices, which is a common practice in quantum mechanics [68,133–135]
but such an approach requires additional investigation and even may turn to be
wrong sometimes [126] (see also [136] and [135, Chapter 7, Section 18]).

Before going on, we shall make a technical remark. The (fibre) indices below
can take discrete and/or continuous values depending on the spectrum of the
corresponding operators (the Hamiltonian in the particular case). For that reason,
sums like λiei(x) must be understood as

∑
i∈Λd

λiei(x) +
∫

i∈Λc
λiei(x) di, where

Λd (resp. Λc) is the set of discrete (resp. continuous) values the index i can take.
For more details on this item, see [128, p. 4921].



16. On a fibre bundle view at quantum mechanics 329

In the bundle approach to quantum mechanics, to a quantum system is as-
signed a unique C1 Hilbert bundle (F, π, M), M being a C1 manifold, whose
(standard) fibre is identified with the usual Hilbert space of states F of the quan-
tum system. The system state is described via a lifting of paths Ψ ∈ PLift(F, π, M)
such that, if γ : J → M is a C1 path,

Ψ: γ �→ Ψγ : t ∈ J �→ Ψγ(t) = l−1
γ(t)(ψ(t)) ∈ π−1(γ(t)), (16.1)

where l−1
x : F → π−1(x), x ∈ M , are fixed isomorphisms and ψ(t) ∈ F is the

conventional state vector of the system at a moment t ∈ J .
The time evolution of the system (or of its state lifting Ψ) is governed by the

equation
Ψη(t) = Uγ(t, s)(Ψγ(s)) s, t ∈ J, (16.2)

where the evolution transport

U : γ �→ Uγ : (s, t) �→ Uγ(t, s) : π−1(γ(s)) → π−1(γ(t))

is a (Hermitian and isometric) linear transport along paths in (F, π, M) such that

Uγ(t, s) = l−1
γ(t) ◦ U(t, s) ◦ lγ(s) : π−1(γ(s)) → π−1(γ(t)) (16.3)

with U(t, s) being the system’s evolution operator in F . It is a remarkable fact
that the matrix Γ(s; γ) of the coefficients of U is

Γ(s; γ) = − 1
i�

Hm
γ (t) (16.4)

where i = +
√−1 is the imaginary unit, � is the Planck constant (deviled by 2π)

and the matrix-bundle Hamiltonian Hm
γ (t) is

Hm
γ (t) = l−1

γ(t)(t)H(t)lγ(t)(t) − i�l−1
γ(t)(t)

(dlγ(t)(t)
dt

+ E(t)lγ(t)(t)
)
. (16.5)

Here H(t) is the matrix of the system’s Hamiltonian in a basis {fi(t)} of F , lγ(t)(t)
is the matrix of lγ(t) in this basis and a frame {ei} over M in F , and the matrix
E(t) := [Ej

i (t)] is defined via the expansion dfi(t)
dt = Ej

i (t)fj(t).
If D is the derivation along paths generated by U (see Definition 3.2 on

page 230), then the state lifting Ψ is a solution of the bundle Schrödinger equation

D(Ψ) = 0 (16.6)

satisfying some initial condition, like Ψγ(t0) = Ψ0
γ for fixed t0 ∈ J and Ψ0

γ ∈
π−1(γ(t0)).

Let A(t) : F → F be the linear Hermitian (self-adjoint) operator correspond-
ing to a dynamical variable A in the standard quantum mechanics. In the bundle
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approach, to A corresponds a lifting A of paths in the bundle of restricted M -
morphisms of (F, π, M) such that

Aγ(t) = l−1
γ(t) ◦ A(t) ◦ lγ(t) : π−1(γ(t)) → π−1(γ(t)). (16.7)

The description of a quantum system via liftings like Ψ and A is known as the
bundle Schrödinger picture of motion. The shift to the bundle Heisenberg picture
of motion is via the changes

Ψ �→ ΨH : (t, t0; γ) �→ ΨH
γ,t(t0) A �→ AH : (t, t0; γ) �→ AH

γ,t(t0), (16.8)

where t, t0 ∈ J and

ΨH
γ,t(t0) = Ψγ(t0) = l−1

γ(t0)
(ψ(t0)) = Uγ(t0, t)Ψγ(t) (16.9a)

AH
γ,t(t0) = Uγ(t, t0)−1 ◦ Aγ(t) ◦ Uγ(t, t0). (16.9b)

(The mapping A �→ AH defines a linear transport in the bundle of point restricted
morphisms – see [127, p. 4903] and [129, p. 4941].) Thus, in the bundle Heisenberg
picture, the time dependence is entirely transferred to the observables liftings of
paths. The Schrödinger and Heisenberg pictures of motion are completely equiv-
alents from physical point of view as the mean values of the dynamical variables
in them are identical.

Let {ei} be a frame in F (locally) normal along γ for the evolution transport
U .1 By Definition 4.1 this means that the matrix U of U in {ei} is the (corre-
sponding infinite) identity matrix, U(t, t0) = 1. Consequently equations (16.9)
take the following form in the normal frame {ei}:

ΨH
γ,t(t0) = Ψγ(t0) = Ψγ(t) (16.10a)

AH
γ,t(t0) = Aγ(t). (16.10b)

In this way we have proved the following result.

Proposition 16.1. The bundle Schrödinger and Heisenberg pictures of motion are
identical in a frame (locally) normal along the reference path γ.

17. Conclusion

The following three main topics have found their place in this chapter. First,
the grounds of the theory of linear transports along paths in vector bundles are
set and its relations with the one of parallel transports and connections in these
bundles are revealed. Second, the theory of normal frames for such transports was
developed. And third, it was demonstrated that the obtained formalism naturally

1Here we suppose that the condition (5.2) with U for L in Proposition 5.1 is fulfilled.
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agrees with the already existing theory of frames (and coordinates) normal for
(linear) connections and other derivations of the tensor algebra over a differentiable
manifold.

It should be noticed, from the view-point of linear transports, a lot of the
earlier-obtained results concerning linear connections (or other derivations) look
considerably simpler and more natural. Here are two typical examples. (i) A linear
transport admits frames normal on some set iff it is flat on it; a linear connection
admits frames normal on a neighborhood iff it is flat on it. (ii) If a linear transport
admits frames normal on some set, such a frame can be obtained via transportation
by means of the transport of a basis over a fixed point in this set to the other
points in it along paths lying entirely in that set; previously this result was known
only on neighborhoods for linear connections and the parallel transports generated
by them: a frame normal on a neighborhood for a flat linear connection can be
obtained by parallelly transporting a basis over a fixed point in this neighborhood
to the other points in it along paths lying in the neighborhoods.

Separately should be mentioned the case of linear transports along paths in
the tangent bundle over a manifold. In it, the flat parallel transports generated by
linear connections are the only ones admitting normal frames. This conclusion is
similar to the one derived in Chapter III concerning frames normal for derivations
along vector fields and linear connections. Besides, the torsionless flat parallel
transports are the only ones admitting normal coordinates.

At the end, we would like to express the hope that the material in the present
chapter could serve as a groundwork for a systematic exploration of frames (and,
possibly, coordinates) normal for different kinds of derivations or transports along
paths in infinitely dimensional vector bundles, in particular for linear connections
in infinitely dimensional manifolds. Partially or mutatis mutandis some of our
results remain valid in the infinite-dimensional case, but, rigorously speaking, this
case is not studied until now and it is open for further research.



Chapter V

Normal Frames for Connections
on Differentiable Fibre Bundles

The general connection theory
on differentiable fibre bundles, with

emphasis on the vector ones, is partially
considered. The theory of frames normal

for general connections on these bundles
is developed. Links with the theory of

frames normal for linear connections
in vector bundles are revealed. Ex-

istence of bun- dle coordinates
normal at a given point and/or along
injective horizon- tal path is proved

and a necessary and sufficient
condition of ex- istence of bundle

coordinates nor- mal along injec-
tive horizontal map- pings is proved. The
concept of a transport along paths in differen-
tiable bundles is introduced. Different links

between connections, parallel trans-
ports (along paths) and transports

along paths are investigated.
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1. Introduction

All connections considered until now, on manifolds and on vector bundles, were
linear. It is well known that there exist non-linear connections on vector bundles as
well as on non-vector ones. Can normal frames (and/or coordinates) be introduced
for such more general connections? The positive solution of that problem is the
main goal of the present chapter of this book. For the purpose and for a comparison
with the definitions and results already obtained is required some preliminary
material on general connection theory on differentiable bundles, which is collected
in Sections 2–5. On its base, the normal frames for connections on such bundles
are studied in Sections 6 and 7.

Sections 2–5 follow the work [137],1 Sections 6 and 7 are a slightly revised
version of [139], and Section 8 reproduces in a modified form the paper [118]

The work is organized as follows.
In Section 2 is collected some introductory material, like the notion of Lie

derivatives and distributions on manifolds, needed for our exposition. Here some
of our notation is fixed too.

Section 3 is devoted to the general connection theory on bundles whose base
and bundles spaces are differentiable manifolds. From different view-points, this
theory can be found in many works, like [6, 7, 10–13, 16, 28, 60, 98, 106, 107, 117,
138,140–146]. In Subsection 3.1 are reviewed some coordinates and frames/bases
on the bundle space which are compatible with the fibre structure of a bundle.
Subsection 3.2 deals with the general connection theory. A connection on a bundle
is defined as a distribution on its bundle space which is complimentary to the ver-
tical distribution on it. The notions of parallel transport generated by connection
and of specialized frame are introduced. The fibre coefficients and fibre compo-
nents of the curvature of a connection are defined via part of the components of
the anholonomicity object of a specialized frame. Frames adapted to local bundle
coordinates are introduced and the local (2-index) coefficients in them of a con-
nection are defined; their transformation law is derived and it is proved that a
geometrical object with such transformation law uniquely defines a connection.

In Section 4, the general connection theory from Section 3 is specified on
vector bundles. The most important structures in/on them are the ones that are
consistent/compatible with the vector space structure of their fibres. The vertical
lifts of sections of a vector bundle and the horizontal lifts of vector fields on its
base are investigated in more details in Subsection 4.1. Subsection 4.2 is devoted
to linear connections on vector bundles, i.e., connections such that the assigned to
them parallel transport is a linear mapping. It is proved that the 2-index coeffi-
cients of a linear connection are linear in the fibre coordinates, which leads to the
introduction of the (3-index) coefficients of the connection; the latter coefficients

1The presentation of the material in Sections 2–4 is according to some of the main ideas
of [138, Chapters 1 and 2], but their realization here is quite different and follows the modern
trends in differential geometry.
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being defined on the base space. The transformations of different objects under
changes of vector bundle coordinates are explored. The covariant derivatives are
introduced and investigated in Subsection 4.3. They are defined via the Lie deriva-
tives [138] and a mapping realizing an isomorphism between the vertical vector
fields on the bundle space and the sections of the bundle. The equivalence of that
definition with the widespread one, defining them as mappings on the module of
sections of the bundle with suitable properties, is proved. In Subsection 4.4, the
affine connections on vector bundles are considered briefly.

In Section 5, some of the results of the previous sections are generalized when
frames more general than the ones generated by local coordinates on the bundle
space are employed. The most general such frames, compatible with the fibre
structure, and the frames adapted to them are investigated. The main differential-
geometric objects, introduced in the previous sections, are considered in such gen-
eral frames. Particular attention is paid on the case of a vector bundle. In vector
bundles, a bijective correspondence between the mentioned general frames and
pairs of bases, in the vector fields over the base and in the sections of the bun-
dle, is proved. The (3-index) coefficients of a connection in such pairs of frames
and their transformation laws are considered. The covariant derivatives are also
mentioned on that context.

The theory of normal frames for connections on bundles is considered in
Section 6. Subsection 6.1 deals with the general case. Loosely said, an adapted
frame is called normal if the 2-index coefficients of a connection vanish in it (on
some set). It happens that a frame is normal if and only if it coincides with the
frame it is adapted to. The set of these frames is completely described in the
most general case. The problems of existence, uniqueness, etc. of normal frames
adapted to holonomic frames, i.e., adapted to local coordinates, are discussed in
Subsection 6.2. If such frames exist, their general form is described. The existence
of frames normal at a given point and/or along an injective horizontal path is
proved. The flatness of a connection on an open set is pointed as a necessary
condition of existence of (locally) holonomic frames normal on that set. Some
links between the general theory of normal frames and the one of normal frames
in vector bundles, presented in Chapter IV, are given in Subsection 6.3. It is proved
that a frame is normal on a vector bundle with linear connection if and only if in
it vanish the 3-index coefficients of the connection. The equivalence of the both
theories on vector bundles is established.

In Section 7 is formulated and proved a necessary and sufficient condition
for existence of coordinates normal along injective mappings with non-vanishing
horizontal component, in particular along injective horizontal mappings.

Section 8 is devoted to some aspects of the axiomatical approach to parallel
transport theory [17,23,30–33,91,147–150] and its relations to connection theory;
it is based on the paper [118]. It starts with a definition of a transport along
paths in a bundle and a result stating that, under some assumptions, it defines
a connection. The most important properties of the parallel transports generated
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by connections are used to be (axiomatically) defined the concept of a parallel
transport (irrespectively to some connection on a bundle). In a series of results
are constructed bijective mappings between the sets of transports along paths
satisfying some additional conditions, connections, and parallel transports. In this
way, two different, but equivalent, systems of axioms defining the concept “parallel
transport” will be established.

The chapter ends with some remarks and conclusions in Section 9.

2. Preliminaries

This section contains an introductory material, notation etc. that will be needed
for our exposition. The reader is referred for details to Chapter I, Section III.2,
and standard books on differential geometry, like [7, 23, 151].

A differentiable finite-dimensional manifold over a field K will be denoted
typically by M . Here K stands for the field R of real or the field C of complex
numbers, K = R, C. The manifolds we consider are supposed to be smooth of
class C2.1 The set of vector fields, realized as first-order differential operators,
and of differential k-forms, k ∈ N, over M will be denoted by X (M) and Λk(M),
respectively. The space tangent (resp. cotangent) to M at p ∈ M is Tp(M) (resp.
T ∗

p (M)) and (T (M), πT , M) (resp. (T ∗(M), πT∗ , M)) will stand for the tangent
(resp. cotangent) bundle over M . The value of X ∈ X (M) at p ∈ M is Xp ∈ Tp(M)
and the action of X on a C1 function ϕ : M → K is a function X(ϕ) : M → K

such that X(ϕ)|p := Xp(ϕ) ∈ K.
If M and M̄ are manifolds and f : M̄ → M is a C1 mapping, then f∗ :=

df : T (M̄) → T (M) denotes the induced tangent mapping (or differential) of f
such that, for p ∈ M̄ , f∗|p := df |p := Tp(f) : Tp(M̄) → Tf(p)(M) and, for a C1

function g on M , (f∗(X))(g) := X(g ◦ f) : p �→ f∗|p(g) = Xp(g ◦ f), with ◦ being
the composition of mappings sign. Respectively, the induced cotangent mapping
is f∗ : T ∗(M) → T ∗(M̄). If h : N → M̄ , N being a manifold, we have the chain
rule d(f ◦ h) = df ◦ dh, which is an abbreviation for d(f ◦ h)q = (df)f(q) ◦ (dh)q

for q ∈ N .
By J ⊆ R will be denoted an arbitrary real interval that can be open or

closed at one or both its ends. The notation γ : J → M represents an arbitrary
path in M . For a C1 path γ : J → M , the vector tangent to γ at s ∈ J will be
denoted by γ̇(s) := d

dt

∣∣∣
t=s

(γ(t)) = γ∗
(

d
dr

∣∣
s

) ∈ Tγ(s)(M), where r in d
dr

∣∣
s

is the

standard coordinate function on R, i.e., r : R → R with r(s) := s for all s ∈ R and
hence r = idR is the identity mapping of R. If s0 ∈ J is an end point of J and J

1Some of our definitions or/and results are valid also for C1 or even C0 manifolds, but
we do not want to overload the material with continuous counting of the required degree of
differentiability of the manifolds involved. Some parts of the text admit generalizations on more
general spaces, like the topological ones, but this is out of the subject of the present work.
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is closed at s0, the derivative in the definition of γ̇(s0) is regarded as a one-sided
derivative at s0.

The Lie derivative relative to X ∈ X (M) will be denoted by LX . It is defined
on arbitrary geometrical objects on M [89], but below we shall be interested in its
action on tensor fields [11, Chapter I, § 2] (see also [152]). If f , Y , and θ are C1

respectively function, vector field and 1-form on M , then

LX(f) = X(f) (2.1a)
LX(Y ) = [X, Y ] (2.1b)

(LX(θ))(Y ) = X(θ(Y )) − θ([X, Y ] ) = (dθ)(X, Y ) + Y (θ(X)), (2.1c)

where [A, B] = A ◦ B − B ◦ A is the commutator of operators A and B (with
common domain) and d denotes the exterior derivative operator.

Since LX is a derivation of the tensor algebra over the vector fields on M ,
for a tensor field S : Λ1(M) × · · · × Λ1(M) × X (M) × · · · × X (M) → F(M), we
have

(LXS)(θ, . . . ; Y, . . .)
= X(S(θ, . . . ; Y, . . .)) − S(LXθ, . . . ; Y, . . .) − · · · − S(θ, . . . ;LXY, . . .)) − · · · ,

(2.2)

which defines LXS explicitly, due to (2.1).
Let the Greek indices λ, µ, ν, . . . run over the range 1, . . . ,dimM and {Eµ}

be a C1 frame in T (M), i.e., Eµ ∈ X (M) be of class C1 and, for each p ∈ M , the
set {Eµ|p} be a basis of the vector space Tp(M).2 Let {Eµ} be the coframe dual
to {Eµ}, i.e., Eµ ∈ Λ1(M), {Eµ|p} be a basis in T ∗

p (M), and Eµ(Eν) = δµ
ν with

δν
µ being the Kronecker deltas (δν

µ = 1 for µ = ν and δν
µ = 0 for µ 
= ν). Assuming

the Einstein’s summation convention (summation on indices repeated on different
levels over the whole range of their values), we define the components (ΓX)µ

ν of
LX in (relative to) {Eµ} via the expansion

LXEµ =: (ΓX)ν
µEν (2.3)

which is equivalent to
LXEµ = −(ΓX)µ

νEν (2.3′)

by virtue of Eµ(Eν) = δµ
ν and the commutativity of the Lie derivatives and con-

traction operators.3 From (2.3) and (2.1b), we get

(ΓX)ν
µ = −Eµ(Xν) − Cν

µλXλ, (2.4)

2There are manifolds, like the even-dimensional spheres S2k, k ∈ N, which do not admit
global, continuous (and moreover Ck for k ≥ 1), and nowhere vanishing vector fields [153]. If
this is the case, the considerations must be localized over an open subset of M on which such
fields exist. We shall not overload our exposition with such details.

3The sign before (ΓX)µ
ν in (2.3) or (2.3′) is conventional and we have chosen it in a way

similar to the accepted convention for the components of a covariant derivative (or, equivalently,
the coefficients of a linear connection – see Section 4).
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in {Eµ}, where X = XµEµ and the functions Cν
µλ, known as the components of

the anholonomicity object of {Eµ}, are defined by

[Eµ, Eν ] =: Cλ
µνEλ (2.5)

or, equivalently, by its dual (see (2.1c))

dEλ = −1
2
Cλ

µνEµ ∧ Eν , (2.5′)

with ∧ being the exterior (wedge) product sign.4 Equation (2.4) is a special case
of (III.2.7) for SX = 0. The explicit local action of LX on a general C1 tensor field
is given by (III.2.1).

A frame {Eµ} or its dual coframe {Eµ} is called holonomic (anholonomic)
if Cλ

µν = 0 (Cλ
µν 
= 0) for all (some) values of the indices µ, ν, and λ. For a

holonomic frame there always exist local coordinates {xµ} on M such that locally
Eµ = ∂

∂xµ and Eµ = dxµ. Conversely, if {xµ} are local coordinates on M , then
the local frame

{
∂

∂xµ

}
and local coframe {dxµ} are well defined and holonomic on

the domain of {xµ}. For more information concerning (an)holonomic frames, see
Section I.8.

A straightforward calculation by means of (2.5) reveals that a change

{Eµ} → {Ēµ = Bν
µEν} (2.6)

of the frame {Eµ}, where B = [Bν
µ] is a non-degenerate matrix-valued function,

entails the transformation

Cλ
µν �→ C̄λ

µν = (B−1)λ
�

(
Bσ

µEσ(B�
ν ) − Bσ

ν Eσ(E�
µ) + Bσ

µBτ
νC�

στ

)
. (2.7)

Besides, from (2.4) and (2.7), we see that the quantities (ΓX)ν
µ undergo the change

(cf. equation (III.2.10))

(ΓX)ν
µ �→ (Γ̄X)ν

µ = (B−1)µ
�

(
(ΓX)�

σBσ
ν + X(Bσ

ν )
)

(2.8)

when (2.6) takes place. Setting ΓX := [(ΓX)ν
µ] and Γ̄X := [(Γ̄X)ν

µ], we can
rewrite (2.8) in a more compact matrix form as (cf. (III.2.11))

ΓX �→ Γ̄X = B−1 · (ΓX · B + X(B)). (2.9)

If n ∈ N and n ≤ dim M , an n-dimensional distribution ∆ on M is defined
as a mapping ∆: p �→ ∆p assigning to each p ∈ M an n-dimensional subspace ∆p

of the tangent space Tp(M) of M at p, ∆p ⊆ Tp(M). A distribution is integrable
if there is a submersion ψ : M → N such that Kerψ∗ = ∆; a necessary and locally

4If M is a Lie group and {Eµ} is a basis of its Lie algebra (defined as the set of left invariant
vector fields in on M), then Cλ

µν are constants, called structure constants of M , and (2.5)
and (2.5′) are known as the structure equations of M .
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sufficient condition for the integrability of ∆ is the commutator of every two vector
fields in ∆ to be in ∆. We say that a vector field X ∈ X (M) is in ∆ and write
X ∈ ∆, if Xp ∈ ∆p for all p ∈ M . A basis on U ⊆ M for ∆ is a set {X1, . . . , Xn}
of n linearly independent (relative to functions U → K) vector fields in ∆|U , i.e.,
{X1|p, . . . , Xn|p} is a basis for ∆p for all p ∈ U .

A distribution is convenient to be described in terms of (global) frames or/and
coframes over M . In fact, if p ∈ M and � = 1, . . . , n, in each ∆p ⊆ Tp(M), we
can choose a basis {X�|p} and hence a frame {X�}, X� : p �→ X�|p, in {∆p : p ∈
M} ⊆ T (M); we say that {Xρ} is a basis for/in ∆. Conversely, any collection
of n linearly independent (relative to functions M → K) vector fields X� on M
defines a distribution p �→ {∑n

�=1 f�X�|p : f� ∈ K
}
. Consequently, a frame in

T (M) can be formed by adding to a basis for ∆ a set of (dimM −n) new linearly
independent vector fields (forming a frame in T (M) \ {∆p : p ∈ M}) and v.v., by
selecting n linearly independent vector fields on M , we can define a distribution
∆ on M . Equivalently, one can use dimM − n linearly independent 1-forms ωa,
a = n + 1, . . . ,dimM , which are annihilators for it, ωa|∆p = 0 for all p ∈ M . For
instance, if {Xµ : µ = 1, . . . ,dimM} is a frame in T (M) and {X� : � = 1, . . . , n}
is a basis for ∆, then one can define ωa to be elements in the coframe {ωµ} dual
to {Xµ}. We call {ωa} a cobasis for ∆.

3. Connections on bundles

Before presenting the general connection theory in Subsection 3.2, we shall fix
first some notation and concepts concerning fibre bundles in Subsection 3.1.The
reader is referred for more details to Subsection IV.2.1 and to the literature cited
in Section IV.1.

3.1. Frames and coframes on the bundle space

Let (E, π, M) be a bundle with bundle space E, projection π : E → M , and base
space M . Suppose that the spaces M and E are manifolds of finite dimensions
n ∈ N and n+r, for some r ∈ N, respectively; so the dimension of the fibre π−1(x),
with x ∈ M , i.e., the fibre dimension of (E, π, M), is r. Besides, let these manifolds
be C2 differentiable, if the opposite is not stated explicitly.1

Let the Greek indices λ, µ, ν, . . . run from 1 to n = dimM , the Latin indices
a, b, c, . . . take the values from n + 1 to n + r = dimE, and the uppercase Latin

1Most of our considerations are valid also if C1 differentiability is assumed and even some
of them hold on C0 manifolds. By assuming C2 differentiability, we skip the problem of count-
ing the required differentiability class of the whole material that follows. Sometimes, the C2

differentiability is required explicitly, which is a hint that a statement or definition is not valid
otherwise. If we want to emphasize that some text is valid under a C1 differentiability assump-
tion, we indicate that fact explicitly. However, the proofs of Proposition 6.5 and all assertions in
Section 7 require C3 differentiability, which will be indicated explicitly.
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indices I, J, K, . . . take values in the whole set {1, . . . , n + r}. One may call these
types of indices respectively base, fibre, and bundle indices.

