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Preface

The nineteenth century saw the systematic study of new “special functions”,
such as the hypergeometric, Legendre and elliptic functions, that were relevant
in number theory and geometry, and at the same time useful in applications.
To understand the properties of these functions, it became important to study
their behavior near their singularities in the complex plane. For linear equa-
tions, two cases were distinguished: the Fuchsian case, in which all formal
solutions converge, and the non-Fuchsian case. Linear systems of the form

z
du

dz
+ A(z)u = 0,

with A holomorphic around the origin, form the prototype of the Fuchsian
class. The study of expansions for this class of equations forms the familiar
“Fuchs–Frobenius theory,” developed at the end of the nineteenth century
by Weierstrass’s school. The classification of singularity types of solutions of
nonlinear equations was incomplete, and the Painlevé–Gambier classification,
for second-order scalar equations of special form, left no hope of finding general
abstract results.

The twentieth century saw, under the pressure of specific problems, the
development of corresponding results for partial differential equations (PDEs):
The Euler–Poisson–Darboux equation

utt +
λ

t
ut −Δu = 0

and its elliptic counterpart arise in axisymmetric potential theory and in the
method of spherical means; it also comes up in special reductions of Einstein’s
equations. In particular, one realized that equations with different values of λ
could be related to each other by transformations u �→ tmu. Elliptic problems
in corner domains and problems with double characteristics also led to fur-
ther generalizations. This development was considered as fairly mature in the
1980s; it was realized that some problems required complicated expansions
with logarithms and variable powers, beyond the scope of existing results, but
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it was assumed that this behavior was nongeneric. Nonlinear problems were
practically ignored.

The word “Fuchsian” had come to stand for “equations for which all for-
mal power series solutions are convergent.” Of course, Fuchsian ODEs have
solutions involving logarithms, but by Frobenius’s trick, logarithms could be
viewed as limiting cases of powers, and were therefore not thought of as
generic.

However, in the 1980s difficulties arose when it became necessary to solve
Fuchsian problems arising from other parts of mathematics, or other fields.
The convergence of the “ambient metric” realizing the embedding of a Rie-
mannian manifold in a Lorentz space with a homothety could not be proved in
even dimensions. When, in the wake of the Hawking–Penrose singularity theo-
rems, it became necessary to look for singular solutions of Einstein’s equations,
existing results covered only very special cases, although the field equations
appeared similar to the Euler–Poisson–Darboux equation. Numerical studies
of such space-times led to spiky behavior: were these spikes artefacts? indica-
tions of chaotic behavior?

Other problems seemed unrelated to Fuchsian PDEs. For the blowup prob-
lem for nonlinear wave equations, again in the eighties, Hörmander, John, and
their coworkers computed asymptotic estimates of the blowup time—which is
not a Lorentz invariant. For elliptic problems Δu = f(u) with monotone non-
linearities, solutions with infinite data dominate all solutions, and come up in
several contexts; the boundary behavior of such solutions in bounded C2+α

domains is not a consequence of weighted Schauder estimates. Outside math-
ematics, we may mention laser collapse and the weak detonation problem.
In astrophysics, stellar models raise similar difficulties; equations are singu-
lar at the center, and one would like to have an expansion of solutions near
the singularity to start numerical integration. Also, the theory of solitons has
provided, from 1982 on, a plethora of formal series solutions for completely in-
tegrable PDEs, of which one would like to know whether they represent actual
solutions. Do these series have any relevance to nearly integrable problems?

The method of Fuchsian reduction, or reduction for short, has provided
answers to the above questions. The upshot of reduction is a representation
of the solution u of a nonlinear PDE in the typical form

u = s + Tmv ,

where s is known in closed form, is singular for T = 0, and may involve a finite
number of arbitrary functions. The function v determines the regular part of
u . This representation has the same advantages as an exact solution, because
one can prove that the remainder Tmv is indeed negligible for T small. In
particular, it is available where numerical computation fails; it enables one to
compute which quantities become infinite and at what rate, and to determine
which combinations of the solution and its derivatives remain finite at the
singularity. From it, one can also decide the stability of the singularity under



Preface ix

perturbations, and in particular how the singularity locus may be prescribed
or modified.