Suppose {uI} = {uµ, ua} = {u1, . . . , un+r} are local bundle coordinates on
an open set W ⊆ E, i.e., on the set π(W ) ⊆ M there are local coordinates {xµ}
such that uµ = xµ ◦ π;2 the coordinates {uµ} (resp. {ua}) are called basic (resp.
fibre) coordinates [23].3

Further only coordinate changes

{uµ, ua} �→ {ũµ, ũa} (3.1a)

on E between bundle coordinates will be considered. This means that

ũµ(p) = fµ(u1(p), . . . , un(p))

ũa(p) = fa(u1(p), . . . , un(p), un+1(p), . . . , un+r(p))
(3.1b)

for p ∈ U ∩ Ũ , with U being the domain of the coordinates {ũI} and some
functions f I . The bundle coordinates {uµ, ua} induce the (local) frame

{
∂µ :=

∂
∂uµ , ∂a := ∂

∂ua

}
and coframe {duµ, dua} over W in respectively the tangent

T (E) and cotangent T ∗(E) bundle spaces of the tangent and cotangent bundles
over the bundle space E. Since a change (3.1) of the coordinates on E implies
∂I �→ ∂̃I := ∂

∂ũI = ∂uJ

∂ũI ∂J and duI �→ dũI = ∂ũI

∂uJ duJ , the transformation (3.1)
leads to

(∂µ, ∂a) �→ (∂̃µ, ∂̃a) = (∂ν , ∂b) · A (3.2a)

(duµ, dua)� �→ (dũµ, dũa)� = A−1 · (duν , dub)�. (3.2b)

Here and below expressions like (∂µ, ∂a) are shortcuts for ordered (n + r)-tuples
like (∂1, . . . , ∂n+r) =

(
[∂µ]nµ=1, [∂a]n+r

a=n+1), � is the matrix transpositions sign, the
centered dot · stands for the matrix multiplication, and the transformation matrix
A is

A :=
[ ∂uI

∂ũJ

]n+r

I,J=1
=

([
∂uν

∂ũµ

]
0n×r[

∂ub

∂ũµ

] [
∂ub

∂ũa

]) =:

[
∂uν

∂ũµ 0
∂ub

∂ũµ
∂ub

∂ũa

]
, (3.3)

where 0n×r is the n× r zero matrix. Besides, in expressions of the form ∂Ia
I , like

the one in the right-hand side of (3.2a), the summation excludes differentiation,
i.e., ∂Ia

I := aI∂I =
∑

I aI∂I ; if a differentiation really takes place, we write
∂I(aI) :=

∑
I ∂I(aI). This rule allows a lot of formulae to be written in a compact

matrix form, like (3.2a). The explicit form of the matrix inverse to (3.3) is A−1 =[
∂ũI

∂uJ

]
= . . . and it is obtained from (3.3) via the change u ↔ ũ.

2On a bundle or fibred manifold, these coordinates are known also as adapted coordinates [116,
Definition 1.1.5].

3If (W, v) is a bundle chart, with v : W → Kn × Kr and ea : Kr → K are such that
ea(c1, . . . , cr) = ca ∈ K, then one can put ua = ea ◦ pr2 ◦v, where pr2 : Kn × Kr → Kr is
the projection on the second multiplier Kr.
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The formula (3.2a) can be generalized for arbitrary frames {eI} = {eµ, ea}
and {ẽI} = {ẽµ, ẽa} in T (E) and their dual coframes {eI} = {eµ, ea} and {ẽI} =
{ẽµ, ẽa} in T ∗(E) whose admissible changes are given by

(eI) = (eµ, ea) �→ (ẽI) = (ẽµ, ẽa) = (eν , eb) · A (3.4a)(
eµ

ea

)
�→

(
ẽµ

ẽa

)
= A−1 ·

(
eν

eb

)
. (3.4b)

Here A = [AI
J ] is a nondegenerate matrix-valued function with a block structure

similar to (3.3), viz.

A =

⎛⎝ [Aν
µ]nµ,ν=1 0n×r[

Ab
µ

]
µ=1,...,n
b=n+1,...,n+r

[Ab
a]n+r

a,b=n+1

⎞⎠ =:

[
Aν

µ 0

Ab
µ Ab

a

]
(3.5a)

with inverse matrix

A−1 =

(
[Aν

µ]−1 0

−[Aa
b ]−1 · [Aa

µ] · [Aν
µ]−1 [Aa

b ]−1

)
. (3.5b)

Here Aa
µ : W → K and [Aν

µ] and [Aa
b ] are non-degenerate matrix-valued functions

on W such that [Aν
µ] is constant on the fibres of E, i.e., for p ∈ U , Aν

µ(p) depends
only on π(p) ∈ M , which is equivalent to any one of the equations

Aν
µ = Bν

µ ◦ π
∂Aν

µ

∂ua
= 0, (3.6)

with [Bν
µ] being a nondegenerate matrix-valued function on π(W ) ⊆ M . Obvi-

ously, (3.2) corresponds to (3.4) with eI = ∂
∂uI , ẽI = ∂

∂ũI , and AJ
I = ∂uJ

∂ũI .
All frames {ẽI} on E connected via (3.4)–(3.5), which are (locally) obtainable

from holonomic ones {eI}, induced by bundle coordinates, via admissible changes,
will be referred as bundle frames. Only such frames will be employed in the present
chapter.

If we deal with a vector bundle (E, π, M) endowed with vector bundle coor-
dinates {uI} [23], then the new fibre coordinates {ũa} in (3.1) must be linear and
homogeneous in the old ones {ua}, i.e.,

ũa = (Ba
b ◦ π) · ub and ua = ((B−1)a

b ◦ π) · ũb, (3.7)

with B = [Ba
b ] being a non-degenerate matrix-valued function on π(W ) ⊆ M . In

that case, the matrix (3.3) and its inverse take the form

A =

[
∂uµ

∂ũν 0(∂(B−1)a
b

∂x̃ν ◦ π
) · ũb (B−1)b

a ◦ π

]
A−1 =

[
∂ũν

∂uµ 0(∂Bb
a

∂xµ ◦ π
) · ua Bb

a ◦ π

]
.

(3.8)
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More generally, in the vector bundle case, admissible are transformations (3.4)
with matrices like

A =

(
[Aµ

ν ] 0

[Ab
cµũc] [Aa

b ]

)
A−1 =

(
[Aµ

ν ]−1 0

−[Aa
b ]−1 · [Ab

cµũc] · [Aµ
ν ]−1 [Aa

b ]−1

)
(3.9)

with Aa
bµ : W → K being functions on W which are constant on the fibres of E,

Aa
bµ = Ba

bµ ◦ π
∂Aa

bµ

∂uc
= 0 (3.10)

for some functions Ba
bµ : π(W ) → K. Obviously, (3.9) corresponds to (3.5) with

Ab
µ = Ab

cµũc and the setting AJ
I = ∂uJ

∂ũI reduces (3.9) to (3.8) due to (3.7).

3.2. Connection theory

From a number of equivalent definitions of a connection on differentiable mani-
fold [146, Sections 2.1 and 2.2], we shall use the following one.

Definition 3.1 (cf. Definition IV.14.3 on page 303). A connection on differentiable
bundle (E, π, M) is an n = dim M -dimensional distribution ∆h on E such that,
for each p ∈ E and the vertical distribution ∆v defined by

∆v : p �→ ∆v
p := Tı(p)

(
π−1(π(p))

) ∼= Tp

(
π−1(π(p))

)
, (3.11)

with ı : π−1(π(p)) → E being the inclusion mapping, is fulfilled

∆v
p ⊕ ∆h

p = Tp(E), (3.12)

where ∆h : p �→ ∆h
p ⊆ Tp(E) and ⊕ is the direct sum sign. The distribution ∆h is

called horizontal and symbolically we write ∆v ⊕ ∆h = T (E).

A vector at a point p ∈ E (resp. a vector field on E) is said to be vertical
or horizontal if it (resp. its value at p) belongs to ∆v

p or ∆h
p , respectively, for the

given (resp. any) point p. A vector Yp ∈ Tp(E) (resp. vector field Y ∈ X (E))
is called a horizontal lift of a vector Xπ(p) ∈ Tπ(p)(M) (resp. vector field X ∈
X (M) on M = π(E)) if π∗(Yp) = Xπ(p) for the given (resp. any) point p ∈ E.
Since π∗|∆h

p
: ∆h

p → Tπ(p)(M) is a vector space isomorphism for all p ∈ E [23,
Section 1.24], any vector in Tπ(p)(M) (resp. vector field in X (M)) has a unique
horizontal lift in Tp(E) (resp. X (E)).

As a result of (3.12), any vector Yp ∈ Tp(E) (resp. vector field Y ∈ X (E))
admits a unique representation Yp = Y v

p ⊕Y h
p (resp. Y = Y v ⊕Y h) with Y v

p ∈ ∆v
p

and Y h
p ∈ ∆h

p (resp. Y v ∈ ∆v and Y h ∈ ∆h). If the distribution p �→ ∆h
p is

differentiable of class Cm, m ∈ N ∪ {0,∞, ω}, it is said that the connection ∆h

is (differentiable) of class Cm. A connection ∆h is of class Cm if and only if, for
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every Cm vector field Y on E, the vertical Y v and horizontal Y h vector fields are
of class Cm.

A C1 path β : J → E is called horizontal (vertical) if its tangent vector β̇ is
horizontal (vertical) vector along β, i.e., β̇(s) ∈ ∆h

β(s) (β̇(s) ∈ ∆v
β(s)) for all s ∈ J .

A lifting γ̄ : J → E of a path γ : J → M , i.e., π ◦ γ̄ = γ, is called horizontal if
γ̄ is a horizontal path, i.e., when the vector field ˙̄γ tangent to γ̄ is horizontal or,
equivalently, if ˙̄γ is a horizontal lift of γ̇. Since π−1(γ(J)) is an (r+1)-dimensional
submanifold of E, the distribution p �→ ∆h

p ∩ Tp(π−1(γ(J))) is one-dimensional
and, consequently, is integrable for arbitrary C1 path γ. The integral paths of
that distribution are horizontal lifts of γ and, for each p ∈ π−1(γ(J)), there is
(locally) a unique horizontal lift γ̄p of γ passing through p.4

Definition 3.2. Let γ : [σ, τ ] → M , with σ, τ ∈ R and σ ≤ τ , and γ̄p be the unique
horizontal lift of γ in E passing through p ∈ π−1(γ([σ, τ ])). The parallel transport
(translation, displacement) generated by (assigned to, defined by) a connection
∆h is a mapping P : γ �→ Pγ , assigning to the path γ a mapping

Pγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (3.13)

such that, for each p ∈ π−1(γ(σ)),

Pγ(p) := γ̄p(τ). (3.14)

In vector bundles are important the linear connections for which is required
the parallel transport assigned to them to be linear in a sense that the map-
ping (3.13) is linear for every path γ (see Subsection 4.2 below).

Let us now look on the connections ∆h on a bundle (E, π, M) from a view
point of (local) frames and their dual coframes on E. Let {eµ} be a basis for ∆h,
i.e., eµ ∈ ∆h and {eµ|p} is a basis for ∆h

p for all p ∈ E, and {ea} be the coframe
for ∆h, i.e., a collection of 1-forms ea, a = n + 1, . . . , n + r, which are linearly
independent (relative to functions E → K) and such that ea(X) = 0 if X ∈ ∆h.

Definition 3.3. A frame {eI} in T (E) over E is called specialized for a connection
∆h if the first n = dimM of its vector fields form a basis {eµ} for the horizontal
distribution ∆h and its last r = dim π−1(x), x ∈ M , vector fields form a basis
{ea} for the vertical distribution ∆v. Respectively, a coframe {eI} on E is called
specialized if {ea} is a cobasis for ∆h and {eµ} is a cobasis for ∆v.

The horizontal lifts of vector fields and 1-forms can easily be described in
specialized (co)frames. Indeed, let {eI} and {eI} be respectively a specialized frame
and its dual coframe. Define a frame {Eµ} and its dual coframe {Eµ} on M which
are π-related to {eI} and {eI}, i.e., Eµ := π∗(eµ) and eµ := π∗(Eµ) = Eµ ◦ π∗.5

4In this sense, a connection ∆h is an Ehresmann connection [16, p. 314] and vice versa [116,
pp. 85–89].

5Recall, π∗|∆h
p

: ∆h
p → Tπ(p)(M) is a vector space isomorphism.
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If Y = Y µEµ ∈ X (M) and φ = φµeµ ∈ Λ1(M), then their horizontal lifts (from
M to E) respectively are

Ȳ = (Y µ ◦ π)eµ φ̄ = (φµ ◦ π)eµ. (3.15)

The specialized (co)frames transform into each other according to the general
rules (3.4) in which the transformation matrix and its inverse have the following
block structure:

A =

(
[Aν

µ] 0n×r

0r×n [Ab
a]

)
A−1 =

(
[Aν

µ]−1 0n×r

0r×n [Ab
a]−1

)
, (3.16)

where Aν
µ, Ab

a : E → K and the functions Aν
µ are constant on the fibres of the

bundle (E, π, M), that is, we have

Aν
µ = Bν

µ ◦ π or
∂Aν

µ

∂ua
= 0 (3.17)

for some nondegenerate matrix-valued function [Bν
µ] on M . Besides, in a case

of vector bundle, the functions Aa
b are also constant on the fibres of the bundle

(E, π, M), i.e.,

Ab
a = Bb

a ◦ π or
∂Ab

a

∂ua
= 0 (3.18)

for some nondegenerate matrix-valued function B = [Bb
a] on M . Changes like (3.4),

with A given by (3.16), respect the fibre as well as the connection structure of the
bundle.

Let E be a C2 manifold and ∆h a C1 connection on (E, π, M). The com-
ponents CK

IJ of the anholonomicity object of a specialized frame {eI} are (local)
functions on E defined by (see (2.5))

[eI , eJ ] =: CK
IJeK (3.19)

and are naturally divided into the following six groups (cf. [138, p. 21]):

{Cλ
µν}, {Ca

µν}, {Cλ
µb = 0}, {Cλ

ab = 0}, {Cc
µb}, {Cc

ab}. (3.20)

The functions Cλ
µν are constant on the fibres of (E, π, M), precisely Cλ

µν = fλ
µν ◦ π

where fλ
µν are the components of the anholonomicity object for the π-related frame

{π∗(eµ)} on M , as the commutators of π-related vector fields are π-related [7,
Section 1.55]. Besides, since the vertical distribution ∆v is integrable (the space
∆v

p is the space tangent to the fibre through p ∈ E at p), we have

[ea, eb] = Cc
abec (3.21)

(so that Cλ
ab = 0), due to which Cc

ab are called components of the vertical anholo-
nomicity object. To prove that Cλ

µb = 0, one should expand {eI} along
{
∂I = ∂

∂uI

}
,
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with {uI} being some bundle coordinates, viz. eµ = eν
µ∂ν + eb

µ∂b and ea = eb
a∂b,

with some functions eν
µ, eb

µ and eb
a, and to notice that eν

µ are constant on the fibres,
i.e., ∂a(eν

µ) = 0.
The non-trivial mixed “vertical-horizontal” components between (3.20), viz.

Ca
µν and Ca

µb, are important characteristics of the connection ∆h. The functions

◦Γa
bµ := +Ca

bµ = −Ca
µb (3.22a)

Ra
µν := +Ca

µν = −Ca
νµ, (3.22b)

which enter into the commutators

Leµeb = [eµ, eb] = ◦Γa
bµea (3.23a)

Leµeν = [eµ, eν ] = Ra
µνea + Cλ

µνeλ, (3.23b)

are called respectively the fibre coefficients of ∆h (or components of the connection
object of ∆h) and fibre components of the curvature of ∆h (or components of the
curvature (object) of ∆h) in {eI}. Under a change (3.4), with a matrix (3.16), of
the specialized frame, the functions (3.22) transform into respectively

◦
Γ̃a

bµ = Aν
µ

(
[Af

e ]−1
)a

d

( ◦Γd
cνAc

b + eν(Ad
b )
)

(3.24a)

R̃a
µν =

(
[Af

e ]−1
)a

b
Aλ

µA�
νRb

λ�, (3.24b)

which formulae are direct consequences of (3.23). If we put Ā := [Ab
a], ◦Γν :=

[ ◦Γd
cν ] , and

◦
Γ̃ν := [

◦
Γ̃d

cν ], then (3.24a) is tantamount to

◦
Γ̃µ = Aν

µĀ−1 · ( ◦Γν · Ā + eν(Ā))

= Aν
µ(Ā−1 · ◦Γν − eν(Ā−1)) · Ā.

(3.25)

Up to a meaning of the matrices [Aν
µ] and Ā and the size of the matrices ◦Γν and

Ā, the last equation is identical with the one expressing the transformed matrices
of the coefficients of a linear connection (covariant derivative operator) in a vector
bundle (see (IV.14.25) for N = M and g = idM or [87, eq. (3.5)]) on which we
shall return later in this chapter (see Section 4, in particular equation (4.23′) in
it). Equation (3.24b) indicates that Ra

µν are components of a tensor, viz.

Ω :=
1
2
Ra

µνea ⊗ eµ ∧ eν , (3.26)

called curvature tensor of the connection ∆h. By (3.23a), the horizontal distribu-
tion ∆h is (locally) integrable iff its curvature tensor vanishes, Ω = 0.

Definition 3.4. A connection with vanishing curvature tensor is called flat, or
integrable, or curvature free.
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Proposition 3.1. The flat connections are the only ones that may admit holonomic
specialized frames.

Proof. See Definition 3.4 and (3.23b). �
The above considerations of specialized (co)frames for a connection ∆h on a

bundle (E, π, M) were global as we supposed that these (co)frames are defined on
the whole bundle space E, which is always possible if no smoothness conditions
on ∆h are imposed. Below we shall show how local specialized (co)frames can be
defined via local bundle coordinates on E.

Let {uI} be local bundle coordinates on an open set W ⊆ E. They define on
T (W ) ⊆ T (E) the local basis

{
∂I := ∂

∂uI

}
, so that any vector can be expended

along its vectors. In particular, we can do so with any basic vector field eW
I of a

specialized frame {eI} restricted to W , eW
I := eI |W . Since {∂a|p}, with p ∈ W , is

a basis for ∆v
p, we can write

(eW
µ , eW

a ) = (Aν
µ∂µ + Aa

µ∂a, Ab
a∂b) = (∂ν , ∂b) ·

(
[Aν

µ] 0

[Ab
µ] [Ab

a]

)
, (3.27)

where [Aν
µ] and [Ab

a] are non-degenerate matrix-valued functions on W .6

Definition 3.5. A frame {XI} over W in T (W ) is called adapted (to the coordinates
{uI} in W ) for a connection ∆h if it is the specialized frame obtained from (3.27)

via admissible transformation (3.4) with the matrix A =
(

[Aν
µ]−1 0

0 [Ab
a]−1

)
.

Exercise 3.1. An arbitrary specialized frame {eW
I } in T (E) over W enters in the

definition of a frame {XI} adapted to bundle coordinates {uI} on W . Prove that
{XI} is independent of the particular choice of the frame {eW

I }. (Hint: apply
Definition 3.5 and (3.4a) with A given by (3.16).) The below-derived equality (3.34)
is an indirect proof of that fact too.

According to (3.4) and Definition 3.5, the adapted frame {XI} and the cor-
responding to it adapted coframe {ωI} are given by

Xµ = ∂µ + Γa
µ∂a Xa = ∂a (3.28a)

ωµ = duµ ωa = dua − Γa
µduµ. (3.28b)

Here the functions Γa
µ : W → K are defined via

[Γa
µ] = +[Aa

ν ] · [Aν
µ]−1 (3.29)

and are called (2-index) coefficients of ∆h. In a matrix form, the equations (3.28)
can be written as

(Xµ, Xa) = (∂ν , ∂b) ·
[

δν
µ 0

+Γb
µ δb

a

] (
ωµ

ωa

)
=

[
δµ
ν 0

−Γa
ν δa

b

]
·
(

duν

dub

)
. (3.30)

6The non-degeneracy of [Aν
µ] follows from the fact that the vector fields π∗|∆h(eW

µ ) =

Aν
µπ∗

(
∂

∂uµ

)
form a basis for X (π(W )) ⊆ X (M).
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The operators Xµ = ∂µ + Γa
µ∂a are known as covariant derivatives on T (W )

and the plus sing in (3.28a) before Γa
µ (hence in the right-hand side of (3.29)) is

conventional.
If {uI} and {ũI} are local coordinates on open sets W ⊆ E and W̃ ⊆ E,

respectively, and W ∩ W̃ 
= ∅, then, on the overlapping set W ∩ W̃ , a problem
arises: how are connected the adapted frames corresponding to these coordinates?
Let us mark with a tilde all quantities that refer to the coordinates {ũI}. Since
the adapted frames are, by definitions, specialized ones, we can write (see (3.4))

(X̃µ, X̃a) = (Xν , Xb) · A
(

ω̃µ

ω̃a

)
= A−1 ·

(
ων

ωb

)
, (3.31a)

where the transformation matrix A and its inverse have the form (3.16). Recall-
ing (3.2) and (3.3), from these equalities, we get

A = diag
([∂uν

∂ũµ

]
,
[ ∂ub

∂ũa

])
=

([
∂uν

∂ũµ

]
0

0
[

∂ub

∂ũa

]) . (3.31b)

Combining (3.29) and (3.31), one can easily prove

Proposition 3.2. A change {uI} �→ {ũI} of the local bundle coordinates implies the
following transformation of the 2-index coefficients of the connection:

Γa
µ �→ Γ̃a

µ =
(∂ũa

∂ub
Γb

ν +
∂ũa

∂uν

)∂uν

∂ũµ
. (3.32)

It is obvious, a connection ∆h is of class Cm, m ∈ N ∪ {0}, if and only if its
coefficients Γa

µ are Cm functions on W , provided ∂I are Cm vector fields on W
(which is the case when E is a Cm+1 manifold). By virtue of (3.32), the Cm+1

changes of the local bundle coordinates preserve the Cm differentiability of Γa
µ.

Thus the Cm+1 differentiability of the base M and bundle E spaces is a necessary
condition for existence of Cm connections on (E, π, M); as we assumed m = 1 in
this chapter, the connections considered here can be at most of differentiability
class C1.

The next proposition states that a connection on a bundle is locally equivalent
to a geometric object whose components transform like (3.32).

Proposition 3.3. To any connection ∆h in a bundle (E, π, M) can be assigned,
according to the procedure described above, a geometrical object on E whose com-
ponents Γa

µ in bundle coordinates {uI} on E transform according to (3.32) under a
change {uI} �→ {ũI} of the bundle coordinates on the intersection of the domains
of {uI} and {ũI}. Conversely, given a geometrical object on E with local transfor-
mation law (3.32), there is a unique connection ∆h in (E, π, M) which generates
the components of that object as described above.
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Proof. The first part of the statement was proved above, when we constructed
the adapted frame (3.28a) and derived (3.32). To prove the second part, choose a
point p ∈ E and some local coordinates {uI} on an open set W in E containing
p in which the geometrical object mentioned has local components Γa

µ. Define a
local frame {XI} = {Xµ, Xa} on W by (3.28a). The required connection is then
∆h : q �→ ∆h

q := {rµXµ|q : rµ ∈ K} for any q ∈ W , which means that ∆h
q is the

linear cover of {Xµ|q}. The transformation law (3.32) insures the independence of
∆h from the local coordinates employed in its definition. �

From the construction of an adapted frame {XI}, as well as from the proof
of Proposition 3.3, follows that the set of vectors {Xµ} is a basis for the horizontal
distribution ∆h and the set {Xa} is a basis for the vertical distribution ∆v. The
matrix of the restricted tangent projection π∗|∆h in bundle coordinate system
{uµ = xµ ◦ π, ua} on E, where xµ are local coordinates on M , is the identity
matrix as (π∗|∆h

p
)ν
µ = ∂(xµ◦π)

∂uµ

∣∣∣
p

= δν
µ for any point p in the domain of {uI}. Hereof

we get

π∗|∆h(Xµ) =
∂

∂xµ

(
⇐⇒ π∗|∆h

p
(Xµ|p) =

∂

∂xµ

∣∣∣
π(p)

)
. (3.33)

In particular, from here follows that π∗|∆h
p
: ∆h

p → Tπ(p)(M) is a vector space
isomorphism. The inverse to equation (3.33), viz.

Xµ = (π∗|∆h)−1
( ∂

∂xµ

)
= (π∗|∆h)−1 ◦ π∗

( ∂

∂uµ

)
, (3.34)

can be used in an equivalent definition of a frame {XI} adapted to local coordinates
{uI}, namely, this is the frame

{
(π∗|∆h)−1 ◦ π∗

(
∂

∂uµ

)
, ∂

∂ua

}
. If one accepts such

a definition of an adapted frame for ∆h, the (2-index) coefficients of ∆h have to
be defined via the expansion (3.28a); the only changes this may entail are in the
proofs of some results, like (3.31) and (3.32).

It is useful to be recorded also the simple fact that, by construction, we have

π∗(Xa) = 0. (3.35)

Let E be a C2 manifold and ∆h be a C1 connection. The adapted frames are
generally anholonomic as the commutators between the basic vector fields of the
adapted frame (3.28a) are (cf. (3.20) and (3.22))

[Xµ, Xν ] = Ra
µνXa [Xµ, Xb] = ◦Γa

bµXa [Xa, Xb] = 0, (3.36)

with

Ra
µν = ∂µ(Γa

ν) − ∂ν(Γa
µ) + Γb

µ∂b(Γa
ν) − Γb

ν∂b(Γa
µ) = Xµ(Γa

ν) − Xν(Γa
µ) (3.37a)

◦Γa
bµ = −∂b(Γa

µ) = −Xb(Γa
µ) (3.37b)

being the fibre components of the curvature and fibre coefficients of the connection.



3. Connections on bundles 349

An obvious corollary from (3.36) is

Proposition 3.4. An adapted frame is holonomic if and only if

Ra
µν = 0 ( ⇐⇒ Ω = 0) ◦Γa

bµ = 0. (3.38)

Therefore only the flat (integrable) C1 connections, for which Ω = 0, may
admit holonomic adapted frames (cf. Proposition 3.1). Besides, as a consequence
of (3.37b) and (3.38), such connections admit holonomic adapted frames on W ⊆ E
if and only if there are local coordinates on W in which the coefficients Γa

µ are
constant on the fibres passing through W , i.e., iff Γa

µ = Ga
µ ◦ π for some functions

Ga
µ : π(W ) → K, which is equivalent to ∂b(Γa

µ) = 0.

Example 3.1 (horizontal lifting of a path). Recall, the horizontal lift of a C1 path
γ : J → M passing through a point p ∈ π−1(γ(t0)) for some t0 ∈ J is the unique
path γ̄p : J → E such that π ◦ γ̄p = γ, γ̄p(t0) = p, and ˙̄γp(t) ∈ ∆h

γ̄p(t) for all t ∈ J .
As in a specialized frame {eI} the relation Xp ∈ ∆h

p is equivalent to ea(X) = 0
for any X ∈ X (M), in an adapted coframe, given by (3.28b), the horizontal lift
γ̄p of γ is the unique solution of the initial value problem

ωa( ˙̄γp) = 0 (3.39a)
γ̄p(t0) = p (3.39b)

which is tantamount to any one of the initial-value problems (t ∈ J)

˙̄γa
p (t) − Γa

µ(γ̄p(t)) ˙̄γµ
p (t) = 0 (3.39′a)

γ̄I
p(t0) = pI := uI(p) (3.39′b)

d(ua ◦ γ̄p(t))
dt

− Γa
µ(γ̄p(t))

d(xµ ◦ γ(t))
dt

= 0 (3.39′′a)

uI(γ̄p(t0)) = uI(p), (3.39′′b)

where xµ are the local coordinates in the base space that induce the basic coor-
dinates uµ on the bundle space, uµ = xµ ◦ π. (Note that the quantities d(xµ◦γ(t))

dt ,
entering into (3.39′′a), are the components of the vector γ̇ tangent to γ at param-
eter value t.) One may call (3.39a), or any one of its versions (3.39′a) or (3.39′′a),
the parallel transport equation in an adapted frame as it uniquely determines the
parallel transport along the restriction of γ to any closed subinterval in J (see
Definition 3.2).

Example 3.2 (the equation of geodesic paths). A connection ∆h on the tangent
bundle (T (M), πT , M) of a manifold M is called a connection on M . In this
case, equation (3.39) defines also the geodesics (relative to ∆h) in M . A C2 path
γ : J → M in a C2 manifold M is called a geodesic path if its tangent vector field
γ̇ undergoes parallel transport along the same path γ, i.e., Pγ|[σ,τ ](γ̇(σ)) = γ̇(τ)
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for all σ, τ ∈ J , which means that the lifted path γ̇ : J → T (M) is a horizontal lift
of γ (relative to ∆h). So, if xµ are local coordinates on π(W ) ∈ M and the bundle
coordinates on W ⊆ E are such that [7, Section 1.25] uµ = xµ ◦π and un+µ = dxµ

(µ, ν, · · · = 1, . . . , n = dimM), then (3.39′′a) transforms into the geodesic equation
(on M)

d2(xµ ◦ γ(t))
dt2

− Γn+µ
ν (γ̇(t))

d(xν ◦ γ(t))
dt

= 0 t ∈ J, (3.40)

which (locally) defines all geodesics in M . Of course, a particular geodesic is spec-
ified by fixing some initial values for γ(t0) and γ̇(t0) for some to ∈ J . Notice,
equation (3.40) is an equation for a path γ in M , while (3.39′′a) is an equation
for the lifted path γ̄ in T (M) provided the path γ in M is known; for a geodesic
path, evidently, we have γ̄ = γ̇. With obvious renumbering of the indices, one
usually writes Γµ

ν for Γn+µ
ν , so then (3.40) coincides with the classical geodesic

equation (I.3.23); for other point of view on this equation, see Section IV.15.

4. Connections on vector bundles

In this section, by (E, π, M) we shall denote an arbitrary vector bundle (see Sec-
tion IV.2 or, e.g., [23]). A peculiarity of such bundles is that their fibres are isomor-
phic vector spaces, which leads to a natural description of the vertical distribution
∆v on their fibre spaces, as well as to existence of a kind of differentiation of their
sections (known as covariant differentiation – see Subsection IV.14.1).

In the vector bundles are used, as we shall do in this section, the so-called
vector bundle coordinates whose fibre coordinates are linear on their fibres and
are constructed as follows (cf. [116, p. 30].

Let {ea} be a frame in E over a subset WM ⊆ M , i.e., {ea(x)} to be a basis in
π−1(x) for all x ∈ WM . Then, for each p ∈ π−1(WM ), we have a unique expansion
p = paea(π(p)) for some numbers pa ∈ K. The vector fibre coordinates {ua} on
π−1(WM ) induced (generated) by the frame {ea} are defined via ua(p) := pa and
hence can be identified with the elements of the coframe {ea} dual to {ea}, i.e.,
ua = ea. Conversely, if {uI} are coordinates on π−1(WM ) for some WM ⊆ M which
are linear on the fibres over WM , then there is a unique frame {ea} in π−1(WM )
which generates {ua} as just described; indeed, considering un+1, . . . , un+r as 1-
forms on π−1(WM ), one should define the frame {ea} required as a one whose dual
is {ua}, i.e., via the conditions ua(eb) = δa

b .
A collection {uI} of basic coordinates uµ and vector fibre coordinates ua

on π−1(WM ) is called vector bundle coordinate system on π−1(WM ). Only such
coordinates on E will be employed in this section.

4.1. Vertical lifts

The idea of describing the vertical distribution ∆v on a vector bundle is that, if
L is a vector space, then to any Y ∈ L there corresponds a ‘vertical’ vector field
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Y v ∈ X (L) = Sec(T (L), πT , L) whose value at X ∈ L is the vector tangent to the
path t �→ X + tY ∈ L, with t ∈ R, at t = 0, i.e., Y v|X := d

dt

∣∣
t=0

(X + tY ). Here,
as usual, with Sec(E, π, M) (resp. Secm(E, π, M) with m ∈ N ∪ {0}) we denote
the module of sections (resp. Cm sections) of a bundle (E, π, M) (resp. of a Cm+1

bundle (E, π, M)).
Let (E, π, M) be a vector bundle and ∆v the vertical distribution on it, viz.,

for each p ∈ E, ∆v : p �→ ∆v
p := Tp(π−1(π(p))). To every Y ∈ Sec(E, π, M), we

assign a vertical vector field Y v ∈ ∆v on E such that, for p ∈ E,

Y v
p := Y v|p :=

d
dt

∣∣∣
t=0

(p + tY |π(p)). (4.1)

(The mapping (p, Yπ(p)) �→ Y v
p defines an isomorphism from the pullback bundle

π∗E into the vertical bundle V(E) – see [23, Sections 1.27 and 1.28] and also [116,
p. 41, Exercises 2.2.1 and 2.2.2].)

Lemma 4.1. Let {ua} be vector fibre coordinates generated by a frame {ea} on M .
If Y ∈ Sec(E, π, M) and Y = Y aea, then

Y v = (Y a ◦ π)
∂

∂ua
. (4.2)

Proof. Using the Definition (4.1), we get for p ∈ E:

Y v|p =
d
dt

∣∣∣
t=0

(p + tY |π(p)) =
d(ua(p + tY |π(p)))

dt

∣∣∣
t=0

∂

∂ua

∣∣∣
p

=
d(pa + tY a(π(p)))

dt

∣∣∣
t=0

∂

∂ua

∣∣∣
p

= Y a(π(p))
∂

∂ua

∣∣∣
p

=
(
(Y a ◦ π) · ∂

∂ua

)∣∣∣
p
,

where equation (I.2.7) was applied. �
If Y ∈ Sec(E, π, M), the vector field Y v := v(Y ) ∈ ∆v, defined via (4.1),

is called the vertical lift of the section Y . It is (locally) given by (4.2) in vector
bundle coordinates.

Proposition 4.1. The mapping

v : Sec(E, π, M) → {vector fields in ∆v}
v : Y �→ Y v : p �→ Y v|p :=

d
dt

∣∣∣
t=0

(p + tYπ(p))
(4.3)

is a bijection and it and its inverse are linear mappings.

Proof. The linearity and injectivity of v follow directly from (4.1). Now we shall
prove that, for each Z ∈ ∆v, there is a Y ∈ Sec(E, π, M) such that Y v = Z, i.e., v is
also surjective. Let Z = Za ∂

∂ua , with {uI} being (local) vector bundle coordinates
on E and the functions Za being constant on the fibres of E, that is ZI = zI ◦ π
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for some functions zI on M . Define Y = zaea with {ea} being the frame in E over
M generating {ua}. By Lemma 4.1, we have Y v = (za ◦π) ∂

∂ua = Za ∂
∂ua = Z. The

linearity of v−1 follows from here too. �
Consider a section ω of the bundle dual to (E, π, M) [23]. Its vertical lift ωv

is a 1-form on ∆v such that, for Z ∈ ∆v and p ∈ E, ωv(Z)|p = ω(Y )|π(p) for the
unique section Y ∈ Sec(E, π, M) with Y v = Z (see Proposition 4.1), i.e., we have
ωv(·)|p = (ω ◦ v−1(·))|π(p) which means that

ωv(Z) = (ω ◦ v−1(Z)) ◦ π or ωv(Y v)|p = ω(Y )|π(p) (= ωπ(p)(Yπ(p))). (4.4)

If {ea = ua} is the coframe dual to {ea}, and ω = ωaea, then in the coframe
{dua} dual to

{
∂

∂ua

}
, we can write (cf. (4.2))

ωv = (ωa ◦ π)dua. (4.5)

It should be mentioned, ‘vertical’ lifts of vector fields or 1-forms over the base
space M are generally not defined unless E = T (M) or E = T ∗(M), respectively.1

A section Y of (E, π, M) and section ω of the bundle dual to (E, π, M) can
be lifted vertically via the mappings

v : Y �→ Y v ∈ ∆v (4.6a)
ω �→ ωv (4.6b)

respectively given by (4.3) and (4.4) (see also (4.2) and (4.5)). These mappings
do not require a connection and arise only from the fibre structure of the bundle
space induced from the projection π : E → M .

If a connection ∆h on (E, π, M) is given, it generates horizontal lifts of the
vector fields on the base space M and of the one-forms on the same base space M
into respectively vector fields in ∆h and linear mappings on the vector fields in
∆h. Precisely, if F ∈ X (M) and φ ∈ Λ1(M), their horizontal lifts are defined by
the mappings2

F �→ Fh ∈ ∆h with Fh : p �→ Fh
p := (π∗|∆h

p
)−1(Fπ(p)) p ∈ E (4.7a)

φ �→ φh with φh := φ ◦ π∗|∆h : p �→ φh|p = φ|π(p) ◦ (π∗|∆h
p
). (4.7b)

The horizontal lift φh of φ can also be defined alternatively via

φh(Fh)|p = φ(F )|π(p) (4.8)

which equation is tantamount to (4.7b).
1Since π∗(∆v

p) = 0π(p) ∈ Tπ(p)(M), p ∈ E, we can say that only the zero vector field over
M has vertical lifts relative to π and any vector field in ∆v is its vertical lift. This conclusion is
independent of the existence of a connection on (E, π, M) and depends only on the fibre structure
of E induced by π.

2Alternatively, one may define φ′
h = φ◦π∗ = π∗(φ), which expands the domain of φh, defined

by (4.7b), on the whole space X (E). Obviously, φ′
h(Z) = φh(Z) for Z ∈ ∆h ⊆ X (E) and

φ′
h(Z) = 0 for Z ∈ X (E) \ {X ∈ ∆h}.
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Let {uµ = xµ ◦ π, ua} be vector bundle coordinate system and {XI} (resp.
{ωI}) be the adapted to it frame (resp. coframe) constructed from it according
to (3.28). If Y = Y aea, ω = ωaea, F = Fµ ∂

∂xµ ∈ X (M), and φ = φµdxµ ∈ Λ1(M),
the equations (4.2) and (4.5) imply

Y v = (Y a ◦ π)Xa ωv = (ωa ◦ π)ωa, (4.9)

while from (4.7) and (3.33), one gets

Fh = (Fµ ◦ π)Xµ φh = (φµ ◦ π)ωµ, (4.10)

which agree with (3.15).

Exercise 4.1. Consider the vertical and horizontal lifts of vector fields and 1-forms
in a case of a connection ∆h on the tangent bundle (T (M), πT , M).

Exercise 4.2. In a case of the tangent bundle (T (M), πT , M) (resp. the cotan-
gent bundle (T ∗(M), π∗

T , M)) over a manifold M , any coordinate system {xµ}
on an open set WM ⊆ M induces natural vector bundle coordinates in the
bundle space [7, Section 1.25] (see also [116, pp. 8, 43]). For the purpose, we
put eµ = ∂

∂xµ , so that eµ = dxµ and we get (λ, µ, . . . = 1, . . . ,dimM and
a, b = dimM + 1, . . . , 2 dimM)

{uI} = {xµ ◦ πT , dxν} i.e., uµ = xµ ◦ πT ua = dxa−dim M (4.11a)

on π−1
T (WM ), in the tangent bundle case, and

{uI} =
{
xµ ◦ πT∗ , (·)

( ∂

∂xν

)}
i.e., uµ = xµ ◦ πT∗ udim M+ν : ξ �→ ξ

( ∂

∂xν

)
(4.11b)

on π−1
T∗ (WM ) � ξ, in the cotangent bundle case. In connection with the higher order

(co)tangent bundles, it is convenient the vector fibre coordinates to be denoted
also as uµ

1 := ẋµ := dxµ in T (M) and by u1
µ(·) = (·)

(
∂

∂xµ

)
in T ∗(M). Find in the

coordinates (4.11) the adapted (co)vector fields and the vertical/horizontal lifts of
vector fields or 1-forms in the (co)tangent bundle case.

4.2. Linear connections on vector bundles

The most valued structures in/on vector bundles are the ones which are compat-
ible/consistent with the linear structure of the fibres of these bundles. Since a
distribution ∆: p �→ ∆p ⊆ Tp(E), p ∈ E, on the bundle space E of a (vector)
bundle (E, π, M) cannot be considered as a linear mapping without additional
hypotheses, the concept of a linear connection arises from the one of the parallel
transport assigned to a connection (see Definition 3.2). (For an alternative ap-
proach, see [146, p. 42].)
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Definition 4.1. A connection on a vector bundle is called linear if the assigned to
it parallel transport is a linear mapping along every path in the base space, i.e., if
the mapping (3.13) is linear for all paths γ : [σ, τ ] → M in the base, viz.

Pγ(ρX) = ρPγ(X) (4.12a)
Pγ(X + Y ) = Pγ(X) + Pγ(Y ), (4.12b)

where ρ ∈ K and X, Y ∈ π−1(γ(σ)).

Remark 4.1. The equivalence between Definitions 4.1 and IV.14.3 will be estab-
lished below in Subsection 4.3.

The restriction on a connection to be linear is quite severe and is described
locally by

Theorem 4.1 (cf. [138, Section 5.2]). Let (E, π, M) be a vector bundle, {uI} be
vector bundle coordinate system on an open set W ⊆ E, and ∆h be a connection
on it described in the frame {XI}, adapted to {uI}, by its 2-index coefficients Γa

µ

(see (3.27)–(3.29)). The connection ∆h is linear if and only if, for each p ∈ W ,

Γa
µ(p) = −Γa

bµ(π(p))ub(p) = −(
(Γa

bµ ◦ π) · ub
)
(p), (4.13)

where Γa
bµ : π(W ) → K are some functions on the set π(W ) ⊆ M and the minus

sign before Γa
bµ in (4.13) is conventional.

Proof. Let γ : [σ, τ ] → π(W ) be a C1 path. Consider the parallel transport equa-
tion (3.39′′a), viz.

dγ̄a
p (t)
dt

= Γa
µ(γ̄p(t))γ̇µ(t), (4.14)

where γ̄p : [σ, τ ] → W is the horizontal lift of γ through p ∈ π−1(γ(σ)), γ̄a := ua◦γ̄,
and γ̇µ(t) = d(xµ◦γ(t))

dt = d(uµ◦γ̄(t))
dt as uµ = xµ◦π for some coordinate system {xµ}

on π(W ).
Sufficiency. If (4.13) holds, (4.14) is transformed into

dγ̄a
p (t)
dt

= −Γa
bµ(γ(t))γ̄b

p(t)γ̇
µ(t), (4.15)

which is a system of r linear first order ordinary differential equations for the
r functions γ̄n+1

p , . . . , γ̄n+r
p . According to the general theorems of existence and

uniqueness of the solutions of such systems [34], it has a unique solution

γ̄a
p (t) = Y a

b (t)pb (4.16)

satisfying the initial condition γ̄a
p (σ) = ua(p) =: pa, where Y = [Y a

b ] is the funda-
mental solution of (4.15), i.e.,

dY (t)
dt

= −[Γa
bµ(γ(t))γ̇µ(t)]n+r

a,b=n+1 · Y (t) Y (σ) = 1r×r = [δa
b ]. (4.17)

The linearity of (3.14) with respect to p follows from (4.16) for t = τ .
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Necessity. Suppose (3.13) is linear in p for all paths γ : [σ, τ ] → π(W ).
Then γ̄p(t) := Pγ|[σ,t](p) is the horizontal lift of γ|[σ, t] through p and (cf. (4.16))
γ̄a

p (t) = Aa
b (γ(t))pb for some C1 functions Aa

b : π(W ) → K. The substitution of
this equation in (4.14) results into

∂Aa
b (x)

∂xµ

∣∣∣
x=γ(t)=π(γ̄p(t))

· γ̇µ(t)pb = Γa
µ(γ̄p(t))γ̇µ(t).

Since γ : [σ, τ ] → M , we get equation (4.13) from here, for t = σ, with Γa
bµ(x) =

−∂Aa
b (x)

∂xµ for x ∈ π(U). �
The functions Γa

bµ : π(W ) → K will be referred as the (local) 3-index coeffi-
cients of the linear connection ∆h in the adapted frame {XI}. If there is no risk to
confuse them with the 2-index coefficients Γa

µ : W → K, they will be called simply
coefficients of ∆h. Note, the 2-index coefficients of a linear connections are defined
on (a subset of) the bundle space E, while the 3-index ones are define on (a subset
of) the base space M . The equation (4.15) is simply the parallel transport equation
for the linear connection considered.

Example 4.1. Since ua is replaced by uµ
1 = dxµ in the tangent bundle case (see

Exercise 4.4), the linear connections in (T (M), πT , M) have 2-index coefficients of
the form

Γν
µ = −(Γν

λµ ◦ πT ) · uλ
1 = −(Γν

λµ ◦ πT ) · dxλ (4.18)

and, consequently, they can be regarded as 1-forms on M .

Consider a linear connection ∆h on a vector bundle (E, π, M). Let Γa
µ and

Γa
bµ be its 2- and 3-index coefficients, respectively, in a frame {XI} adapted to

vector bundle coordinates {uI}.
Corollary 4.1. The 3-index coefficients Γa

bµ of a linear connection ∆h uniquely
define the fibre coefficients of ∆h in {XI} by

◦Γa
bµ = Γa

bµ ◦ π = π∗(Γa
bµ), (4.19)

that is the fibre coefficients of a linear connection are equal to the 3-index ones
lifted by the projection π.

Proof. Since (3.28a) and (4.13) imply

[Xµ, Xb] = (Γa
bµ ◦ π)Xa, (4.20)

the equation (4.19) follows from (3.22a) and (3.23a) or (3.37b) and (4.13). �
As the vector bundle coordinates uI are, by definition, linear on the fibres of

the bundle, the general change of such coordinates is

{uµ, ua} �→ {ũµ = x̃µ ◦ π, ũa = (Ba
b ◦ π) · ub}, (4.21)
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with B = [Ba
b ] being a non-degenerate matrix-valued function on π(W ). The

change (4.21) entails the following transformation of the corresponding adapted
frames

{Xµ, Xa} �→ {X̃µ = (Bν
µ ◦ π) · Xν , X̃a = (Bb

a ◦ π) · Xb}, (4.22)

where [Bν
µ] =

[
∂xν

∂x̃µ

]
is a non-degenerate matrix-valued function on the intersection

of the domains of {xµ} and {x̃µ}. (In (4.22) we have used that ∂uν

∂ũµ

∣∣
p

= ∂(xν◦π)
∂(x̃µ◦π)

∣∣
p

=
∂xν

∂x̃µ

∣∣
π(p)

.)

Proposition 4.2. The change (4.21) implies the following transformations of the
3-index coefficients of the linear connection:

Γa
bµ �→ Γ̃a

bµ = Bν
µ

(
Ba

dΓd
cν − ∂Ba

c

∂xν

)
(B−1)c

b, (4.23)

Proof. Apply (4.22), (3.32) and (4.13). Alternatively, the same transformation law
follows also from equations (3.24a) and (4.19). �

If we introduce the matrix-valued functions Γµ := [Γa
bµ] and Γ̃µ := [Γ̃a

bµ] on
M , we can rewrite (4.23) as (cf. (IV.14.25) with N = M , g = idM , and A = B−1)

Γµ �→ Γ̃µ = Bν
µ

(
B · Γν − ∂B

∂xν

)
· B−1

= Bν
µB ·

(
Γν · B−1 +

∂B−1

∂xν

)
.

(4.23′)

This relation corresponds to (3.25) with [Aa
b ] = B−1 ◦ π (see also (4.19)) as the

frame {ea : M → E}, relative to which the vector fibre coordinate system {ua}
is defined (E � p �→ ua(p) with p = ua(p)ea(π(p))), transforms via the matrix
inverse to B ◦ π.

Let E be a C2 manifold and ∆h a C1 connection on (E, π, M). Substitut-
ing (4.13) into (3.37a), we get the fibre components of the curvature of a linear
connection as

Ra
µν = −(Ra

bµν ◦ π) · ub (4.24)

where

Ra
bµν :=

∂

∂xµ
(Γa

bν) − ∂

∂xν
(Γa

bµ) − Γc
bµΓa

cν + Γc
bνΓa

cµ, (4.25)

or in a matrix form

Rµν := [Ra
bµν ] =

∂Γν

∂xµ
− ∂Γµ

∂xν
− Γν · Γµ + Γµ · Γν , (4.25′)
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are the components of the curvature operator (see below (4.42)). As a result
of (3.22b) and (4.24), the transformation (4.21) entails the change

Ra
bµν �→ R̃a

bµν = Bλ
µB�

ν (B−1)a
cBd

b Rc
dλ�, (4.26)

or in a matrix form

Rµν �→ R̃µν = Bλ
µB�

νB−1 · Rλ� · B, (4.26′)

which corresponds to (3.24b) with A = B−1 ◦ π (see also (4.24)).

4.3. Covariant derivatives in vector bundles

A possibility for introduction of differentiation in vector bundles, endowed with
connection, comes from the vector space structure of their fibres. This operation
can be defined in many independent ways, leading to identical results. In one of
them is involved the parallel transport induced by the connection: the idea is
the values of sections to be parallel transported (along paths in the base) into a
single fibre (over the paths), where one can work with the ‘transported’ sections
as with functions with values in a vector space. Other method uses the existence
of natural vertical lifts of sections of the bundle and horizontal lifts of the vector
fields on the base space; since the both lifts are vector fields on the bundle space,
their commutator (or Lie derivative relative to each other) is well defined and can
be used as a prototype of some sort of differentiation. We shall realize below the
second method mentioned, which seems is first introduced in a rudimentary form
in [138, p. 31].3,4 The first way, as well as the axiomatic approach, for introduction
of covariant derivatives will be obtained as theorems in what follows.

Let (E, π, M) be a vector bundle on which a linear connection ∆h is defined.
Suppose {Ea} is a frame in E to which vector fibre coordinates ua are associated
and {uI} is the corresponding vector bundle coordinate system. The frame adapted
to {uI} will be denoted by {XI} and {ωI} will be its dual coframe, both defined
by (3.28) through the (2-index) coefficients Γa

µ of ∆h.

Let Ẑ = ẐaXa ∈ ∆v and Z̄ = Z̄µXµ ∈ ∆h be respectively vertical and
horizontal vector fields on E. Define a mapping ∇̂ : ∆v ⊕ ∆h = T (E) → X (E)
such that5

∇̂ : (Ẑ, Z̄) �→ ∇̂Z̄(Ẑ) := Π(LZ̄ Ẑ) ∈ X (E), (4.27)

3In [138, p. 31] is proved that, for F = ∂
∂xµ and in our notation, the ath component of the

right hand sides of (4.35) and of (4.36) coincide in a frame {Ea} in E.
4An equivalent alternative approach is realized in [23, Sections 2.49–2.52].
5The idea of the construction (4.27) is to drag the vertical vector field Ẑ along the horizontal

one Z̄, which will give a vector field in X (E), and then to project the result onto the vertical
distribution ∆v by means of the invariant projection operator Π = Xa ⊗ ωa : X (E) → X (E).
Evidently Π2 = Π ◦ Π = Π and Π is the unit (identity) tensor in the tensor product of vector
fields and 1-forms on E.
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where the (1,1) tensor field
Π :=

∑
a

Xa ⊗ ωa (4.28)

is considered as a operator on the set of vector fields on E. Since (see (2.1b)
and (III.2.1))

LZ̄ Ẑ = Z̄(Ẑa)Xa + Z̄µẐa[Xµ, Xa]

and ωa(Xµ) = δa
µ = 0, from (3.36), (3.37b) and (4.27), we obtain

∇̂Z̄ Ẑ = Z̄µ{Xµ(Ẑa) − Ẑb∂b(Γa
µ)}Xa, (4.29)

from where one can prove, via direct calculation, the independence of ∇̂Z̄ Ẑ of
the particular (co)frame used. For any particular point p ∈ E, the value of the
vector field (4.29) at p is a vertical vector, (∇̂Z̄ Ẑ)|p ∈ ∆v

p, but generally ∇̂Z̄ Ẑ
is not a vertical vector field. The reason is that a vertical vector field on E is a
mapping V : p �→ Vp ∈ ∆v

p := Tp(π−1(π(p)) := Tı(p)(π−1(π(p)) = (π∗|p)−1(0π(p)),
with ı : π−1(p) → E being the inclusion mapping and 0π(p) ∈ Tπ(p)(M) being the
zero vector, due to which Vp, and hence its components, must depend only on
π(p) ∈ M . Therefore, we have

∇̂Z̄ Ẑ ∈ ∆v ⇐⇒ ∂b(Γa
µ) = −Γa

bµ ◦ π ⇐⇒ Γa
µ = −(Γa

bµ ◦ π) · ub + Ga
µ ◦ π, (4.30)

for some functions Γa
bµ, Ga

µ : M → K. Thus ∇̂Z̄Ẑ is a vertical vector field if and
only if the 2-index coefficients Γa

µ in {XI} of the connection ∆h are of the form

Γa
µ = −(Γa

bµ ◦ π) · ub + Ga
µ ◦ π. (4.31)

This equality selects the set of affine connections among all connections (see Sub-
section 4.4 below);6 in particular, of this type are the linear connections for which
Ga

µ = 0 and Γa
bµ are their 3-index coefficients (see (4.13)). For connections with

2-index coefficients (4.31), equation (4.29) reduces to

∇̂Z̄ Ẑ = Z̄µ{Xµ(Ẑa) + Ẑb(Γa
bµ ◦ π)}Xa ∈ ∆v. (4.32)

Now the idea of introduction of a covariant derivative of a section Y ∈
Sec(E, π, M) along a vector field F ∈ X (M) is to ‘lower’ the operator ∇̂ from
T (E) to T (M).

Definition 4.2. A covariant derivative or covariant derivative operator, associated
to a linear (or affine) connection ∆h on a vector bundle (E, π, M), is a mapping

∇ : X (M) × Sec1(E, π, M) → Sec0(E, π, M)
∇ : (F, Y ) �→ ∇F Y

(4.33)

6Usually the affine connections are defined on affine bundles [11, 146].
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such that, for F ∈ X (M) and Y ∈ Sec1(E, π, M), ∇F Y is the unique section of
(E, π, M) whose vertical lift is ∇̂F hY v, with ∇̂ defined by (4.27) (or (4.32)), viz.

(∇F Y )v := ∇̂F hY v (4.34)

or

∇F Y = v−1 ◦ ∇̂(π∗|∆h)−1(F )(v(Y )) = (v−1 ◦ ∇̂(π∗|∆h)−1(F ) ◦ v)(Y ), (4.35)

where Fh ∈ ∆h and Y v ∈ ∆v are respectively the horizontal and vertical lifts of
F and Y .

Remark 4.2. Definition 4.2 and the rest of this subsection are valid also for affine
connections for which (4.31) holds, not only for the linear ones. For some details,
see Subsection 4.4.

Proposition 4.3. Let {Ea} be a frame in E and {xµ} local coordinate system on
M . If Y = Y aEa ∈ Sec1(E, π, M) and F = Fµ ∂

∂xµ ∈ X (M), then we have the
explicit local expression

∇F Y = Fµ
(∂Y a

∂xµ
+ Γa

bµY b
)
Ea. (4.36)

Proof. Apply (4.34), (4.9), (4.10), (4.32), and (4.2). �

Proposition 4.4. Let ∆h be a linear connection on (E, π, M) and P be the generated
by it parallel transport. Let x ∈ M , γ : [σ, τ ] → M , γ(t0) = x for some t0 ∈ [σ, τ ],
and γ̇(t0) = Fx, i.e., γ to be the integral path of F ∈ X(M) through x. Then

(∇F Y )|x = lim
s→t0

P γ
s→t0 (Yγ(s)) − Yγ(t0)

s − t0
= lim

ε→0

P γ
t0+ε→t0(Yγ(t0+ε)) − Yγ(t0)

ε
, (4.37)

where Y ∈ Sec1(E, π, M) and

P γ
s→t :=

{
Pγ|[s,t] for s ≤ t(
Pγ|[t,s])−1 for s ≥ t.

(4.38)

Proof. Use Definition 3.2 and apply the parallel transport equation (4.15) with
initial value γ̄Yγ(s)(s) = Yγ(s) at the point t = s ∈ [σ, τ ]. �

Remark 4.3. The mapping P : γ �→ P γ : (s, t) �→ P γ
s→t is a (parallel) transport

along paths – see Proposition 8.6 on page 395.

By Proposition 4.4, the equation (4.37) can be used as an equivalent definition
of a covariant derivative associated with a linear connection.
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Proposition 4.5. Let F, G ∈ X (M), Y, Z ∈ Sec1(E, π, M), and f : M → K be a C1

function. Then:

∇F+GY = ∇F Y + ∇GY (4.39a)
∇fF Y = f∇F Y (4.39b)

∇F (Y + Z) = ∇F Y + ∇F Z (4.39c)
∇F (fY ) = F (f) · Y + f · ∇F Y. (4.39d)

Proof. Apply (4.36). �

Proposition 4.6. If a mapping (4.33) satisfies (4.39), there exists a unique linear
connection ∆h, the assigned to which covariant derivative is exactly ∇.

Proof. Define local functions Γa
bµ on M , called components of ∇, by the decom-

position
∇ ∂

∂xµ
Eb =: Γa

bµEa. (4.40)

A simple verification proves that they transform according to (4.23) and hence the
quantities (4.13) transform by (3.32). Proposition 3.3 ensures the existence of a
unique linear connection whose 2-index (3-index) coefficients are Γa

µ (Γa
bµ). Thus

the covariant derivative of Y ∈ Sec(E, π, M) relative to F ∈ X (M) is given by the
right-hand side of (4.36). On another hand, (4.39) entail (4.36), with Γa

bµ defined
by (4.40), so that ∇ is exactly the covariant derivative operator assigned to the
connection with 3-index coefficients Γa

bµ. �
Consequently, equations (4.39) and (4.40) provide a third equivalent defi-

nition of a covariant derivative (covariant derivative operator). Moreover, since
Proposition 4.6 establishes a bijective correspondence between linear connections
and operators (4.33) satisfying (4.39), quite often such operators are called linear
connections.7 As it is clear from the proof of Proposition 4.6, the bijection be-
tween linear connections and covariant derivative operators is locally given by the
coincidence of their (3-index) coefficients and components, respectively.

The four equations (4.39) are identical with conditions (i)–(iv) in Defini-
tion IV.14.7 for N = M and g = idM . This fact means that a covariant derivative
according to Definition 4.2 is a covariant derivative in (E, π, M) according to Def-
inition IV.14.7 and vice versa, so that the both definitions are equivalent (for
N = M and g = idM in the latter one). Combining that result with Conclu-
sion IV.14.1, we see that the Definitions 4.1 and IV.14.3 of a linear connection on
a vector bundle are equivalent (see also Definition 3.1).

Exercise 4.3. A C1 section ω = ωaEa of the bundle dual to (E, π, M) can be
differentiated covariantly similarly as the sections of (E, π, M). Show that the
corresponding operator, say ∇∗, can equivalently be defined by (the ‘Leibnitz
rule’)

(∇∗
F ω)(Y ) = F (ω(Y )) − ω(∇F Y ) (4.41)

7See also [23, Sections 2.15 and 2.52].



4. Connections on vector bundles 361

and locally is valid the equation

∇∗
F ω = Fµ

(∂ωa

∂xµ
− Γb

aµωb

)
Ea.

Equipped with the covariant derivative ∇ assigned to a C1 linear connection
∆h, we define the curvature operator of ∆h (or ∇) by

R : X (M) ×X (M) → End(Sec(E, π, M))
R : (F, G) �→ R(F, G) := ∇F ◦ ∇G −∇G ◦ ∇F −∇[F,G] ,

(4.42)

with End(. . . ) denoting the set of endomorphisms of (. . . ).

Exercise 4.4. Prove that locally

(R(F, G))(Y ) = (Ra
bµνY bFµGν)Ea, (4.43)

where the functions Ra
bµν : M → K, called the components of the curvature oper-

ator R in the pair of frames
({

∂
∂xµ

}
, {Ea}

)
, are defined by

R
( ∂

∂xµ
,

∂

∂xν

)
(Eb) =: Ra

bµνEa (4.44)

and are explicitly expressed through the coefficients of ∇(= 3-index coefficients of
∆h) via (4.25).

A linear connection or covariant derivative operator is called flat or curvature
free if

R = 0 ( ⇐⇒ Ra
bµν = 0). (4.45)

Obviously, the flatness of ∆h or ∇ is a necessary and sufficient condition for the
(local) integrability of the horizontal distribution ∆h : p �→ ∆h

p ⊆ Tp(E), p ∈ E
(see (3.23b) and (4.24)).

4.4. Affine connections

In Subsection 4.3, we met a class of connections on a vector bundle whose local
2-index coefficients have the form (see (4.31))

Γa
µ = −(Γa

bµ ◦ π) · ub + Ga
µ ◦ π (4.46)

in the frame {XI} adapted to a vector bundle coordinate system {uI}. From
∂bΓa

µ = −Γa
bµ and (3.32), one derives that the functions Γa

bµ in (4.46) transform
according to (4.23), viz.

Γa
bµ �→ Γ̃a

bµ = Bν
µ

(
Ba

dΓd
cν − ∂Ba

c

∂xν

)
(B−1)c

b (4.47)
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when the vector bundle coordinates or adapted frames undergo the change (4.21)
or (4.22), respectively. Thus, combining (3.32), (4.47) and (4.46), we see that (4.21)
or (4.22) implies the transition

Ga
µ �→ G̃a

µ = Ba
b Gb

νBν
µ. (4.48)

Consequently, the functions Γa
bµ in (4.46) are 3-index coefficients of a linear con-

nection, while Ga
µ in it are the components of a linear mapping G : X (M) →

End(Sec((E, π, M)∗)) such that G : F �→ G(F ) : ω �→ (G(F ))(ω), for F ∈ X (M)
and a section ω of the bundle (E, π, M)∗ dual to (E, π, M), and

(
G
(

∂
∂xµ

))
(Ea) =

Ga
µ. The invariant description of the connections with local 2-index coefficients of

the type (4.46) is as follows.

Definition 4.3. A connection on a vector bundle is termed affine connection if the
assigned to it parallel transport P is an affine mapping along all paths γ : [σ, τ ] →
M in the base space, i.e.,

Pγ(ρX) = ρPγ(X) + (1 − ρ)Pγ(0) (4.49a)
Pγ(X + Y ) = Pγ(X) + Pγ(Y ) − Pγ(0), (4.49b)

where ρ ∈ K, X, Y ∈ π−1(γ(σ)), and 0 is the zero vector in the fibre π−1(γ(σ)),
which is a K-vector space.

An affine connection for which Pγ(0) is the zero vector in π−1(γ(τ)) is a
linear connection and vice versa – see Definitions 4.1 and 4.3.

Theorem 4.2. Let (E, π, M) be a vector bundle, {uI} be vector bundle coordinate
system over an open set U ⊆ E, and ∆h be a connection on it with 2-index coeffi-
cients Γa

µ in the frame {XI} adapted to {uI}. The connection ∆h is an affine con-
nection if and only if equation (4.46) holds for some functions Γa

bµ,Ga
µ : π(U)→K.

Proof (cf. the proof of Theorem 4.1). Take a C1 path γ : [σ, τ ] → π(U) and
consider the parallel transport equation (3.39′′a), viz.

dγ̄a
p (t)
dt

= Γa
µ(γ̄p(t))γ̇µ(t), (4.50)

where γ̄p : [σ, τ ] → U is the horizontal lift of γ through p ∈ π−1(γ(σ)), γ̄a := ua◦ γ̄,
and γ̇µ(t) = d(xµ◦γ(t))

dt = d(uµ◦γ̄(t))
dt as uµ = xµ ◦ π for some coordinates {xµ}

on π(U).
Sufficiency. If (4.46) holds, equation (4.50) can be transformed into

dγ̄a
p (t)
dt

= −Γa
bµ(γ(t))γ̄b

p(t)γ̇
µ(t) + Ga

µ(γ(t))γ̇µ(t), (4.51)

which is a system of r linear inhomogeneous first order ordinary differential equa-
tions for the r functions γ̄n+1

p , . . . , γ̄n+r
p . According to the general theorems of
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existence and uniqueness of the solutions of such systems [34], it has a unique
solution

γ̄a
p (t) = Y a

b (t)pb + ya(t) (4.52)

satisfying the initial condition γ̄a
p (σ) = ua(p) =: pa, where Y = [Y a

b ] is the fun-
damental solution of (4.15) (see (4.17)) and ya(t) is the solution of (4.51) with
ya(t) for γ̄a

p (t) satisfying the initial condition ya(σ) = 0. The affinity of (3.13) in
p, i.e., (4.49), follows from (4.52) for t = τ .

Necessity. Suppose (3.13) is affine in p for all paths γ : [σ, τ ] → π(U).
Then γ̄p(t) := Pγ|[σ,t](p) is the horizontal lift of γ|[σ, t] through p and (cf. (4.52))
γ̄a

p (t) = Aa
b (γ(t))pb + Aa(γ(t)) for some C1 functions Aa

b , Aa : π(U) → K. The
substitution of this equation in (4.50) results into

∂Aa
b (x)

∂xµ

∣∣∣
x=γ(t)=π(γ̄p(t))

· γ̇µ(t)pb +
∂Aa(x)

∂xµ

∣∣∣
x=γ(t)=π(γ̄p(t))

· γ̇µ(t). = Γa
µ(γ̄p(t))γ̇µ(t).

Since γ : [σ, τ ] → M , we get equation (4.46) from here, for t = σ, with Γa
bµ(x) =

−∂Aa
b (x)

∂xµ and Ga
µ(x) = ∂Aa(x)

∂xµ for x ∈ π(U). �

Proposition 4.7. There is a bijective mapping α between the sets of affine con-
nections and of pairs (∇, G) of a linear connection ∇ and a linear mapping
G : X (M) → End(Sec((E, π, M)∗)).

Proof. If A∆h is an affine connection with 2-index coefficients given by (4.46) (see
Theorem 4.2), then (see the discussion after equation (4.46)) to it corresponds
the pair α( A∆h) := ( L∆h, G) of a linear connection, with 3-index coefficients
Γa

bµ and linear mapping G : X (M) → End(Sec((E, π, M)∗)), with components
Ga

µ. Conversely, to a pair ( L∆h, G), locally described via the 3-index coefficients
Γa

bµ of L∆h and components Ga
µ of G, there corresponds an affine connection

A∆h = α−1( L∆h, G) with 2-index coefficients given by (4.46). �

In Subsection 4.3, it was demonstrated that covariant derivatives can be
introduced for affine connections, not only for linear ones.

Proposition 4.8. The covariant derivative for an affine connection A∆h coincides
with the one for the linear connection L∆h given via α( A∆h) = ( L∆h, G) with α
defined in the proof of Proposition 4.7.

Proof. Apply (4.29)–(4.36). �

If a linear connection L∆h and an affine one A∆h are connected by α( A∆h) =
( L∆h, G) for some G, then some of their characteristics coincide; e.g., such are their
fibre coefficients (see (3.37b), (4.46) and (4.13)) and all quantities expressed via
the corresponding to them (identical) covariant derivatives. However, quantities,
containing (depending on) partial derivatives relative to the basic coordinates uµ,
are generally different for those connections. For instance, if ARa

µν and LRa
µν
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are the fibre components of the curvatures of A∆h and L∆h, respectively, then,
by (3.37a) and (4.46), we have

ARa
µν = −( LRa

bµν ◦ π) · ub − T a
µν ◦ π (4.53)

LRa
µν = −( LRa

bµν ◦ π) · ub (4.54)

where (see (4.25))

LRa
bµν :=

∂

∂xµ
(Γa

bν) − ∂

∂xν
(Γa

bµ) − Γc
bµΓa

cν + Γc
bνΓa

cµ, (4.55)

T a
µν := − ∂

∂xµ
(Ga

ν) +
∂

∂xν
(Ga

µ) + Γa
cνGc

µ − Γa
cµGc

ν (4.56)

and the functions T a
µν have a sense of components of the torsion of L∆h relative

to G [146, pp. 42, 46].
Thus, in general, the affine connections and linear connections are essentially

different. However, they imply identical theories of covariant derivatives.
If, for some reason, the linear mapping G is fixed, then the set of linear

connections { L∆h} can be identified with the subset {α−1( L∆h, G)} of the set of
affine connections {A∆h}.
Example 4.2. We shall exemplify the above material in a case of the tangent bundle
(T (M), πT , M) over a manifold M . Using the base indices µ, ν, . . . for the fibre
ones a, b, . . . according to the rule a �→ µ = a − dim M , we rewrite (4.46) as

Γµ
ν = −(Γµ

λν ◦ πT ) · uλ
1 + Gµ

ν ◦ πT . (4.57)

Now the affine connections on (T (M), πT , M) are the generalized affine connections
on M [11, Chapter III, § 3]. The choice of G via

Gµ
ν : M → δµ

ν , (4.58)

which corresponds to the identical transformation of the spaces tangent to M ,
singles out the set of affine connections on M– see [11, Chapter III, § 3] or [23,
pp. 103–105] – (known also as Cartan connections on M [146, p. 46]) whose 2-index
coefficients have the form (see (4.57), (4.11a) and (4.58))

Γµ
ν = −(Γµ

λν ◦ πT ) · dxλ + δµ
ν . (4.59)

Combining this example with Proposition 4.7, we derive

Proposition 4.9 (cf. [11, Chapter III, § 3, Theorem 3.3]). There is a bijective
correspondence between the sets of linear connections and of affine ones on a
manifold.

Often the terms “linear connection” and “affine connection” on a manifold
are used as synonyms, due to the last result.
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5. General (co)frames

Until now two special kinds of local (co)frames in the (co)tangent bundle to the
bundle space of a bundle were employed, viz. the natural holonomic ones, in-
duced by some local coordinates, and the adapted (co)frames determined by local
coordinates and a connection on the bundle. The present section is devoted to
(re)formulation of some important results and formulae in arbitrary (co)frames,
which in particular can be natural or adapted (if a connection is presented) ones.

Let (E, π, M) be a C2 bundle and {eI} a (local) frame in T (E). The com-
ponents CK

IJ of the anholonomicity object of {eI} are defined by (3.19) and a
change

{eI} �→ {ēI = BJ
I eJ} (5.1)

with a non-degenerate matrix-valued function B = [BJ
I ]n+r

I,J=1 entails (see (2.7))

CK
IJ �→ C̄K

IJ = (B−1)K
L

(
BM

I eM (BL
J ) − BM

J eM (BL
I ) + BM

I BN
J CL

MN

)
. (5.2)

Let a connection ∆h on (E, π, M) be given. If {eI} is a specialized frame
for ∆h (see Subsection 3.2), then the set {CK

IJ} is naturally divided into the six
groups (3.20). The value of that division is in its invariance with respect to the
class of specialized frames, which means that, if {ēI} is also a specialized frame,
then the transformed components of the elements of each group are functions only
in the elements of the non-transformed components of the same group – see (3.24),
(3.21), and (2.7).

Exercise 5.1. By means of (5.1), prove that, if a division like (3.20) holds in a
frame {eI}, then it holds in {ēI} if and only if the matrix-valued function B is of
the form (3.16).

In particular, we cannot talk about fibre coefficients of ∆h and of fibre com-
ponents of the curvature of ∆h in frames more general than the specialized ones
as in that case the transformation (5.1), with {eI} (resp. {ēI}) being a specialized
(resp. non-specialized) frame, will mix, for instance, the fibre coefficients and the
curvature’s fibre components of ∆h in {ēI} – see (5.2).

It is a simple, but important, fact that the specialized frames are (up to
renumbering) the most general ones which respect the splitting of T (E) into ver-
tical and horizontal components. Suppose {eI} is a specialized frame. Then the
general element of the set of all specialized frames is (see (3.4a) and (3.16))

(ēµ, ēa) = (eν , eb) ·
[
Aν

µ 0

0 Ab
a

]
= (Aν

µeν, Ab
aeb), (5.3a)

where [Aν
µ]nµ,ν=1 and [Ab

a]n+r
a,b=n+1 are non-degenerate matrix-valued functions on

E, which are constant on the fibres of (E, π, M), i.e., we can set Aν
µ = Bν

µ ◦ π

and Ab
a = Bb

a ◦ π for some non-degenerate matrix-valued functions [Bν
µ] and [Bb

a]
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on M . Respectively, the general specialized coframe dual to {ēI} is (see (3.4b)
and (3.16)) (

ēµ

ēa

)
=

[
[Aλ

ρ ]−1 0

0 [Ac
d]

−1

]
·
(

eν

eb

)
=

[(
[Aλ

ρ ]−1
)µ

ν
eν(

[Ac
d]

−1
)a

b
eb

]
, (5.3b)

where {eI} is the specialized coframe dual to {eI}, eI(eJ) = δI
J .

Since π∗|∆h : {X ∈ ∆h} → X (M) is an isomorphism, any basis {εµ} for ∆h

defines a basis {Eµ} of X (M) such that

Eµ = π∗|∆h(εµ) (5.4)

and v.v., a basis {Eµ} for X (M) induces a basis {εµ} for ∆h via

εµ = (π∗|∆h)−1(Eµ). (5.5)

Similarly, there is a bijection {εµ} �→ {Eµ} between the ‘horizontal’ coframes {εµ}
and the coframes {Eµ} dual to the frames in T (M) (Eµ ∈ Λ1(M), Eµ(Eν) = δµ

ν ).
Thus a ‘horizontal’ change

εµ �→ ε̄µ = (Bν
µ ◦ π)εν , (5.6)

which is independent of a ‘vertical’ one given by

εa �→ ε̄a = (Bb
a ◦ π)εb (5.7)

with {εa} being a basis for ∆v, is equivalent to the transformation

Eµ �→ Ēµ = Bν
µEν (5.8)

of the basis {Eµ} for X (M), related via (5.4) to the basis {εµ} for ∆h. Here [Bν
µ]

and [Bb
a] are non-degenerate matrix-valued functions on M .

As π∗(εa) = 0 ∈ X (M), the ‘vertical’ transformations (5.7) do not admit
interpretation analogous to the ‘horizontal’ ones (5.6). However, in a case of a
vector bundle (E, π, M), they are tantamount to changes of frames in the bundle
space E, i.e., of the bases for Sec(E, π, M). Indeed, if v is the mapping defined
by (4.3), the sections

Ea = v−1(εa) (5.9)

form a basis for Sec(E, π, M) as the vertical vector fields εa form a basis for ∆v.
Conversely, any basis {Ea} for the sections of (E, π, M) induces a basis {εa} for
∆v such that

εa = v(Ea). (5.10)

As v and v−1 are linear, the change (5.7) is equivalent to the transformation

Ea �→ Ēa = Bb
aEb (5.11)

of the frame {Ea} in E related to {εa} via (5.9). In this way, we have proved the
following result.
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Proposition 5.1. There is a bijective correspondence between the set of special-
ized frames {εI} = {εµ, εa} on a vector bundle (E, π, M) and the set of pairs
({Eµ}, {Ea}) of frames {Eµ} on T (M) over M and {Ea} on E over M .1

Since conceptually the frames in T (M) and E are easier to be understood
and in some cases have a direct physical interpretation, one often works with the
pair ({Eµ = π∗|∆h(εµ)}, {Ea = v−1(εa)}) of frames instead with a specialized
frame {εI} = {εµ, εa}; for instance {Eµ} and {Ea} can be completely arbitrary
frames in T (M) and E, respectively, while the specialized frames represent only a
particular class of frames in T (E).

One can mutatis mutandis localize the above considerations when M is re-
placed with an open subset UM in M and E is replaced with W = π−1(UM ). Such
a localization is important when the bases/frames considered are connected with
some local coordinates or when they should be smooth.2

Let us turn now our attention to frames adapted to local coordinate system
{uI} on an open set W ⊆ E for a given connection ∆h on a general C1 bundle
(E, π, M) (see (3.27)–(3.30)). Since in their definition the local coordinates uI

enter only via the vector fields ∂I := ∂
∂uI ∈ X (E), we can generalize this definition

by replacing {∂I} with an arbitrary frame {eI} defined in T (E) over an open set
W ⊆ E and such that {ea|p} is a basis for the space Tp(π−1(π(p))) tangent to the
fibre through p ∈ W . So, using {eI} for {∂I}, we have

(eW
µ , eW

a ) = (Dν
µeν + Da

µea, Db
aeb) = (eν , eb) ·

(
[Dν

µ] 0

[Db
µ] [Db

a]

)
, (5.12)

where {eW
I } is a specialized frame in T (W ), [Dν

µ] and [Db
a] are non-degenerate

matrix-valued functions on W , and Da
µ : W → K.

Definition 5.1. The specialized frame {XI} over W in T (W ), obtained from (5.12)
via an admissible transformation (3.4a) with matrix A =

(
[Dµ

ν ]−1 0

0 [Da
b ]−1

)
, is called

adapted to the frame {eI} for ∆h.3

Exercise 5.2. Using (3.4) and (3.16), verify that the adapted frame {XI} and
coframe {ωI} dual to it are independent of the particular specialized frame {eW

I }
entering into their definitions via (5.12). The equalities (5.13a) and (5.21) derived
below are indirect proof of that fact too.

1It should be mentioned the evident fact that a frame {Eµ} in T (M) over M is also a basis
for the module X(M) of vector fields over M and hence is a basis for the set Sec(T (M), πT , M)
of section of the bundle tangent to M , due to X(M) = Sec(T (M), πT , M). Similarly, a frame
{Ea} on E over M is a basis for the set Sec(E, π, M) of sections of the vector bundle (E, π, M).

2Recall, not every manifold admits a global nowhere vanishing Cm, m ≥ 0, vector field
(see [153] or [1, Section 4.24]); e.g., such are the even-dimensional spheres S2k , k ∈ N, in Euclidean
space.

3Recall, here and below the adapted frames are defined only with respect to frames {eI} =
{eµ, ea} such that {ea} is a basis for the vertical distribution ∆v over W , i.e., {ea|p} is a basis
for ∆v

p for all p ∈ W . Since ∆v is integrable, the relation ea ∈ ∆v for all a = n + 1, . . . , n + r
implies [ea, eb] ∈ ∆v for all a, b = n + 1, . . . , n + r.
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According to (3.4), the adapted frame {XI} = {Xµ, Xa} and the coframe
{ωI} = {ωµ, ωa} dual to it are given by the equations

(Xµ, Xa) = (eν , eb) ·
[

δν
µ 0

+Γb
µ δb

a

]
= (eµ + Γb

µeb, ea) (5.13a)(
ωµ

ωa

)
=

[
δµ
ν 0

−Γa
ν δa

b

]
·
(

eν

eb

)
=

(
eµ

ea − Γa
νeν

)
, (5.13b)

where {eI} is the coframe dual to {eI}, eI(eJ ) = δI
J , and the functions Γa

µ : W →
K, called (2-index) coefficients of ∆h in {XI}, are defined by

[Γa
µ] := +[Da

ν ] · [Dν
µ]−1. (5.14)

Proposition 5.2. A change {eI} �→ {ẽI} with

(ẽµ, ẽa) = (eν , eb) ·
(

[Aν
µ] 0

[Ab
µ] [Ab

a]

)
= (Aν

µeν + Ab
µeb, A

b
aeb), (5.15)

where [Aν
µ] and [Ab

a] are non-degenerate matrix-valued functions on W , which are
constant on the fibres of (E, π, M), and Ab

µ : W → K, entails the transformations

(Xµ, Xa) �→ (X̃µ, X̃a) = (ẽµ + Γ̃b
µẽb, ẽa) = (Aν

µXν , Ab
aXb) = (Xν , Xb) ·

[
Aν

µ 0

0 Ab
a

]
(5.16)

Γa
µ �→ Γ̃a

µ =
(
[Ac

d]
−1

)a

b
(Γb

νAν
µ − Ab

µ) (5.17)

of the frame {XI} adapted to {eI} and of the coefficients Γa
µ of ∆h in {XI}, i.e.,

{X̃I} is the frame adapted to {ẽI} and Γ̃a
µ are the coefficients of ∆h in {X̃I}.

Proof. Apply (5.12)–(5.14). �

Note 5.1. If {eI} and {ẽI} are adapted, then Ab
µ = 0. If {YI} is a specialized frame,

it is adapted to any frame {eµ = Aν
µYν , ea = Ab

aYb} and hence any specialized
frame can be considered as an adapted one; in particular, any specialized frame is
a frame adapted to itself. Obviously (see (5.14)), the coefficients of a connection
identically vanish in a given specialized frame considered as an adapted one. This
leads to the concept of a normal frame to which is devoted Section 6 below. Besides,
from the above observation follows that the set of adapted frames coincides with
the one of specialized frames.
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Exercise 5.3. Verify that the formulae dual to (5.15) and (5.16) are (see (3.4b)
and (3.5b)) (

ẽµ

ẽa

)
=

(
[A�

τ ]−1 0

−[Ac
d]

−1[Ac
τ ][A�

τ ]−1 [Ac
d]

−1

)
·
(

eν

eb

)

=

(
([A�

τ ]−1)µ
ν eν(

[Ac
d]

−1
)a

b
eb − (

[Ac
d]

−1[Ac
τ ][A�

τ ]−1
)a

ν
eν

) (5.18)

(
ωµ

ωa

)
�→

(
ω̃µ

ω̃a

)
=

(
([A�

τ ]−1))µ
ν eν

([Ac
d]−1)a

beb

)
. (5.19)

Example 5.1. If {eI} and {ẽI} are the frames generated by local coordinates {uI}
and {ũI}, viz. eI = ∂

∂uI and ẽI = ∂
∂ũI , the changes (5.16) and (5.17) reduce

to (3.31) and (3.32), respectively. The choice eI = ∂
∂uI also reduces Definition 5.1

to Definition 3.5.

A result similar to Proposition 3.3 is valid too provided in its formulation
equation (3.32) is replaced with (5.17).

If eµ has an expansion eµ = eν
µ

∂
∂uν + eb

µ
∂

∂ub in the domain W of {uI} =
{uµ = xµ ◦ π, ua}, where eb

µ : W → K and eν
µ = xν

µ ◦ π for some xν
µ : π(W ) → K

such that det[xν
µ] 
= 0,∞, and we define a frame {xµ} in T (π(W )) ⊆ T (M) by

{xµ := xν
µ

∂
∂xν }, then

π∗(Xµ) = xµ, (5.20)

by virtue of (3.33) and (3.35). Thus, we have (cf. (3.34))

Xµ = (π∗|∆h)−1(xµ) = (π∗|∆h)−1 ◦ π∗(eµ) (5.21)

which can be used in an equivalent definition of a frame {XI} adapted to {eI}
(with {ea} being a basis for ∆v): Xµ should be defined by (5.21) and Xa = ea.
If one accepts such a definition of an adapted frame, the 2-index coefficients of
a connection should be defined via the equation (5.13a), not by (5.14), and the
proofs of some results, like (5.16) and (5.17), should be modified.

Proposition 5.3. If {XI} is a frame adapted to a frame {eI}, with {ea} being a
basis for ∆v, for a C1 connection ∆h, then (cf. (3.36))

[Xµ, Xν ] = Ra
µνXa + Sλ

µνXλ (5.22a)

[Xµ, Xb] = ◦Γa
bµXa + Cλ

µbXλ (5.22b)

[Xa, Xb] = Cd
abXd, (5.22c)
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where (cf. (3.37))

Ra
µν := Xµ(Γa

ν) − Xν(Γa
µ) − Ca

µν − Γb
µCa

νb + Γb
νCa

µb

+ Γa
λ(−Cλ

µν + Γb
µCλ

νb − Γb
νCλ

µb) + Γb
µΓd

νCa
bd

Sλ
µν := Cλ

µν + Γb
µCλ

νb − Γb
νCλ

µb

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.23a)

◦Γa
bµ := −Xb(Γa

µ) − Ca
µb + Γd

µCa
db − Γa

λCλ
µb (5.23b)

[eI , eJ ] =: CK
IJeK = Ca

IJea + Cλ
IJeλ. (5.23c)

Proof. Insert equation (5.13a) into the corresponding commutators, use the def-
inition (5.23c) of the components of the anholonomicity object of {eI}, and ap-
ply (5.13a). Notice, as {ea} is a basis for the integrable distribution ∆v, we have
[ea, eb] ∈ ∆v and consequently Cλ

ab ≡ 0. �

The functions Ra
µν are the fibre components of the curvature of ∆h and ◦Γa

bµ

are the fibre coefficients of ∆h in the adapted frame {XI}; if eI = ∂
∂uI for some

bundle coordinates {uI} on E, they reduce to (3.37a) and (3.37b), respectively.
From (5.22), we immediately derive

Corollary 5.1. A connection ∆h is integrable iff in some (and hence any) adapted
frame

Ra
µν = 0. (5.24)

Corollary 5.2. An adapted frame {XI} is (locally) holonomic iff in it

Ra
µν = ◦Γa

bµ = Sλ
µν = Cd

ab = Cλ
µb = 0. (5.25)

If the initial frame {eI} is changed into (5.15), then the transformation laws
of the quantities (5.23) follow from (5.22) and (5.16); in particular, the curvature
components transform according to the tensor equation (3.24b).

Let us now pay attention to the case when (E, π, M) is a vector bundle
endowed with a connection ∆h.

According to the above-said in this section, any adapted frame {XI} =
{Xµ, Xa} in T (E) is equivalent to a pair of frames in T (M) and E according
to

{Xµ, Xa} ↔ ({Eµ = π∗|∆h(Xµ)}, {Ea = v−1(Xa)}). (5.26)

Therefore the vertical and horizontal lifts are given by (cf. Lemma 4.1, (4.7a)
and (4.10))

Sec(E, π, M) � Y = Y aEa
v−→ v(Y ) := Y v = (Y a ◦ π)Xa ∈ ∆v (5.27a)

X (M) � F = FµEµ
h−→ h(F ) := Fh = (Fµ ◦ π)Xµ ∈ ∆h. (5.27b)
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Thus, we have the linear isomorphism

(h, v) : X (M) × Sec(E, π, M) → X (E)

(h, v) : (F, Y ) �→ (Fh, Y v)
(5.28)

which explains why the covariant derivatives (see Definition 4.2) represent an
equivalent description of the linear connections in vector bundles. Since any vector
field ξ = (ξI ◦ π)XI ∈ X (E) has a unique decomposition ξ = ξh ⊕ ξv, with
ξh = (ξµ ◦ π)Xµ and ξv = (ξa ◦ π)Xa, we have

(h, v)−1(ξ) = (π∗|∆h(ξh), v−1(ξv)) = (ξµEµ, ξaEa). (5.29)

Suppose {XI} and {X̃I} are two adapted frames. Then they are connected
via (cf. (5.3a) and (5.16))

X̃µ = (Bν
µ ◦ π)Xν X̃a = (Bb

a ◦ π)Xb, (5.30)

where [Bν
µ] and [Bb

a] are some non-degenerate matrix-valued functions on M . The
pairs of frames corresponding to them, in accordance with (5.26), are related via

Ẽµ = Bν
µEν Ẽa = Bb

aEb (5.31)

and vice versa.

Proposition 5.4. Let ∆h be a linear connection on a vector bundle (E, π, M) and
{XI} be the frame adapted for ∆h to a frame {eI} such that {ea} is a basis for
∆v. Let {uI} = {uµ, ua} be vector bundle coordinate system on U ⊆ E. Suppose
that the frame {eI}, to which {XI} is adapted to, is such that

(eµ, ea)|U = (∂ν , ∂b) ·
[

Bν
µ ◦ π 0

(Bb
cµ ◦ π) · uc Bb

a ◦ π

]
=

(
(Bν

µ ◦ π)∂ν + ((Bb
cµ ◦ π) · uc)∂b, (Bb

a ◦ π)∂b

)
,

(5.32)

where ∂I := ∂
∂uI , [Bν

µ] and [Bb
a] are non-degenerate matrix-valued functions on

π(U), and Bb
cµ : π(U) → K. Then the 2-index coefficients Γa

µ of ∆h in {XI} have
the representation

Γa
µ = −(Γa

bµ ◦ π) · ub (5.33)

on U for some functions Γa
bµ : π(U) → K, called 3-index coefficients of ∆h in

{XI}.
Remark 5.1. The representation (5.33) is not valid for frames more general than
the ones given by (5.32). Precisely, equation (5.33) is valid if and only if (5.32)
holds for some local coordinates {uI} on W – see (5.17).
Remark 5.2. Since the vector fibre coordinates ua are 1-forms on U , the 2-index
coefficients (5.33) of a linear connection are also 1-forms on the bundle space.
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Proof. Writing (5.17) for the transformation {∂I} �→ {eI}, with the frame {eI}
given by (5.32), we get (5.33) with

Γa
bµ = ([Be

d]−1)a
c ( ∂Γc

bνBν
µ + Bc

bµ),

where ∂Γa
bν are the 3-index coefficients of ∆h in the frame adapted to the coordi-

nates {uI} (see (4.13)). �
Let {XI} and {X̃I} be frames adapted to {eI} and {ẽI}, respectively, such

that (cf. (5.32))

(ẽµ, ẽa) = (eν , eb) ·
[

Bν
µ ◦ π 0

(Bb
cµ ◦ π) · uc Bb

a ◦ π

]
, (5.34)

and ∆h admits 3-index coefficients in {XI} and {X̃I}, which means that {eI}
and {ẽI} are obtainable from the frames

{
∂

∂uI

}
and

{
∂

∂ũI

}
, respectively, for some

bundle coordinate systems {uI} and {ũI} via equations like (5.32) (with ẽI for
eI and ∂̃I for ∂I in the letter case) in which the B’s need not be the same as
in (5.34).4 Then, due to (5.17) and (5.33), the 3-index coefficients Γa

bµ and Γ̃a
bµ

of ∆h in respectively {XI} and {X̃I} are connected by (see also footnote 4 and
cf. (4.23))

Γ̃a
bµ =

(
[Be

f ]−1
)a

c
(Γc

dνBν
µ + Bc

dµ)Bd
b . (5.35)

Exercise 5.4. Prove that the transformation {eI} �→ {ẽI}, with the frame {ẽI}
given by (5.34), is the most general one that preserves the existence of 3-index
coefficients of ∆h provided they exist in {eI} in a sense that, if {eI} is given
by (5.32) (which leads to (5.33)) and {ẽI} is given by (5.34), then there exist
vector bundle coordinates {ũI} which generate {ẽI} according to (5.32) with ẽI

for eI , ∂̃I for ∂I and some B’s, which leads to (5.33) with Γ̃ for Γ and ũ for u.

Introducing the matrices Γµ := [Γa
bµ]n+r

a,b=n+1, Γ̃µ := [Γ̃a
bµ]n+r

a,b=n+1, B := [Ba
b ],

and Bµ := [Ba
bµ], we rewrite (5.35) as (cf. (4.23′))

Γ̃µ = B−1 · (ΓνBν
µ + Bµ) · B. (5.35′)

A little below (see the text after equation (5.37)), we shall prove that the compat-
ibility of the developed formalism with the theory of covariant derivatives requires
further restrictions on the general transformed frames (5.15) to the ones given
by (5.34) with

Bµ = Ẽµ(B) · B−1 = Bν
µEν(B) · B−1, (5.36)

where Ẽµ := π∗|∆h(X̃µ) = π∗|∆h((Bν
µ◦π)Xν) = Bν

µEν . In this case, (5.35′) reduces
to (cf. (4.23′))

Γ̃µ = Bν
µB−1 · (Γν · B + Eν(B)) = Bν

µ(B−1 · Γν − Eν(B−1)) · B. (5.37)

4Notice, from (5.34) follows that the vector fibre coordinate systems {ua} and {ũa} are
connected via ua = (Ba

b ◦ π) · ũb.
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At last, a few words on the covariant derivative operators ∇ are in or-
der. Without lost of generality, we define such an operator (4.33) via the equa-
tions (4.39). Suppose {Eµ} is a basis for X (M) and {Ea} is a one for Sec1(E, π, M).
Define the components Γa

bµ : M → K of ∇ in the pair of frames ({Eµ}, {Ea}) by
(cf. (4.40))

∇Eµ(Eb) = Γa
bµEa. (5.38)

Then (4.39) imply (cf. (4.36))

∇F Y = Fµ(Eµ(Y a) + Γa
bµY b)Ea

for all F = FµEµ ∈ X (M) and Y = Y aEa ∈ Sec1(E, π, M). A frame change
({Eµ}, {Ea}) �→ ({Ẽµ}, {Ẽa}), given via (5.31), entails

Γa
bµ �→ Γ̃a

bµ = Bν
µ

(
[Be

f ]−1
)a

c
(Γc

dνBd
b + Eν(Bc

b)), (5.39)

as a result of (5.38). In a more compact matrix form, the last result reads

Γ̃µ = Bν
µB−1 · (Γν · B + Eν(B)) (5.39′)

with Γµ := [Γa
bµ], Γ̃µ := [Γ̃a

bµ], and B := [Ba
b ].

Thus, if we identify the 3-index coefficients of ∆h, defined by (5.33), with the
components of ∇, defined by (5.38),5 then the quantities (5.35′) and (5.39′) must
coincide, which immediately leads to the equality (5.36). Therefore

(eµ, ea) �→ (ẽµ, ẽa) = (eν , eb) ·
[

Bν
µ ◦ π 0(

(Bν
µEν(Bb

d)(B
−1)d

c) ◦ π
)
uc Bb

a ◦ π

] ∣∣∣∣
B=[Bb

a]

(5.40)
is the most general transformation between frames in T (E) such that the frames
adapted to them are compatible with the linear connection and the covariant
derivative corresponding to it. In particular, such are all frames

{
∂

∂uI

}
in T (E)

induced by vector bundle coordinates {uI} on E – see (4.21) and (3.1)–(3.3); the
rest members of the class of frames mentioned are obtained from them via (5.40)
with eI = ∂

∂uI and non-degenerate matrix-valued functions [Bν
µ] and B.

If {XI} (resp. {X̃I}) is the frame adapted to a frame {eI} (resp. {ẽI}), then
the change {eI} �→ {ẽI}, given by (5.40), entails {XI} �→ {X̃I} with {X̃I} given
by (5.30) (see (5.15) and (5.16)). Since the last transformation is tantamount to
the change

({Eµ}, {Ea}) �→ ({Ẽµ}, {Ẽa}) (5.41)

of the basis of X (M) × Sec(E, π, M) corresponding to {XI} via the isomor-
phism (5.28) (see (5.26), (5.30), and (5.31)), we can say that the transition (5.41)

5Such an identification is justified by the definition of ∇ via the parallel transport assigned
to ∆h (see Proposition 4.4) or via a projection, generated by ∆h, of a suitable Lie derivative on
X(E) (see Definition 4.2).
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induces the change (5.39) of the 3-index coefficients of the connection ∆h. Exactly
the same is the situation one meets in the literature [7, 11, 23] when covariant
derivatives are considered (and identified with connections).

Regardless that the change (5.40) of the frames in T (E) looks quite special,
it is the most general one that, through (5.16) and (5.26), is equivalent to an
arbitrary change (5.41) of a basis in X (M)×Sec(E, π, M), i.e., of a pair of frames
in T (M) and E.

We would like to remark that, in the general case, equation (4.43) also holds
with F = FµEµ, G = GµEµ, and

(R(Eµ, Eν))(Eb) = Ra
bµνEa, (5.42)

so that
Ra

bµν = Eµ(Γa
bν) − Eν(Γa

bµ) − Γc
bµΓa

cν + Γc
bνΓa

cµ − Γa
bλCλ

µν , (5.43)

where the functions Cλ
µν define the anholonomicity object of {Eµ} via [Eµ, Eν ] =:

Cλ
µνEλ.

The above results, concerning linear connections on vector bundles, can be
generalized for affine connections on vector bundles. For instance, the analogue of
Propositions 5.4 reads.

Proposition 5.5. Let ∆h be an affine connection on a vector bundle (E, π, M) and
{Xµ} be the frame adapted for ∆h to a frame {eI} such that {ea} is a basis for
∆v and

(eµ, ea)|U = (∂ν , ∂b) ·
[

Bν
µ ◦ π 0

(Bb
cµ ◦ π) · uc Bb

a ◦ π

]
=

(
(Bν

µ ◦ π)∂ν + ((Bb
cµ ◦ π) · uc)∂b, (Bb

a ◦ π)∂b

)
,

(5.44)

where ∂I := ∂
∂uI for some local bundle coordinate system {uI} = {uµ = xµ◦π, ub =

Eb} on U ⊆ E, [Bν
µ] and [Bb

a] are non-degenerate matrix-valued functions on
U , and Bb

cµ : U → K. Then the 2-index coefficients Γa
µ of ∆h in {XI} have the

representation (cf. (4.46))

Γa
µ = −(Γa

bµ ◦ π) · ub + Ga
µ ◦ π (5.45)

on U for some functions Γa
bµ, Ga

µ : U → K.

Remark 5.3. The representation (5.45) is not valid for frames more general than
the ones given by (5.44). Precisely, equation (5.45) is valid if and only if (5.44)
holds for some local coordinate system {uI} on U – see (5.17).

Proof. Writing the equation (5.17) for the transformation {∂I} �→ {eI}, with {eI}
given by (5.44), we get (5.45) with

Γa
bµ = ([Be

d]−1)a
c ( ∂Γc

bνBν
µ + Bc

bµ) Ga
µ = ([Be

d]−1)a
b

∂Gb
νBν

µ
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where ∂Γa
bν and ∂Gb

ν are defined via the 2-index coefficients ∂Γa
µ of ∆h in the

frame adapted to the coordinates {uI} via ∂Γa
µ = −( ∂Γa

bµ ◦ π) ·Eb + ∂Ga
µ ◦ π (see

Theorem 4.2). �
Let {XI} and {X̃I} be frames adapted to {eI} and {ẽI}, respectively, with

(cf. (5.44))

(ẽµ, ẽa) = (eν , eb) ·
[

Bν
µ ◦ π 0

(Bb
cµ ◦ π) · uc Bb

a ◦ π

]
, (5.46)

in which (5.45) holds for ∆h. Then, due to (5.17) and (5.45), the pairs (Γa
bµ, Ga

µ)
and (Γ̃a

bµ, G̃a
µ) for ∆h in respectively {XI} and {X̃I} are connected by (cf. (4.47)

and (4.48))

Γ̃a
bµ =

(
[Be

f ]−1
)a

c
(Γc

dνBν
µ + Bc

dµ)Bd
b (5.47a)

G̃a
µ =

(
[Be

f ]−1
)a

b
Gb

νBν
µ. (5.47b)

Exercise 5.5. Prove that the transformation {eI} �→ {ẽI}, with the frame {ẽI}
given by (5.46), is the most general one that preserves the existence of the rela-
tion (5.45) for ∆h provided it holds in {eI}.

Further one can repeat mutatis mutandis the text after Exercise 5.4 to the
paragraph containing equation (5.41) including.

6. Normal frames

In the theory of linear connections on a manifold, the normal frames are defined as
frames in the tangent bundle space in which the connections’ (3-index) coefficients
vanish on some subset of the manifold (see Definition I.5.1 on page 37). The
definition of normal frames for a connection on a vector bundle is practically the
same, the only difference being that these frames are in the bundle space, not
in the tangent bundle space over the base space (see Sections IV.8 and IV.14.4).
The present section is devoted to the introduction of normal frames for general
connections on fibre bundles and some their properties.

6.1. The general case

To save some space and for brevity, in what follows we shall not indicate explicitly
that the frames {eI} = {eµ, ea}, with respect to which the adapted frames are
defined, are such that {ea} is a (local) basis for the vertical distribution ∆v on the
bundle considered.

Definition 6.1. Given a connection ∆h on a bundle (E, π, M) and a subset W ⊆ E.
A frame {XI} in T (E) adapted to a frame {eI} in T (E) and defined over an open
subset V of E containing or equal to W , V ⊇ W , is called normal for ∆h over/on
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W (relative to {eI}) if all (2-index) coefficients Γa
µ of ∆h vanish in it everywhere

on W . Respectively, {XI} is normal for ∆h along a mapping g : Q → E, Q 
= ∅,
if {XI} is normal for ∆h over the set g(Q).

Let {XI} be the frame in T (E) adapted to a frame {eI} in T (E) over an
open subset V ⊆ E. Then the frame {X̃I} in T (E) adapted to a frame {ẽI}, given
by (5.15), in T (E) over the same subset V is normal for ∆h over W ⊆ V if and
only if

(Aν
µΓb

ν − Ab
µ)|W = 0, (6.1)

due to (5.16) and (5.17). Since Γb
µ depend only on ∆h and {eI}, the existence

of solutions of (6.1), relative to Aν
µ and Ab

µ, and their properties are completely
responsible for the existence and the properties of frames normal for ∆h over W .
For that reason, we call (6.1) the (system of ) equation(s) of the normal frames for
∆h over W or simply the normal frame (system of ) equation(s) (for ∆h over W ).

In the most general case, when no additional restrictions on the frames con-
sidered are imposed, the normal frame equation (6.1) is a system of nr linear
algebraic equations for nr + n2 variables and, consequently, it has a solution de-
pending on n2 independent parameters. In particular, if we choose the functions
Aν

µ : W → K (with det[Aν
µ] 
= 0,∞) as such parameters, we can write the general

solution of (6.1) as

({Aν
µ}, {Ab

µ})|W = ({Aν
µ}, {Γb

νAν
µ})|W . (6.2)

It should be noted, equation (6.1) or its general solution (6.2) defines the
frame {ẽI} and the frame {X̃I} adapted to {ẽI} only on W and leaves them
completely arbitrary on V \ W , if it is not empty.

Proposition 6.1. Let {XI} be the frame adapted to a frame {eI} in T (V ) ⊆ T (E)
defined over an open set V ⊆ E and Γa

µ be the coefficients of a connection ∆h

in {XI}. Then all frames {X̃I}, normal on W ⊆ V for the connection ∆h, are
adapted to frames {ẽI} given on W by

ẽµ|W = (Aν
µ(eν + Γb

νeb))|W ẽa|W = (Ab
aeb)|W . (6.3)

where [Aν
µ] and [Ab

a] are non-degenerate matrix-valued functions on V which are
constant on the fibres of (E, π, M). Moreover, the frame {X̃I} adapted on V to
{ẽI}, given by (6.3) (and hence normal on W ), is such that

X̃µ|W = (Aν
µXν)|W = ẽµ|W X̃a|W = (Ab

aXb)|W = ẽa|W , (6.4)

Proof. Apply (5.16), (5.15), and (5.13a) for the choice (6.2). �

The equations (6.4) are not accidental as it is stated by the following asser-
tion.
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Proposition 6.2. The frame {X̃I} in T (E) adapted to a frame {ẽI} in T (E) and
defined over an open set V ⊆ E is normal on W ⊆ V if and only if on W is
fulfilled

X̃I |W = ẽI |W . (6.5)

Proof. Apply (5.13a) or (5.16) and Definition 6.1. �
Thus one can equivalently define the normal frames as adapted frames that

coincide on some set with the frames they are adapted to or as frames (in the
tangent bundles space over the bundle space) that coincide on some set with the
frames adapted to them.

Since any specialized frame is adapted to itself (see Definition 5.1 and (5.12),
with DJ

I = δJ
I ), the sets of normal, specialized, and adapted frames are identical.

As we see from Proposition 6.1, which gives a complete description of the
normal frames, the theory of normal frames in the most general setting is trivial.
It becomes more interesting and richer if the class of frames {eI}, with respect to
which are defined the adapted frames, is restricted in one or other way. To the
theory of normal frames, adapted to such restricted classes of frames in T (E), is
devoted the rest of this section.

6.2. Normal frames adapted to holonomic frames

The class of holonomic frames induced by local coordinates on E (see Subsec-
tion 3.2) is the most natural class of frames in T (E) relative to which the adapted,
in particular normal, frames are defined. To specify the consideration of the previ-
ous subsection to normal frames adapted to local coordinates on E, we set eI = ∂

∂uI

and ẽI = ∂
∂ũI , where {uI} and {ũI} are local coordinate systems on E whose

domains have a non-empty intersection V and W ⊆ V . Then the matrix [AJ
I ]

in (6.1) is given by (3.3) (as {eI} �→ {ẽI} reduces to (3.2a)), so that the normal
frame equation (6.1) reduces to the normal coordinates equation (see also (3.32))(∂ũa

∂ub
Γb

µ +
∂ũa

∂uµ

)∣∣∣
W

= 0, (6.6)

due to (3.1), which is a first-order system of nr linear partial differential equations
on W relative to the r unknown functions {ũn+1, . . . , ũn+r}.

Since the connection ∆h is supposed given and fixed, such are its coefficients
Γb

µ in
{

∂
∂uI

}
. Therefore the existence, uniqueness and other properties of the so-

lutions of (6.6) strongly depend on the set W (which is in the intersection of the
domains of the local coordinates {uI} and {ũI} on E).

Proposition 6.3. If the normal frame equation (6.6) has solutions, then all frames
{X̃I} normal on W ⊆ E and adapted to local coordinates, defined on an open set
V ⊆ E such that V ⊇ W , are described by

X̃µ|W = (Aν
µXν)|W =

∂

∂ũµ

∣∣∣
W

X̃a|W = (Ab
aXb)|W =

∂

∂ũa

∣∣∣
W

, (6.7)
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where {XI} is the frame adapted to some arbitrarily fixed local coordinates {uI},
defined on an open set containing or equal to V , {ũI} are local coordinates with do-
main V and such that ũa are solutions of (6.6), and AJ

I = ∂uJ

∂ũI on the intersection
of the domains of {uI} and {ũI}.
Proof. Apply Proposition 6.1 for eI = ∂

∂uI and ẽI = ∂
∂ũI and then use (3.2a)

and (3.3). �

This simple result gives a complete description of all normal frames, if any,
adapted to (local) holonomic frames. It should be understood clearly, normal on
W is the frame {X̃I}, adapted to

{
∂

∂ũI

}
and coinciding with it on W , but not

the frame
{

∂
∂ũI

}
; in particular, the frame

{
∂

∂ũI

}
is holonomic while the frame

{X̃I} need not to be holonomic, even on W , if the connection considered does not
satisfies some additional conditions, like the vanishment of its curvature on W .

Consider now briefly the existence problem for the solutions of (6.6). To
begin with, we emphasize that in (6.6) enter only the fibre coordinates ũa, so that
it leaves the basic ones ũµ completely arbitrary.

Proposition 6.4. If E is of class C2, p ∈ E is fixed and W = {p}, then the general
solution of (6.6) is

ũa(q) = ga + ga
b {−Γb

µ(p)(qµ − pµ) + (qb − pb)} + fa
IJ(q)(qI − pI)(qJ − pJ), (6.8)

where ga and ga
b are constants in K = R, C, det[ga

b ] 
= 0,∞, the point q is in the
domain V of {uI}, qI := uI(q), pI := uI(p), and fa

IJ are C2 functions on V such
that they and their first partial derivatives are bounded when qI → pI .

Proof. Expand ũa(q) = fa(u1(q), . . . , un(q), . . . , un+r(q)) = fa(q1, . . . , qn+r) into
a Taylor first order polynomial with remainder term quadratic in (qI − pI) and
insert the result into (6.6). In this way one gets (6.8) with ga = ũa(p) and ga

b =
∂ũa

∂ub

∣∣
p
. �

Now we would like to investigate the existence of solutions of (6.6) along
paths β : J → E, i.e., for W = β(J). The main result is formulated below as
Proposition 6.5 and for its proof we shall essentially use Lemma II.3.1.

Proposition 6.5. Let ∆h be a C1 connection on a real C3 bundle (E, π, M), n =
dimM ≥ 1, and r = dimπ−1(x) ≥ 1 for x ∈ M . Let β : J → E be an injective
regular C1 path such that its tangent vector β̇(s) at s is not a vertical vector for all
s ∈ J , β̇(s) 
∈ ∆v

β(s); in particular, the path β can be horizontal, i.e., β̇(s) ∈ ∆h
β(s)

for all s ∈ J , but generally the vector β̇(s) can have also and a vertical component
for some or all s ∈ J . Then, for every s0 ∈ J , there exist a neighborhood W1 of the
point β(s0) in E and bundle coordinates ũI on W1 which are solutions of (6.6) for
W = W1 ∩β(J) = β(J1), with J1 := {s ∈ J : β(s) ∈ W1}, i.e., along the restricted
path β|J1 . All such bundle coordinates ũI are given via the equation (6.9) below.
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Proof. Consider the chart (W1, u) with W1 � β(s0) provided by Lemma II.3.1 for
E and β instead of M and γ, respectively. For any p ∈ W1, there is a unique
(s, t) ∈ J1 ×RdimR E−1 such that p = u−1(s, t), i.e., in the coordinate system {uI}
associated to u, the coordinates of p are u1(p) = s and uI(p) = tI ∈ R for I ≥ 2.
Besides, we have u(β(s)) = (s, t0) for all s ∈ J1 and some fixed t0 ∈ RdimR E−1.

Since β̇(s) is not a vertical vector for all s ∈ J , the coordinate system
{uI} can be chosen to be bundle coordinate system. For the purpose, in the
proof of Lemma II.3.1 one must choose {yI} as bundle coordinate system and
to take for β̇1

y(s0) any non-vanishing component between β̇1
y(s0), . . . , β̇n

y (s0), viz.
if β̇1

y(s0) 
= 0 the proof goes as it is written and, if β̇1
y(s0) = 0, choose some µ0

such that β̇µ0
y (s0) 
= 0 and make, e.g., the change β̇1

y(s0) ↔ β̇µ0
y (s0). This, together

with (II.3.12), with uI for xk, ensures that {yI} �→ {uI} is an admissible change,
so that {uI} are bundle coordinates if the initial coordinates {yI} are such ones.

Let {uI} be so constructed bundle coordinates and η := u−1, so that β(s) =
η(s, t0). Expanding ũa(η(s, t)) into a first-order Taylor polynomial at the point
t0 ∈ K, we find the general solution of (6.6), with W = β(J1) = W1 ∩β(J), in the
form

ũa(η(s, t)) = Ba(s)

+ Ba
b (s){−Γb

µ(β(s))[uµ(η(s, t)) − uµ(β(s))] + [ub(η(s, t)) − ub(β(s))]}
+ Ba

IJ(s, t; η)[uI(η(s, t)) − uI(β(s))][uJ (η(s, t)) − uJ(β(s))], (6.9)

where Ba, Ba
b : J1 → K = R, det[Ba

b ] 
= 0,∞, and the C1 functions Ba
IJ and their

first partial derivatives are bounded when t → t0. (Notice, the terms with µ = 1
and/or I = 1 and/or J = 1 do not contribute in (6.9) as u1(η(s, t)) ≡ s and,
besides, the functions Ba

IJ can be taken symmetric in I and J , Ba
IJ = Ba

JI .) �

Remark 6.1. If there is s0 ∈ J for which β̇(s0) is a vertical vector, β̇(s0) ∈ ∆v
β(s0)

,
then Proposition 6.5 remains true with the only correction that the coordinates ũI

will not be bundle coordinates. If this is the case, the constructed coordinates ũI

will be solutions of (6.6), but we cannot assert that they are bundle coordinates
which are (locally) normal along β in a neighborhood of the point β(s0).

Proposition 6.5 can be generalized by requiring β to be locally injective in-
stead of injective, i.e., for each s ∈ J to exist a subinterval Js ⊆ J such that
Js � s and the restricted path β|Js to be injective. Besides, if one needs a ver-
sion of the above results for complex bundles, they should be considered as real
ones (with doubled dimension of the manifolds) for which are applicable the above
considerations.

Corollary 6.1. At any arbitrarily fixed point in E and/or along a given injective
regular C1 path in E, whose tangent vector is not vertical, there exist (possibly
local, in the latter case) normal frames.
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Proof. See Definition 6.1, Propositions 6.4 and 6.5, and equation (6.6). If the path
is not contained in a single coordinate neighborhood, one should cover its image
in the bundle space with such neighborhoods and, then, to apply Proposition 6.5;
in the intersection of the coordinate domains, the uniqueness (and, possibly, con-
tinuity or differentiability) of the normal frames may be lost. �

Definition 6.2. Local bundle coordinates {ũI}, defined on an open set V ⊆ E,
will be called normal on W ⊆ V for a connection ∆h if the frame {X̃I} in T (E)
adapted to

{
∂

∂ũI

}
over V is normal for ∆h on W .

Corollary 6.1 implies the existence of coordinates normal at a given point or
(locally) along a given injective path whose tangent vector is not vertical; in partic-
ular, there exist coordinates normal along an injective horizontal path. However,
normal coordinates generally do not exist on more general subsets of the bundle
space E. A criterion for existence of coordinates normal on sufficiently general sub-
sets W ⊆ E, e.g on ‘horizontal’ submanifolds, is given by Theorem 7.1 in Section 7
below. In particular, we have the following result.

Proposition 6.6. If ∆h is a C1 connection, W is an open set in E, and normal
frames for ∆h on W exist, then there are holonomic such frames if ∆h is flat on
W . Said otherwise, the system of equations (6.6) may admit solutions on an open
set W if

Ra
µν |W = 0 (6.10)

where Ra
µν are the fibre components of the curvature of ∆h in some frame on E,

defined by (3.37a) in the frame {XI} adapted to a holonomic one.

Proof. Since the normal frames are also adapted ones (see Definition 6.1) and
Γa

µ|W = 0 in a frame normal on W , the statement is a corollary from Proposi-
tion 3.4. �

Remark 6.2. However, in the general case the flatness of a connection on an open
set is only a necessary, but not sufficient, condition for the existence of coordinates
normal on that set – see Theorem 7.1 in Section 7 below. Exceptions are the linear
connections on vector bundles – see Remark 7.1 in Section 7.

Exercise 6.1. Show that part of the integrability conditions for (6.6) for an open
set W are

0 =
∂2ũa

∂uν∂uµ
− ∂2ũa

∂uµ∂uν
≡ ∂ũa

∂ub
Rb

µν (6.11)

from where Proposition 6.6 immediately follows. However, the flatness of the con-
nection on W generally does not imply the rest of the integrability conditions, viz.

∂2ũa

∂ub∂uµ − ∂2ũa

∂uµ∂ub = 0 and ∂2ũa

∂ub∂uc − ∂2ũa

∂uc∂ub = 0.

The combination of Propositions 6.6 and 6.2 implies the non-existence of
coordinates normal on an open set for non-flat (non-integrable) connections.
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6.3. Normal frames on vector bundles

The normal frames in vector bundles for covariant derivative operators (linear
connections), other derivations, and linear transports along paths were investigated
in Chapter IV. The goal of the present subsection is to be made a link between
them and the general theory of Subsection 6.1.

Consider a linear connection ∆h on a vector bundle (E, π, M) (see Defini-
tion 4.1). Let the frame {eI} in T (E) be given by (5.32) and {XI} be the frame
adapted to {eI} for ∆h. Then, by Proposition 5.4, the 2- and 3-index coefficients
of ∆h are connected via (5.33) in which {ua} is vector fibre coordinate system.

Proposition 6.7. A frame {XI} is normal on W ⊆ E for a linear connection ∆h

if and only if in it vanish the 3-index coefficients of ∆h on π(W ) ⊆ M ,

Γa
µ|W = 0 ⇐⇒ Γa

bµ|π(W ) = 0. (6.12)

Proof. Since un+1, . . . , un+r are 1-forms which are linearly independent for all
p ∈ W , the assertion follows from equation (5.33). �

Combining Proposition 6.7 with (5.35), we see that the normal frame equa-
tion (6.1) in vector bundle is equivalent to

(Bν
µΓa

bν + Ba
bµ)|π(W ) = 0 (6.13)

or to its matrix variant (see also (5.35′); Γν := [Γa
bν ], Bµ := [Ba

bµ])

(Bν
µΓν + Bµ)|π(W ) = 0. (6.13′)

Taking into account (6.13) and (5.34), we can assert that the frame {X̃I} adapted
to the frame

(ẽµ, ẽa) = (eν , eb) ·
[

Bν
µ ◦ π 0

−((Bλ
µΓb

cλ) ◦ π) · uc Bb
a ◦ π

]
, (6.14)

where [Bν
µ] and [Ba

b ] are non-degenerate matrix-valued functions, is normal on W

for ∆h and hence X̃I = ẽI , by virtue of Proposition 6.2. Recall (see (5.15), (5.16),
and (5.31)), the change {eI} �→ {ẽI}, given by (6.14), entails {XI} �→ {X̃I}, where

X̃µ = (Bν
µ ◦ π)Xν X̃a = (Bb

a ◦ π)Xb, (6.15)

which is equivalent to {EI} �→ {ẼI} with

Ẽµ = Bν
µEν Ẽa = Bb

aEb. (6.16)

Here (see (5.26)) {Eµ = π∗|∆h(Xµ)} is a frame in T (M) and {Ea = v−1(Xa)} is
a frame in E.
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Thus, if additional restriction are not imposed, the theory of normal frames in
vector bundles is rather trivial, which reflects a similar situation in general bundles,
considered in Subsection 6.1. However, the really interesting and sensible case is
when one considers frames compatible with the covariant derivatives (see Section 5,
the paragraphs including equations (5.38)–(5.40)). As we know (see (5.36)), it
corresponds to arbitrary non-degenerate matrix-valued functions [Bν

µ] and B =
[Ba

b ] and a matrix-valued functions Bµ = [Bν
bµ] given by

Bµ = Ẽµ(B) · B−1 = Bν
µEν(B) · B−1. (6.17)

In particular, such are all holonomic frames in T (E), locally induced by local
coordinates on E, as discussed in Section 4. Now the normal frames equation (6.13)
(or (6.1)) reduces to

(Γµ · B + Eµ(B))|π(W ) = 0 (6.18)

which is exactly the equation (IV.14.54) for N = M , g = idM and U = π(W ),
i.e., the normal frame equation for a linear connection in a vector bundle. This
equation leaves the frame {Ẽµ = π∗|∆h(Xµ)} in T (M) completely arbitrary and
imposes restriction on the frame {Ẽa = v−1(Xa) = Bb

aEb} in E. This conclusion
justifies the following definition.

Definition 6.3. Given a linear connection ∆h on a vector bundle (E, π, M) and a
subset WM ⊆ M . A frame {Ea} in E, defined over an open set VM containing WM

or equal to it, VM ⊇ WM , is called normal for ∆h over/on WM if their is a frame
{XI} in T (E), defined over an open set VE ⊆ E, which is normal for ∆h over a
subset WE ⊆ E and such that π(WE) = WM , π(VE) = VM , and Ea = v−1(Xa),
with the mapping v defined by (4.3). Respectively, {Ea} is normal for ∆h along a
mapping g : QM → M , QM 
= ∅, if {Ea} is normal for ∆h over g(QM ).

Taking into account Definition 6.1, we see that the so-defined normal frames
in the bundle space E are just the ones used in the theory of frames normal for
linear connections in vector bundles – see Definition IV.14.15 for N = M and
g = idM .

It is quite clear, to any frame {XI} in T (E) normal over W ⊆ E, there
corresponds a unique frame {Ea = v−1(Xa)} in E normal over π(W ) ⊆ M .
But, to a frame {Ea} in E normal over π(W ), there correspond infinitely many
frames {XI} = {(π∗|∆h)−1(Eµ), v(Ea)} in T (E) normal over W , where {Eµ}
is an arbitrary frame in T (M) over π(W ). Thus the problems of existence and
(un)uniqueness of normal frames in T (E) is completely reduced to the same prob-
lems for normal frames in E. The last kind of problems, as we noted at the begin-
ning of the present section, are known and were investigated in Chapter IV.

We emphasize that a normal frame {Ea} in E, as well as the basis {v(Ea)}
for ∆v, can be holonomic as well as anholonomic (see Chapter IV); at the same
time, a normal frame {XI} in T (E) is anholonomic unless the conditions (5.25)
hold (Corollary 5.2), a necessary condition being the flatness (integrability) of the
horizontal distribution ∆h.
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Ending this section, let us say some words regarding frames normal for affine
connections on vector bundles.

Proposition 6.8 (cf. Proposition 6.7). A frame {XI} is normal on U ⊆ E for an
affine connection ∆h, with 2-index coefficients (5.45) on U , if and only if in it is
fulfilled

Γa
bµ|π(U) = 0 (6.19a)

Ga
µ|π(U) = 0. (6.19b)

Proof. The assertion follows from Definition 6.1, equation (5.45), and the linear
independence of the vector fibre coordinates un+1, . . . , un+r, considered as 1-forms.

�

Corollary 6.2. A necessary condition for existence of frames normal on U ⊆ E for
an affine connection is

Ga
µ|π(U) = 0 (6.20)

in all adapted frames on U ; in particular, (6.20) is equivalent to G|(π(U)) = 0 if U
is an open set.

Proof. Use (6.19b) and (5.47b). �

Corollary 6.3. A necessary condition for existence of frames normal on U ⊆ E for
an affine connection is

Γa
µ|U = −{(Γa

bµ ◦ π) · ub}|U (6.21)

in all adapted frames on U ; in particular, if U is an open set, then (6.21) means
that the restriction of the connection considered on (U, π|U , π(U)) is a linear con-
nection.

Proof. Apply Proposition 6.8 and Corollary 6.2. �

Corollary 6.4. If an affine connection admits frames normal on U ⊆ E, then all
of them are normal on U for the linear connection, corresponding to it via the
mapping α constructed in the proof of Proposition 4.7, and vice versa.

Proof. Use Corollary 6.3 and Proposition 6.7. �

Thus, if the condition (6.20) is satisfied, the above results completely reduce
the problems of existence, (un)uniqueness and the properties of frames normal for
affine connections to the same problems for linear connections (that correspond
to them).
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7. Coordinates normal along injective mappings with
non-vanishing horizontal component

The purpose of this section is a multi-dimensional generalization of Proposition 6.5
in the real case, K = R. It is formulated below as Theorem 7.1. For its proof we
shall essentially need Lemma III.8.1 on page 163.

Let (E, π, M) be a C3 bundle endowed with C1 connection ∆h. Let k ∈ N,
k ≤ dimM , and Jk be an open set in Rk. Consider a C2 regular injective mapping
β : Jk → E such that the vector fields β̇α : s �→ β̇α(s) := ∂βI(s)

∂sα
∂

∂uI

∣∣
β(s)

, with
s := (s1, . . . , sk) ∈ Jk and α = 1, . . . , k, do not belong to the vertical distribution
∆v, β̇α(s) 
∈ ∆v

β(s) for all s ∈ Jk; in particular, the mapping β can be a horizontal

mapping in a sense that β̇α(s) ∈ ∆h
β(s) for all s ∈ Jk, but generally these vectors

can have a vertical component too. Our aim is to find the integrability conditions
for the normal frame/coordinates equation (6.6) and its solutions, if any, when
U = β(Jk

1 ) for some subset Jk
1 ⊆ Jk.

Let us take some s0 ∈ Jk and construct the chart (U1, u) with U1 � β(s0)
provided by Lemma III.8.1 with E for M and β for γ. If Jk

1 := {s ∈ Jk : β(s) ∈ U1}
and p ∈ U1, then there is a unique (s, t) ∈ Jk

1 ×RdimR E−k such that p = η(s, t) with
η := u−1, i.e., uI(p) = sI for I = 1, . . . , k and uI(p) = tI for I = k + 1, . . . , n + r.
Besides, we have u(β(s)) = (s, t0) for all s ∈ Jk

1 and some fixed t0 ∈ RdimR E−k.
Since the vector fields β̇α, α = 1, . . . , k, are not vertical, we can construct the
coordinate system {uI}, associated to the chart (U1, u), so that they it be bundle
coordinate system on U1 (see the proof of Lemma III.8.1). Thus on U1 we have
bundle coordinates uI such that(

u1(η(s, t)), . . . , un+r(η(s, t))
)

:= (s, t) ∈ R
n+r

s = (s1, . . . , sk) ∈ Jk
1 t = (tk+1, . . . , tn+r) ∈ R

n+r−k.
(7.1)

Let the indices α and β run from 1 to k and the indices σ and τ take the
values form k +1 to n; we set σ = τ = ∅ if k = n. Thus, we have uα(η(s, t)) = sα,
uσ(η(s, t)) = tσ, and ua(η(s, t)) = ta.

Proposition 7.1. Under the hypotheses made above, the normal frame/coordinates
equation (6.6) with U = β(Jk

1 ) = β(Jk)∩U1 has solutions if and only if the system
of equations

(∂Γb
α

∂uβ
− ∂Γb

β

∂uα

)∣∣∣
β(s)

Ba
b (s) + Γb

α(β(s))
∂Ba

b (s)
∂sβ

− Γb
β(β(s))

∂Ba
b (s)

∂sα
= 0, (7.2)

where Γa
µ are the 2-index coefficients of ∆h in {uI}, has solutions Ba

b : Jk
1 → R

with det[Ba
b ] 
= 0,∞. Besides, if such solutions exist, then all solutions of (6.6)
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are given on U1 by the formula

ũa(η(s, t)) = −
s∫

s1

Ba
b (s)Γb

α(β(s)) dsα

− Ba
b (s)Γb

µ(β(s))[uµ(η(s, t)) − uµ(β(s))] + Ba
b (s)[ub(η(s, t)) − ub(β(s))]

+ fa
µν(s; t; η)[uµ(η(s, t)) − uµ(β(s))][uν(η(s, t)) − uν(β(s))], (7.3)

where s1 ∈ Jk
1 is arbitrarily fixed, Ba

b , with det[Ba
b ] 
= 0,∞, are solutions of (7.2),

and the functions fa
µν and their first partial derivatives are bounded when t → t0.

Remark 7.1. As uα(η(s, t)) = uα(β(s)) ≡ sα for all α = 1, . . . , k, the terms with
µ, ν = 1, . . . , k in (7.3) have vanishing contribution.

Remark 7.2. For k = 1, we have α = β = 1, due to which the equations (7.2) are
identically valid and Proposition 7.1 reduces to Proposition 6.5.

Proof. To begin with, we rewrite (6.6) as

∂ũa

∂sα

∣∣∣
β(s)

= −∂ũa

∂tb

∣∣∣
β(s)

Γb
α(β(s))

∂ũa

∂tσ

∣∣∣
β(s)

= −∂ũa

∂tb

∣∣∣
β(s)

Γb
σ(β(s)).

Introducing a non-degenerate matrix-valued function [Ba
b ] on Jk

1 by

Ba
b (s) =

∂ũa

∂tb

∣∣∣
β(s)

=
∂ũa(s, t)

∂tb

∣∣∣
t=t0

, (7.4)

we see that (6.6) is equivalent to

∂ũa

∂sα

∣∣∣
β(s)

= −Ba
b (s)Γb

α(β(s)) α = 1, . . . , k (7.5a)

∂ũa

∂tσ

∣∣∣
β(s)

= −Ba
b (s)Γb

σ(β(s)) σ = k + 1, . . . , n. (7.5b)

Expanding ũa(η(s, t)) into a Taylor polynomial up to second-order terms
relative to (t − t0) about the point t0 and using (7.4) and (7.5), we get:

ũa(η(s, t)) = fa(s) − Ba
b (s)Γb

σ(β(s))[tσ − tσ0 ] + Ba
b (s)[tb − tb0]

+ fa
στ (s; t; η)[tσ − tσ0 ][tτ − tτ0 ]

= fa(s) − Ba
b (s)Γb

µ(β(s))[uµ(η(s, t)) − uµ(β(s))] + Ba
b (s)[ub(η(s, t)) − ub(β(s))]

+ fa
µν(s; t; η)[uµ(η(s, t)) − uµ(β(s))][uν(η(s, t)) − uν(β(s))], (7.6)

where fa and fa
µν are C1 functions and fa

µν and their first partial derivatives are
bounded when t → t0. The equation (7.5a) is the only condition that puts some
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restrictions on fa and Ba
b (besides det[Ba

b ] 
= 0,∞). Inserting (7.6) into (7.5a) and
using that β(s) = η(s, t0), we obtain

∂fa(s)
∂sα

= −Ba
b (s)Γb

α(β(s)). (7.7)

Thus the initial normal coordinates equation (6.6), with U = β(Jk
1 ), has solutions if

and only if there exist solutions of (7.7) relative to fa and/or Ba
b . The integrability

conditions for (7.7) are [34]

0 =
∂2fa

∂sβ∂sα
− ∂2fa

∂sα∂sβ
= − ∂

∂sβ

(
BA

b (s)Γb
α(s))

)
+

∂

∂sα

(
BA

b (s)Γb
β(s))

)
= · · ·

and coincide with (7.2), by virtue of uα(β(s)) = sα. This result concludes the
proof of the first part of the proposition.

If (7.2) admits solutions Ba
b with det[Ba

b ] 
= 0,∞, then the general solution

of (7.7) is fa(s) = −
s∫

s1

Ba
b (s)Γb

α(β(s)) dsα for some s1 ∈ Jk
1 and this solution is

independent of the integration path in Jk
1 , due to (7.2). �

Lemma 7.1. Let (E, π, M) be a C3 bundle endowed with C2 connection with co-
efficients Γa

µ in the frame adapted to local coordinate system {ui}, defined before
Proposition 7.1. There exist solutions Ba

b with det[Ba
b ] 
= 0,∞ of the system of

equations (7.2) if and only if the coefficients Γa
µ satisfy the equations

Ra
αβ(β(s)) = 0 s ∈ Jk

1 (7.8a)(
Γd

α

∂2Γc
β

∂ub∂ud
− Γd

β

∂2Γc
α

∂ub∂ud

)∣∣∣
β(s)

= 0 s ∈ Jk
1 (7.8b)

in which Ra
µν are the (fibre) components in {uI} of the curvature of ∆h, defined

by (3.37a). If the conditions (7.8) are valid, the set of the solutions of (7.2) coin-
cides with the set of solutions of the system

∂Ba
b (s)

∂sα
= −Ba

c (s)
∂Γc

α

∂ub

∣∣∣
β(s)

+
∂Da

b (s)
∂sα

(7.9)

relative to Ba
b , where Da

b are solutions of(
Γb

α(β(s))
∂

∂sβ
− Γb

β(β(s))
∂

∂sα

)
Da

b (s) = 0. (7.10)

Proof. Consider the integrability condition (7.2) for (6.6) in more details. Define
functions Da

bα : Jk
1 → K = R via the equation

∂Ba
b (s)

∂sα
= −Ba

c (s)
∂Γc

α

∂ub

∣∣∣
β(s)

+ Da
bα(s). (7.11)
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The substitution of this equality into (7.2) results in

Rb
βα(β(s))Ba

b (s) − Γb
α(β(s))Da

bβ(s) + Γb
β(β(s))Da

bα(s) = 0,

where the functions Ra
αβ are the (fibre) components in {uI} of the curvature of ∆h,

defined by (3.37a). The simple observation that ũα and ũa, if they exist as solutions
of (6.6), are normal coordinates on the whole bundle space of the restricted bundle
(U, π|U , π(U)) with U = β(Jk

1 ) leads to

Ra
αβ(β(s)) = 0 s ∈ Jk

1 , (7.12)

by virtue of Proposition 6.6. Therefore the previous equation reduces to

Γb
α(β(s))Da

bβ(s) − Γb
β(β(s))Da

bα(s) = 0. (7.13a)

It is clear that (7.11)–(7.13a) are equivalent to (7.2). Consequently, the quantities
Da

bα must be solutions of (7.13a) while the C1 functions Ba
b have to be solutions

of (7.11). The integrability conditions
(

∂2

∂sβ∂sα − ∂2

∂sα∂sβ

)
Ba

b (s) = 0 for (7.11) can
be written as1

(
− ∂2Γc

α

∂uβ∂ub
+

∂2Γc
β

∂uα∂ub
+

∂Γd
α

∂ub

∂Γc
β

∂ud
− ∂Γd

β

∂ub

∂Γc
α

∂ud

)∣∣∣
β(s)

Ba
c (s)

+
∂Da

bα(s)
∂sβ

− ∂Da
bβ(s)

∂sα
= 0

which conditions split into

0 =
∂Da

bα(s)
∂sβ

− ∂Da
bβ(s)

∂sα
(7.13b)

0 =
(
− ∂2Γc

α

∂uβ∂ub
+

∂2Γc
β

∂uα∂ub
+

∂Γd
α

∂ub

∂Γc
β

∂ud
− ∂Γd

β

∂ub

∂Γc
α

∂ud

)∣∣∣
β(s)

=
(
−Γd

α

∂2Γc
β

∂ub∂ud
+ Γd

β

∂2Γc
α

∂ub∂ud

)∣∣∣
β(s)

, (7.14)

where (7.12) and (3.37a) were applied in the derivation of the second equality
in (7.14).

Since the system of equations (7.13) always has solutions, e.g., Db
bα(s) = 0,

we can assert that (7.12) and (7.14) are the integrability conditions for (7.2) and,
if (7.12) and (7.14) hold, every solution of (7.11), with Da

bα satisfying (7.13), is a
solution of (7.2) and vice versa.

At the end, the only unproved assertion is that Da
bα in (7.11) equals to ∂α(Da

b )
with Da

b satisfying (7.10). Indeed, since Jk
1 is an open set and hence is contractible

1At this point one should require ∆h to be of class C2 which is possible if the manifolds E
and M are of class C3.
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one, the Poincaré’s lemma (see [6, Section 6.3] or [5, pp. 21, 106]) implies the
existence of functions Da

b on Jk
1 such that Db

bα(s) = ∂α(Da
b )(s), due to (7.13b);

inserting this result into (7.13a), we get (7.10). �

Remark 7.3. Regardless that the conditions (7.8b) look quite special, they are
identically valid for connections with

Γa
α = −(Γa

bα ◦ π) · ub + Ga
α ◦ π, (7.15)

where Γa
bα and Ga

α are C2 functions on π(β(Jk)), i.e., for affine connections (see
Subsection 4.4). In particular, of this kind are the linear connections on vector
bundles – see Proposition 5.4 and 5.5.

At last, we shall formulate the main result of the above considerations as a
combination of Proposition 7.1 and Lemma 7.1.

Theorem 7.1. Let (E, π, M) be a C3 bundle endowed with a C2 connection. Under
the hypotheses made and notation introduced before Proposition 7.1, there exist
solutions of the normal frame/coordinates equation (6.6) if and only if the connec-
tion’s coefficients satisfy the equations (7.8). If these equations hold, all coordinates
normal on β(Jk

1 ) are given on U1 by (7.3), where Ba
b are solutions of (7.9), with

Da
b being solutions of (7.10).

Remark 7.4. If there are s0 ∈ Jk and α ∈ {1, . . . , k} such that the vector β̇α(s0)
is a vertical vector, β̇α(s0) ∈ ∆v

β(s0), then Theorem 7.1 remains true with the only
correction that the coordinate system {uI} will not be bundle coordinate system.
If this is the case, the constructed coordinates ũI will be solutions of (6.6), but we
cannot assert that they are bundle coordinates which are (locally) normal along
β in a neighborhood of the point β(s0).

Theorem 7.1 provides a necessary and sufficient condition for the existence
of local coordinates in a neighborhood of β(s0) for any s0 ∈ Jk which are locally
normal along β, i.e., on β(Jk

1 ) for some open subset Jk
1 ⊆ Jk containing s0.

Moreover, if this condition is valid, the theorem describes locally all coordinates
normal along β.

Exercise 7.1. Prove that Theorem 7.1 remains valid by requiring β to be locally
injective instead of injective, i.e., for each s ∈ J to exist subset Jk

s ⊆ Jk such that
Jk

s � s and the restricted mapping β|Jk
s

to be injective.

If one needs a version of the above results for complex bundles, they should
be considered as real ones (with doubled dimension of the manifolds) for which
are applicable the above considerations.



8. Links between connections and transports 389

8. Links between connections and
transports along paths in fibre bundles

As the title of this section indicates, its content is outside of the main topic of
the present book. It generalizes part of Section IV.14 and investigates relations
between some axiomatic approaches to the general theories of connections, parallel
transports, and transports along paths. We hope that the material below will
clarify some problems that may have arisen in Chapter IV and will be useful for
readers interested in the axiomatization of the concept of a ‘parallel transport’.

The widespread approach to the concept of a “parallel transport” is it to
be considered as a secondary one and defined on the basis of the connection the-
ory [6,7,10–13,16,28,60,98,106,107,117,141–145]. However, the opposite approach,
in which the parallel transport is axiomatically defined and from it the connec-
tion theory is constructed, is also known [17,23,30–33,91,147–150] and goes back
to 19491; e.g., it is systematically realized in [23], where the connection theory
on vector bundles is investigated. In [114] the concept of a “parallel transport”
was generalize to the one of “transport along paths”. The relations between both
concepts were analyzed in [115]; in particular, Theorem 3.1 of [115, p. 13] (see The-
orem 8.1 below) contains a necessary and sufficient condition for a transport along
paths to be (axiomatically defined) parallel transport. The aim of the present sec-
tion is to be investigated some links between general connections on fibre bundles
and transport along paths in them. Recall that similar problems, but in the linear
case in vector bundles, were explored in Section IV.14.

The bundle and base spaces of the bundles in this section are supposed to
be of differentiable of class C1; however, some parts of the text below, like Defini-
tion 8.1, are valid in more general situations.

Definition 8.1. A transport along paths in bundle (E, π, B) is a mapping I assigning
to every path γ : J → M a mapping Iγ , termed transport along γ, such that
Iγ : (s, t) �→ Iγ

s→t where the mapping

Iγ
s→t : π−1(γ(s)) → π−1(γ(t)) s, t ∈ J, (8.1)

called transport along γ from s to t, has the properties:

Iγ
s→t ◦ Iγ

r→s = Iγ
r→t r, s, t ∈ J (8.2)

Iγ
s→s = idπ−1(γ(s)) s ∈ J, (8.3)

1It seems that the earliest written accounts on this approach are the ones due to Ü.G. Lu-
miste [30, Section 2.2] and C. Teleman [17, Chapter IV, Section B.3] (both published in 1964),
the next essential steps being made by P. Dombrowski [31, § 1] and W. Poor [23]. Besides, the
author of [31] states that his paper is based on unpublished lectures of prof. Willi Rinow (1907–
1979) in 1949; see also [23, p. 46] where the author claims that the first axiomatical definition of
a parallel transport in the tangent bundle case is given by prof. W. Rinow in his lectures at the
Humboldt University in 1949. Some heuristic comments on the axiomatic approach to parallel
transport theory can be found in [8, Section 2.1] too.
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where ◦ denotes composition of mappings and idX is the identity mapping of a
set X .

Remark 8.1. If (E, π, M)) is a vector bundle and the mappings (8.1) are linear,
Definition 8.1 reduces to Definition IV.3.1.

An analysis and various comments on this definition can be found in [87,102,
114,115]; see also Section IV.3.

As we shall see below, an important special class of transports along paths
is selected by the conditions

I
γ|J′
s→t = Iγ

s→t s, t ∈ J ′ (8.4)
Iγ◦χ
s→t = Iγ

χ(s)→χ(t) s, t ∈ J ′′, (8.5)

where J ′ ⊆ J is a subinterval, γ|J ′ is the restriction of γ to J ′, and χ : J ′′ → J is
a bijection of a real interval J ′′ onto J .

Putting r = t in (8.2) and using (8.3), we see that the mappings (8.1) are
invertible and

(Iγ
s→t)

−1 = Iγ
t→s. (8.6)

The following result describes how a transport along paths generates a con-
nection.

Proposition 8.1. Let I be a transport along paths in a bundle (E, π, M). Let γ : J →
M be a path and, for any s0 ∈ J and p ∈ π−1(γ(s0)), the lift γ̄s0,p : J → E of γ
be defined by

γ̄s0,p(t) = Iγ
s0→t(p) t ∈ J. (8.7)

Suppose that I is such that γ̄s0,p is a C1 path for every s0 and p and the condi-
tions (8.4) and (8.5) hold for all paths γ : J → M . Then the distribution

∆I : p �→ ∆I
p :=

{ d
dt

∣∣∣
t=s0

(
γ̄s0,p(t)

)
: γ : J → M is C1 and injective, s0 ∈ J, γ(s0) = π(p)

}
⊆ Tp(E), (8.8)

with p ∈ E, is a connection on (E, π, M), i.e.,

∆v
p ⊕ ∆I

p = Tp(E) p ∈ E, (8.9)

with ∆v being the vertical distribution on E, ∆v
p = Tp(π−1(π(p))).

Proof. Let {uµ = xµ ◦ π, ua} be bundle coordinate system on E, p be a point in
its domain, and γ̄ : J → E be a lift of γ : J → M , π ◦ γ̄ = γ. Since π∗

(
∂

∂uI

∣∣
p

)
=

∂(xµ◦π)
∂uI

∣∣
p

∂
∂xµ

∣∣
π(p)

and ˙̄γµ(t) = d(uµ◦γ̄(t))
dt = d(xµ◦γ(t))

dt = γ̇µ(t) for all t ∈ J , we have

π∗( ˙̄γ(t)) = γ̇(t) (8.10)
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for any lift γ̄ in E of a path γ in M . Therefore, from (8.8) and (8.10), we get

π∗(∆I
p) =

{
γ̇(s0) : γ : J → M is C1 and injective, s0 ∈ J, γ(s0) = π(p)

}
= Tπ(p)(M)

as γ̇(s0) is an arbitrary vector in Tπ(p)(M) = Tγ(s0)(M). Thus the mapping
π∗|∆I

p
: ∆I

p → Tπ(p)(M) is surjective. It is also linear, due to the definition of
a tangent mapping [7, Section 1.22]. At last, we shall prove that π∗|∆I

p
is injective,

from where it follows that π∗|∆I
p

is a vector space isomorphism for every p ∈ E

which, in its turn, implies (8.9) as π∗(∆v
p) = 0π(p) ∈ Tπ(p)(M).

If Gi ∈ ∆I
p, i = 1, 2, then there exist paths γi : Ji → M such that γi(si) =

π(p) for some si ∈ Ji and Gi = ˙̄γi;si,p, with i = 1, 2 and the lifted paths in
the right-hand side being given by (8.7). Then π∗(Gi) = γ̇i(si), due to (8.10).
Suppose that γ̇1(s1) = γ̇2(s2). Since γ1(s1) = γ2(s2) = π(p), the last equality
entails s1 = s2, J1 ∩ J2 
= ∅, and the existence of an interval J ′ ⊆ J1 ∩ J2 such
that s1 = s2 ∈ J ′ and γ1|J ′ = γ2|J ′.2 Combining this result with (8.4), we get
G1 = G2, which means that π∗|∆I

p
: ∆I

p → Tπ(p)(M) is injective. �

Remark 8.2. The condition (8.5) was not used explicitly in the proof of Proposi-
tion 8.1, but it is important in the definition (8.8) of the connection ∆I . Namely,
it ensures that, if X ∈ ∆I

p, then κX ∈ ∆I
p for all κ ∈ K. Indeed, if X =

d
dt

∣∣
t=s0

(γ̄s0,p(t)) for some path γ : J → M and χ : J ′ → J is a C1 diffeomor-
phism, the vector tangent to the path β̄s′

0,p(t′) at s′0 = χ−1(s0), with β = γ ◦χ, is
χ(s′0)X , by virtue of (8.7) and (8.5). So that χ(s′0)X ∈ ∆I

p and the arbitrariness
of χ leads to κX ∈ ∆I

p for all κ ∈ K.
Remark 8.3. The role of the transport I along paths in Proposition 8.1 is on its
base to be constructed a lifting of the paths in M to paths in E with appropriate
properties. Namely, such a lifting should assign to a path γ : J → M a unique
path γ̄s0,p : J → E passing through a given point p ∈ π−1(γ(s0)), for some s0 ∈ J ,
and such that π ◦ γ̄s0,p = γ and, if q ∈ γ̄s0,p(t0) for some t0 ∈ J , then γ̄t0,q = γ̄s0,p.
On this ground one can generalize Proposition 8.1 as well as some of the next
considerations and results.

Definition 8.2. The connection ∆I , defined in Proposition 8.1, will be called as-
signed to (defined by, generated by) the transport I along paths.

For the further exploration of the relations between transports along paths
and connections (or parallel transports generated by them), we shall need the
notion of an inverse path and of a product of paths. There are not ‘natural’ defini-
tions of these concepts, but this is not important for us as the (parallel) transports
we shall consider below are parametrization invariant in some sense, like (8.5).

2Here we use the local existence of a unique C1 path passing trough a given point and having
a fixed tangent vector at it.
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For that reason, the concepts mentioned will be defined only for canonical paths
[0, 1] → M , whose domain is the real interval [0, 1] := {r ∈ R : 0 ≤ r ≤ 1}. The
path inverse to γ : [0, 1] → M is γ := γ ◦ τ : [0, 1] → M , with τ : [0, 1] → [0, 1]
being given by τ (t) := 1 − t for t ∈ [0, 1]. If γ1, γ2 : [0, 1] → M and γ1(1) = γ2(0),
the product γ1γ2 of γ1 and γ2 is a canonical path γ1γ2 : [0, 1] → M such that
(γ1γ2)(t) := γ1(2t) for t ∈ [0, 1/2] and (γ1γ2)(t) := γ2(2t − 1) for t ∈ [1/2, 1]. For
more details on this item, see [108,132].

Recall now the basic properties of the parallel transports generated by con-
nections.

Proposition 8.2. Let

P : γ �→ Pγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.11)

be the parallel transport generated by a connection on some bundle (E, π, M). The
mapping P has the following properties:

(i) The parallel transport P is invariant under orientation preserving changes of
the paths’ parameters. Precisely, if γ : [σ, τ ] → M and χ : [σ′, τ ′] → [σ, τ ] is
an orientation preserving C1 diffeomorphism, then

Pγ◦χ = Pγ . (8.12)

(ii) If γ : [0, 1] → M and γ : [0, 1] → M is its canonical inverse, γ (t) = γ(1 − t)
for t ∈ [0, 1], then

Pγ =
(
Pγ

)−1
. (8.13)

(iii) If γ1, γ2 : [0, 1] → M , γ1(1) = γ2(0), and γ1γ2 : [0, 1] → M is their canonical
product, then

Pγ1γ2 = Pγ2 ◦ Pγ1 . (8.14)

(iv) If γr,x : {r} = [r, r] → {x} for some given r ∈ R and x ∈ M , then

Pγr,x = idπ−1(x). (8.15)

Remark 8.4. As a result of (8.12), some properties of the parallel transports gener-
ated by connections, like (8.13) and (8.14), are sufficient to be formulated/proved
only for canonical paths [0, 1] → M .

Proof. The proofs of (8.12)–(8.15) can be found in a number of works, for ex-
ample in [3, 4, 6, 11, 30, 32, 33, 148, 149, 154]. Alternatively, the reader can prove
them by applying the definitions given in this book. (See also Subsections IV.14.1
and IV.14.2 in a case of a vector bundle.) �

Definition 8.3 (cf. Definition IV.14.11 on page 313). A mapping (8.11) satisfying
the equalities (8.12)–(8.15) will be called (axiomatically defined) parallel transport.
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Proposition 8.3. Let P be the parallel transport assigned to a Cm, with m ∈ N∪{0},
connection on a smooth, of class Cm+1, bundle (E, π, M). Then P is smooth, of
class Cm, in a sense that, if γ : [σ, τ ] → M is a C1 path, then Pγ is in the set of
Cm diffeomorphisms between the fibres π−1(γ(σ)) and π−1(γ(τ)),

P : γ �→ Pγ ∈ Diffm
(
π−1(γ(σ)), π−1(γ(τ))

)
γ : [σ, τ ] → M. (8.16)

Proof. See [16, 106,107]. �

The axiomatic approach to parallel transport was developed mainly on the
ground on the properties (8.12)–(8.16) of the parallel transports assigned to con-
nections. However, this topic is out of the range of the present monograph and the
reader is referred to the literature cited at the beginning of the present section.

Ending with the results we take for granted, we reproduce below a slightly
modified version of [115, p. 13, Theorem 3.1].

Theorem 8.1. Let I be a transport along paths in bundle (E, π, M) and γ : [σ, τ ] →
M . If I satisfies the conditions (8.4) and (8.5), then the mapping

I : γ �→ Iγ := Iγ
σ→τ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.17)

is a parallel transport, i.e., it possess the properties (8.12)–(8.15), with I for P.
Besides, if I is smooth in a sense that

Iβ
s→t ∈ Diffm

(
π−1(β(s)), π−1(β(t))

)
β : J → M s, t ∈ J (8.18)

for some m ∈ N ∪ {0}, then the mapping (8.17) satisfies (8.16), with I for P.
Conversely, suppose the mapping

P : γ �→ Pγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.19)

is a parallel transport, i.e., satisfies (8.12)–(8.15), and define the mapping

P : β �→ P β : (s, t) �→ P β
s→t = P(β|[σ,τ ])◦χ

[σ,τ]
t ◦

(
P(β|[σ,τ ])◦χ[σ,τ]

s

)−1

β : J → M,

(8.20)
where s, t ∈ J , σ, τ ∈ J are such that σ ≤ τ and [σ, τ ] � s, t,3 and χ

[σ,τ ]
s : [σ, τ ] →

[σ, s] are for s > σ arbitrary orientation preserving C1 diffeomorphisms (depending
on β via the interval [σ, τ ]). Then the mapping (8.20) is a transport along paths
in (E, π, M), which transport satisfies the conditions (8.4) and (8.5), with P for
I. Besides, under the same assumptions, the condition (8.16) for P implies (8.18),
with P for I, where P is given by (8.20).

3In particular, one can set σ = min(s, t) and τ = max(s, t) or, if J is a closed interval, define
σ and τ as the end points of J , i.e., J = [σ, τ ].
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Remark 8.5. Instead by (8.20), the transport P along paths generated by a parallel
transport P can be defined equivalently as follows. For a path γ : [σ, τ ] → M and
s, t ∈ [σ, τ ], we put.

P : γ �→ P γ : (s, t) �→ P γ
s→t = Pγ◦χ

[σ,τ]
t ◦

(
Pγ◦χ[σ,τ]

s

)−1

= Pγ|[σ,t] ◦ (
Pγ|[σ,s]

)−1

γ : [σ, τ ] → M

(8.21a)

Now, for an arbitrary path β : J → M , with J being closed or open at one or both
its ends, we set

P : β �→ P β : (s, t) �→ P β
s→t =

{
P

β|[s,t]
s→t for s ≤ t(
P

β|[t,s]
t→s

)−1 for s ≥ t
β : J → M s, t ∈ J.

(8.21b)
It can easily be verified that (8.21) are tantamount to

P : β �→ P β : (s, t) �→ P β
s→t =

{
Pβ|[s,t] for s ≤ t(
Pβ|[t,s])−1 for s ≥ t

β : J → M s, t ∈ J.

(8.22)

Definition 8.4. A transport I along paths which has the properties (8.4) and (8.5)
will be called parallel transport along paths.

Theorem 8.1 simply says that there is a bijective correspondence between the
parallel transports along paths and the parallel transports.

Definition 8.5. If I is a parallel transport along paths, then we say that the parallel
transport (8.17) is generated by (defined by, assigned to) I. Respectively, if P is a
parallel transport, then we say that the (parallel) transport along paths (8.20) is
generated by (defined by, assigned to) P.

Let us now return to the connection ∆I generated by a transport I along
paths, introduced in Proposition 8.1.

Proposition 8.4. If γ : J → M is an injective path and p ∈ π−1(γ(s0)) for some
s0 ∈ J , then there is a unique ∆I-horizontal lift of γ (relative to ∆I) in E through
p and it is exactly the path γ̄s0,p defined by (8.7).

Proof. Simply apply the definitions (8.7) and (8.8) and use the properties (8.1)
and (8.2) of the transports along paths (t0 ∈ J):

˙̄γs0,p(t0) =
d
dt

∣∣∣
t=t0

(
Iγ
s0→t(p)

)
=

d
dt

∣∣∣
t=t0

(
Iγ
t0→t(I

γ
s0→t0(p))

) ∈ ∆I
γ̄(t0)

. �

Remark 8.6. If γ is not injective and γ(s0) = γ(t0) for some s0, t0 ∈ J such
that s0 
= t0, then the paths γ̄s0,p, γ̄t0,p : J → E need not to coincide as γ̄s0,p =
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It0→s0
◦ γ̄t0,p, due to (8.7) and (8.2). Therefore the ∆I -horizontal lift of a non-

injective path through a point in E lying in a fibre over a self-intersection point
of the path, if any, may not be unique. Similar is the situation for an arbitrary
connection. (This range of problems is connected with the so-called holonomy
groups.)

Proposition 8.5. The parallel transport I generated by the connection, defined by a
transport along paths I, is such that

Iγ = Iγ
σ→τ for γ : [σ, τ ] → M. (8.23)

Proof. According to Definition 3.2 and (8.7), we have:

I : γ �→ Iγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M

Iγ : p �→ Iγ(p) = γ̄σ,p(τ) = Iγ
σ→τ (p) p ∈ π−1(γ(σ)). �

Corollary 8.1. The parallel transport I generated by the connection ∆I , assigned
to a transport I along paths, is a parallel transport, i.e., it satisfies (8.12)–(8.15)
with I for P.

Proof. This result is a particular case of Proposition 8.2. An alternative proof can
be carried out by using (8.1)–(8.7), (8.23), and the definitions of inverse path and
product of paths. The assertion is also a consequence of (8.23) and Theorem 8.1.

�
Until this point, we have studied how a transport along paths generates a

connection (Proposition 8.1) and parallel transport (Proposition 8.5). Besides,
Theorem 8.1 establishes a bijective correspondence between particular class of
transports along paths and mappings having (some of) the main properties of the
parallel transports generated by connections. Below we shall pay attention, in a
sense, to the opposite links, starting from a connection on a bundle.

Proposition 8.6. Let P be the parallel transport assigned to a connection ∆h on a
bundle (E, π, M). The mapping

P : γ �→ P γ : (s, t) �→ P γ
s→t γ : J → M (8.24a)

defined by

P γ
s→t =

{
Pγ|[s,t] for s ≤ t(
Pγ|[t,s])−1

for s ≥ t
(8.24b)

is a transport along paths in (E, π, M). Moreover, P is parallel transport along
paths, i.e., it satisfies the equations (8.4) and (8.5) with P for I.

Proof. One should check the conditions (8.1)–(8.5) with P for I. The relations
(8.1) and (8.2) follow directly from Definition 3.2 of a parallel transport generated
by a connection. The rest conditions are consequences of (8.24) and a simple,
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but tedious, application of the properties (8.12)–(8.14) of the parallel transports.
Alternatively, this proposition is a consequence of the second part of Theorem 8.1
and Remark 8.5. �

Remark 8.7. Applying (8.12)–(8.14), the reader can verify that

P γ
s→t = F−1(t; γ) ◦ F (s; γ) (8.25)

with

F (r; γ) =

{
Pγ|[r,w] for r ≤ w(
Pγ|[w,r]

)−1 for r ≥ w
r = s, t (8.26)

for any (arbitrarily) fixed w ∈ J . This result is a special case of the general
structure of the transports along paths [114, Theorem 3.1].

Definition 8.6. The parallel transport along paths, defined by a connection ∆h

on a bundle through Proposition 8.6, will be called parallel transport along paths
assigned to (defined by, generated by) the connection ∆h.

Corollary 8.2. Let ∆I be the connection generated by a parallel transport I along
paths according to Proposition 8.1. If I is the parallel transport assigned to ∆I , then
the transport along paths assigned to I (or ∆I), as described in Proposition 8.6,
coincides with the initial transport I along paths.

Proof. Substitute (8.23) into (8.24), with I for P and I for P. �

Corollary 8.3. Let P be the transport along paths assigned to a connection ∆h (via
its parallel transport P) according to Proposition 8.6. The connection ∆P generated
by P , as described in Proposition 8.1, coincides with the initial connection ∆h,
∆P = ∆h.

Proof. On one hand, if p ∈ E, the space ∆P
p consists of the vectors tangent at s0

to the paths γ̄s0,p : t �→ P γ
s0→t(p), with γ : J → M , s0 ∈ J , and π(p) = γ(s0), due

to Proposition 8.1. On another hand, ∆h
p consists of the vectors tangent at s0 to

the paths γ̃s0,p : t �→ Pγ|[s0,t](p), by virtue of Definition 3.2. Equation (8.24b) says
that both types of paths coincide, γ̃s0,p = γ̄s0,p, so that their tangent vectors at
t = s0 are identical and, consequently, ∆P

p and ∆h
p are equal as sets, ∆P

p = ∆h
p ,

for all p ∈ E. �
Roughly speaking, the above series of results says that a connection ∆h is

equivalent to a mapping P (the assigned to it parallel transport) satisfying (8.11)–
(8.15) or to a mapping P (the assigned to it parallel transport along paths) sat-
isfying (8.1)–(8.5) (with P for I). Besides, the smoothness of ∆h is equivalent to
the one of P or P . Let us summarize these results as follows.

Theorem 8.2. Given a connection ∆h on a bundle (E, π, M), there exists a unique
parallel transport I along paths in (E, π, M) which generates ∆h via (8.8), i.e.,
∆I = ∆h. Besides, the parallel transport P defined by ∆h is given by (8.17), i.e.,
P = I.
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Proof. See Propositions 8.1 and 8.5 and Theorem 8.1. �

Theorem 8.3. Given a parallel transport I along paths in a bundle (E, π, M), then
there exists a unique connection ∆h on (E, π, M) such that the parallel transport
P along paths assigned to ∆h coincides with I, P = I. Besides, the connection ∆I

generated by I is identical with ∆h, ∆I = ∆h.

Proof. Apply Proposition 8.1 and corollaries 8.2 and 8.3. �

Theorem 8.4. Given a parallel transport along paths in a bundle, there is a unique
(axiomatically defined) parallel transport generating it. Conversely, given a parallel
transport, there is a unique parallel transport along paths generating it.

Proof. This statement is a reformulation of Theorem 8.1. �

Theorem 8.5. Given a parallel transport P, there exists a unique connection ∆h

generating it. Besides, the parallel transport assigned to ∆h coincides with P.

Proof. See Theorems 8.4 and 8.3 and Definitions 3.2 and 8.5. �

Theorem 8.6. Given a connection ∆h, there is a unique parallel transport P such
that the defined by it parallel transport P along paths generates ∆h, ∆P = ∆h.
Besides, P coincides with the parallel transport assigned to ∆h.

Proof. Apply Theorems 8.2 and 8.4. �
The above results can be summarized in the commutative diagram shown on

figure 8.1, the mappings in which are described via Theorems 8.2–8.6. Besides, if

Figure 8.1: Mappings between the sets of parallel transports, connections and
parallel transports along paths

the set of
connections
(defintion 3.1)

the set of parallel
transports along
paths (defintion 8.4)

the set of
parallel transports
(defintion 8.3)

�
�

���
��

�
���

�

��

one of these objects is smooth, so are the other ones corresponding to it via the
bijections constructed in the present section.

We end with the main moral of this section. The concepts “connection,”
“(axiomatically defined) parallel transport” and “parallel transport along path”
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(i.e., one that satisfies equations (8.4) and (8.5)) are equivalent in a sense that
there are bijective mappings between the sets of these objects. Besides, if one of
these objects is smooth, so are the other ones corresponding to it via the bijections
constructed in the present section.

9. Conclusion

In this chapter we have presented a short (and partial) review of (one of the ap-
proaches to) the connection theory on bundles whose base and bundle spaces are
(C2) differentiable manifolds. Special attention was paid to connections, in particu-
lar linear ones, on vector bundles, which find wide applications in physics [146,155].
However, many other approaches, generalizations, alternative descriptions, partic-
ular methods, etc. were not mentioned at all. In particular, these include: connec-
tions on more general (e.g., topological) bundles, connections on principal bundles
(which are important in the gauge field theories), holonomy groups, flat connec-
tions, Riemannian connections, etc., etc. The surveys [32, 156] contain essential
information on these and many other items. Consistent and self-contained expo-
sition of such problems can be found in [23, 110,151,157].

If additional geometric structures are added to the theory considered in Sec-
tion 3, there will become important connections compatible with these structures.
In this way arise many theories of particular connections; we have demonstrated
that on the example of linear connections on vector bundles (Section 4).

The consideration of arbitrary (co)frames in Section 5 may seem slightly
artificial as the general theory can be developed without them. However, this is not
the generic case when one starts to apply the connection theory for investigation
of particular problems. It may happen that some problem has solutions in general
(co)frames but it does not possess solutions when (co)frames generated directly by
local coordinates are involved. For example, local coordinates (holonomic frames)
normal at a given point for a covariant derivative operator (linear connection)
∇ on a manifold exist if ∇ is torsionless at that point, but anholonomic frames
normal at a given point for ∇ exist in a case of non-vanishing torsion.

In Section 6, we saw that the theory of normal frames in the most general case
is quite trivial. This reflects the understanding that the more general a concept
is, the less particular properties it has, but the more concrete applications it can
find if it is restricted somehow. This situation was demonstrate when holonomic
normal frames were considered; e.g., they exist at a given point or along an injective
horizontal path, but on an open set they may exist only in the flat case. A feature
of a vector bundle (E, π, M) is that the frames in T (E) over E are in bijective
correspondence with pairs of frames in E over M and in T (M) over M . This
result allows the normal frames in T (E), if any, to be ‘lowered’ to ones in E. From
here a conclusion was made that the theory of frames in T (E) normal for linear
connections on a vector bundle is equivalent to the existing one of frames in E
normal for covariant derivatives in (E, π, M).
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The concept “parallel transport” precedes historically the one of a “con-
nection” and was first clearly formulated in the work [29] of Levi Civita on a
parallel transport of a vector in Riemannian geometry. The connection theory
was formulated approximately during the period 1920–1949 in a series of works
on particular connections and their subsequent generalizations and has obtained
an almost complete form in 1950–1955 together with the clear formulation of the
concepts “manifold” and “fibre bundle” [32]; the concept of connection on general
fibre bundle was established at about 1970 [158]. During that period, with a few
exceptional works, the ‘parallel transport’ was considered as a secondary concept,
defined by means of the one of a ‘connection’. Later, as we pointed at the begin-
ning of Section 8, there appear several attempts for axiomatizing the concept of a
parallel transport and by its means the connection theory to be constructed; e.g.,
this approach is developed deeply in vector bundles in [23]. The major classical
results on axiomatization of parallel transport theory are presented in Table 9.1.

Table 9.1: Main contributions in axiomatizing the concept of “parallel transport”.

Year Person Result and original reference

1917 T. Levi-Civita Definition of a parallel transport of a vector in Riemannian
geometry. [29]

1949 Willi Rinow An axiomatic definition of parallel transport in tangent bundle
is introduced in unpublished lectures at Humboldt university.
(See [31] and [23, p. 46].)

1964 Ü.G. Lumiste Definition of a connection in principal bundle (with homo-
geneous fibres) as a parallel transport along canonical paths
α : [0, 1] → M in its base M . The parallel transport is defined
as a mapping from the fibre over α(0) into the one over α(1)
satisfying some axioms. [30, Section 2.2]

1964 C. Teleman Definition of a connection in topological bundle as a parallel
transport along canonical paths α : [0, 1] → M in its base M ..
The parallel transport is defined as a lifting of these paths
through a point in the fibre over their initial points α(0). [17,
Chapter IV, Section B.3]

1968 P. Dombrowski Definition of a linear connection in vector bundle as a parallel
transport along paths β : [a, b] → M , with a, b ∈ R and a ≤ b,
in its base M . The parallel transport is defined as a mapping
from the fibre over α(a) into the one over α(b) satisfying certain
axioms. The theory of covariant derivatives is constructed on
that base. [31, § 1]

1981 Walter Poor A detailed axiomatic definition of a parallel transport in vector
bundles. The whole theory of linear connections in such bundles
is deduced on that ground. [23]
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The main merit from Section 8 is a necessary and sufficient conditions when
an axiomatically defined parallel transport (or a parallel transport along paths)
defines a unique connection (with suitable properties) and vice versa. Moreover,
the concepts “connection,” “(axiomatically defined) parallel transport,” and “par-
allel transport along path” (i.e., one that satisfies equations (8.4) and (8.5)) are
equivalent in a sense that there are bijective mappings between the sets of these
objects. However, the concept of a parallel transport admits a generalization to
the one of a transport along paths and there exist transports along paths that
cannot be generated by connections or axiomatically defined parallel transports.
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[77] Laurent Schwartz. Analyse mathématique, volume I. Hermann, Paris, 1967. In
French; Russian translation: Mir, Moscow, 1972.
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Subject List of Symbols

The following table contains a list of the main symbols which consistently refer
to the some concept and frequently are employed. The page numbers denote the
page where the symbols first appear. A more or less alphabetically ordered list of
the same symbols is presented in the Notation index, beginning on page 423.

Symbol Explanation Page
Set theory

∅ empty set 5
∈ belongs to, included in 4
� which contains 7
{x : P} set whose elements have the property P 5
{x|P} the same as {x : P} 5
{a, b, c, . . .} set with elements a, b, c, . . . 4
⊂ contained in, proper subset 8
⊃ proper superset (overset) 27
⊆ contained in or equal, proper subset or equal 5
⊇ proper superset (overset) or equal 177
∪ union (cup) sing 5
∩ intersection (cap) sign 5
= equals to, equality sign 4
:= or =: equals by definition: a quantity sitting from the side

of the colon being defined
4

\ subtraction of sets; A\B := {a|a ∈ A, a 
∈ B} 27
|A or |A restriction to a set A 8
× Cartesian (direct) product 4
continued on the next page
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continued from the previous page

Symbol Explanation Page
×kA A×· · ·×A where the set A is taken k times, k ∈ N∪{0};

×0A := ∅

4

⇐⇒ or iff if and only if, logical equivalence 34
→ mapping sign 5
f : A → B mapping f with domain A and range B 5
�→ maps to sign 6
f : x �→ y mapping f assigning to x the value y 6
f−1 inverse mapping to a mapping f 5
◦ sign of the composition of mappings; (f ◦ g)(p) :=

f(g(p))
5

idA identity mapping of set A; idA : a �→ a for all a ∈ A 5

Linear/vector spaces

N natural numbers, integers 4
R real numbers, (field of) reals, real line 4
C complex numbers, (field of) complex, complex plane 4
K R or C 4
E 1-dimensional Euclidean space 34
Rn n-th Cartesian power of R, n ∈ N 4
Cn n-th Cartesian power of C, n ∈ N 4
K

n n-th Cartesian power of K, n ∈ N; R
n or C

n 4
En n-th Cartesian power of E, n ∈ N 34
J real interval of arbitrary type (open or closed from

one or both ends); the same is the meaning of J with
some attached to it indices if the opposite is not stated
explicitly

6

[a, b] close real interval with left (resp. right) end a (resp.
b), with a, b ∈ R and a ≤ b

27

(a, b] closed from right and opened from left real interval
with left (resp. right) end a (resp. b), with a, b ∈ R

and a < b

27

[a, b) closed from left and opened from right real interval
with left (resp. right) end a (resp. b), with a, b ∈ R

and a < b

27

continued on the next page
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Symbol Explanation Page
(a, b) open real interval with left (resp. right) end a (resp.

b), with a, b ∈ R and a < b
27

Jn neighborhood in Rn, n ∈ N 161
⊗ tensor product sign 17
⊗kV V ⊗ · · · ⊗ V where the vector space V over K is taken

k times, k ∈ N ∪ {0}; ⊗0V := K

17

A∗ object dual to an object A, A being a vector or vector
space

15

i, j, k, . . . indices running from 1 to the dimension of a vector
space

5

{ei} basis in a vector space 83
A(ij) symmetrization over the indices i and j; equals to

1
2 (Aij + Aji) (see the list of conventions, page xii)

24

A[ij] antisymmetrization over the indices i and j; equals to
1
2 (Aij − Aji) (see the list of conventions, page xii)

24

[A, B] commutator of operators A and B on a linear space;
equals to A ◦ B − B ◦ A

13

Matrices

1 identity (unit) matrix of the corresponding size 89
1n the identity (unit) n × n, n ∈ N, matrix 97
δij = δij = δj

i Kronecker delta symbol(s), δj
i = 1 for i = j and δj

i = 0
for i 
= j

15

A = [Aj
i ] square matrix A with elements Aj

i 11
A = [Aj

i ]
n
i,j=1 the same, but the range of the indexes i and j is writ-

ten explicitly
11

diag(a1, . . . , an) diagonal matrix with diagonal elements a1, . . . , an;
equals to [δijaj]ni,j=1

36

det(A) ≡ detA determinant of square matrix A 36
A−1 inverse matrix of non-degenerate square matrix A 11
A� transposed matrix of a matrix A = [Aij ], (A�)ij :=

Aji; for A = [Aj
i], we put (A�) k

j := Aj
k, i.e., the su-

perscript is considered as ‘first’ index, which numbers
the rows of a matrix

47

continued on the next page
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Symbol Explanation Page
GL(n, K) the set of n × n, n ∈ N, invertible matrices on a field

K

82

Manifolds

M differentiable manifold 4
dimM ≡ dim(M) dimension of manifold M 5
dimC M dimension of a complex manifold M ; dimC M :=

dimM
5

dimR M the real dimension of manifold M : dimR M = dimM
if M is real and dimR M = 2 dimM = 2 dimC M if M
is complex.

5

U subset of M , often an open set (neighborhood) 5
N submanifold of M 7
Tp(M) space tangent to M at p ∈ M 9
T ∗

p (M) space cotangent to M at p ∈ M 15
T (M) bundle space tangent to M ; T (M) :=

⋃
p∈M Tp(M) 11

T ∗(M) bundle space cotangent to M ; T ∗(M) :=
⋃

p∈M T ∗
p (M) 70

Tp
r
s(M) tensor space of type (r, s), r, s ∈ N ∪ {0}, over p ∈ M 17

T r
s (M) tensor bundle space of type

(r, s), T r
s (M) :=

⋃
p∈M Tp

r
s(M)

223

λ, µ, ν, . . . indices running from 1 to the dimension of a differen-
tiable manifold (see the list of conventions, page xi)

247

[ · , · ] commutator (of vector fields); [X, Y ] := X ◦Y −Y ◦X 13
{ri} standard Cartesian coordinates on Kdim M 5
{Ei|p} basis in Tp(M) 11
{Ei|p} basis in T ∗

p (M) dual to {Ei|p}; Ei|p := (Ei|p)∗ 15
{Ei} basis in T (M); frame on U ⊆ M 12
{Ei} basis in T ∗(M) dual to {Ei}; coframe on U ⊆ M ,

Ei := (Ei)∗
16

Ci
jk structure functions of a frame {Ei}; [Ej , Ek] =: Ci

jkEi 26
(U, ϕ) (local) chart with domain U and homomorphism ϕ 5
{ϕi} (local) coordinate system assigned to a chart (U, ϕ) 5{

∂
∂xi

∣∣
p

}
coordinate basis in Tp(M), p ∈ M 10

continued on the next page
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Symbol Explanation Page{
∂

∂xi

}
coordinate frame on U ⊆ M 12{

dxi|p
}

coordinate (co)basis in T ∗
p (M), p ∈ M dual to

{
∂

∂xi

∣∣
p

}
15{

dxi
}

coordinate coframe on U ⊆ M dual to
{

∂
∂xi

}
16

Ck mapping mapping having continuous derivative(s) up to k-th
order including, k ∈ N ∪ {0,∞, ω}

7

f∗ differential (induced tangent) mapping of a differen-
tiable mapping f

13

F(U) the algebra of functions on U ⊆ M 8
Fr(U) the algebra of Cr functions on U ⊆ M 8
X(U) the F(U)-module of vector fields on U ⊆ M 11
Xr(U) the Fr(U)-module of Cr vector fields on U ⊆ M 13
Tr

s(U) the F(U)-module of tensor fields of type (r, s) on U ⊆
M

18

Tr;k
s (U) the Fk(U)-module of Ck tensor fields of type (r, s) on

U ⊆ M
19

T p(M) the tensor algebra at p ∈ M 17
T (U) the algebra of tensor fields on U ⊆ M 19
T r(U) the algebra of Cr tensor fields on U ⊆ M 19
Cr

s contraction operator of type (r, s), acting on the rth

superscript and sth subscript
19

C contraction operator of arbitrary type 19
f,i the action of a basic vector field Ei on f ∈ F1(M);

equals to Ei(f) (in coordinate frame coincides with
the ith partial derivative of f)

26

g Riemannian metric 34
γ : J → M path in M 9
γ̇(s) the vector tangent to a C1 path γ at parameter value

s ∈ J , γ̇(s) ∈ Tγ(s)(M)
9

γ̇ the vector field tangent to C1 injective path γ, i.e.,
γ̇ : γ(s) �→ γ̇(s); the tangent lifting of arbitrary C1

path γ, i.e., γ̇ : s �→ γ̇(s)

11

∆ distribution on manifold 338
∆p the value of ∆ at p ∈ M ; ∆p ⊆ Tp(M) 338
LX Lie derivative along vector field X 144

continued on the next page
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Symbol Explanation Page
Linear connections on manifolds

∇ linear connection; covariant (absolute) differential 21
∇X covariant derivative along vector field X 21
T torsion, torsion tensor field (operator) 25
R curvature, curvature tensor field (operator) 25
Γi

jk (local) coefficients of linear connection in a (local)
frame {Ei}

22

Γk :=
[
Γi

jk

]dim M

i,j=1
matrices of the coefficients of a linear connection; con-
nection matrices, coefficients’ matrices

38

T i
jk (local) components of the torsion in a (local) frame

{Ei}
26

Ri
jkl (local) components of the curvature in a (local) frame

{Ei}
26

Rkl matrices of the curvature components, curvature ma-
trices; Rkl :=

[
Ri

jkl

]dim M

i,j=1

105

{
i

jk

}
Christoffel symbols (of a metric) 36

Derivations on manifolds

D derivation or derivation along vector fields 143
DX derivation along (tangent) vector field X 144
ΓX

i
j components of derivation along vector field X in a (lo-

cal) frame {Ei}
147

ΓX =
[
ΓX

i
j

]dim M

i,j=1
the matrix of the components of a derivation along a
vector field X

147

R curvature, curvature operator 147
T torsion, torsion operator 147
RD curvature of a derivation D along vector fields 147
T D torsion of a derivation D along vector fields 147
Γi

jk coefficients of a linear derivation along vector fields 146
Γk =

[
Γi

jk

]dim M

i,j=1
matrices of the coefficients of a linear derivation along
vector fields; coefficients’ matrices

145

D (section-, vector-, tensor-)derivation along paths 191
Dγ derivation along path γ 191
continued on the next page
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Symbol Explanation Page
Γγ

i
j components of derivation along γ : J → M 192

Γi
j(s; γ) the value of Γγ

i
j at s ∈ J 192

Γγ :=
[
Γγ

i
j

]
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