Reduction consists in transforming a PDE F [u ] = 0, by changes of vari-
ables and unknowns, into an asymptotically scale-invariant PDE or system of
PDEs

Lv = f [v ]

such that (i) one can introduce appropriate variables (T, x1, . . . ) such that
T = 0 is the singularity locus; (ii) L is scale-invariant in the T -direction;
(iii) f is “small” as T tends to zero; (iv) bounded solutions v of the reduced
equation determine singular u that are singular for T = 0. The right-hand
side may involve derivatives of v . After reduction to a first-order system, one
is usually led to an equation of the general form

(
T

d

dT
+ A

)
w = f [T,w],

where the right-hand side vanishes for T = 0. PDEs of this form will be called
“Fuchsian.” The Fuchsian class is itself invariant under reduction under very
general hypotheses on f and A. This justifies the name of the method.

Since v is typically obtained from u by subtracting its singularities and
dividing by a power of T , v will be called the renormalized unknown. Typically,
the reduced Fuchsian equations have nonsmooth coefficients, and logarithmic
terms in particular are the rule rather than the exception. Since the coefficients
and nonlinearities are not required to be analytic, it will even be possible to
reduce certain equations with irregular singularities to Fuchsian form. Even
though L is scale-invariant, s may not have power-like behavior. Also, in many
cases, it is possible to give a geometric interpretation of the terms that make
up s.

The introduction, Chapter 1, outlines the main steps of the method in
algorithmic form.

Part I describes a systematic strategy for achieving reduction. A few gen-
eral principles that govern the search for a reduced form are given. The list of
examples of equations amenable to reduction presented in this volume is not
meant to be exhaustive. In fact, every new application of reduction so far has
led to a new class of PDEs to which these ideas apply.

Part II develops variants of several existence results for hyperbolic and
elliptic problems in order to solve the reduced Fuchsian problem, since the
transformed problem is generally not amenable to classical results on singular
PDEs.

Part III presents applications. It should be accessible after an upper-
undergraduate course in analysis, and to nonmathematicians, provided they
take for granted the proofs and the theorems from the other parts. Indeed,
the discussion of ideas and applications has been clearly separated from state-
ments of theorems and proofs, to enable the volume to be read at various
levels.
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Part IV collects general-purpose results, on Schauder theory and the dis-
tance function (Chapter 12), and on the Nash–Moser inverse function theorem
(Chapter 13). Together with the computations worked out in the solutions to
the problems, the volume is meant to be self-contained.

Most chapters contain a problem section. The solutions worked out at
the end of the volume may be taken as further prototypes of application of
reduction techniques.

A number of forerunners of reduction may be mentioned.

1. The Briot–Bouquet analysis of singularities of solutions of nonlinear ODEs
of first order, continued by Painlevé and his school for equations of higher
order. It has remained a part of complex analysis. In fact, the catalogue
of possible singularities in this limited framework is still not complete
in many respects. Most of the equations arising in applications are not
covered by this analysis.

2. The regularization of collisions in the N -body problem. This line of
thought has gradually waned, perhaps because of the smallness of the
radius of convergence of the series in some cases, and again because the
relevance to nonanalytic problems was not pursued systematically.

3. A number of special cases for simple ODEs have been rediscovered several
times; a familiar example is the construction of radial solutions of nonlin-
ear elliptic equations, which leads to Fuchsian ODEs with singularity at
r = 0.

In retrospect, reduction techniques are the natural outgrowth of what is tra-
ditionally called the “Weierstrass viewpoint” in complex analysis, as opposed
to the Cauchy and Riemann viewpoints. This viewpoint, from the present per-
spective, puts expansions at the main focus of interest; all relevant information
is derived from them. For this approach to be relevant beyond complex analy-
sis, it was necessary to understand which aspects of the Weierstrass viewpoint
admit a generalization to nonanalytic problems with nonlinearities—and this
generalization required a mature theory of nonlinear PDEs which was devel-
oped relatively recently. The development of reduction techniques in the early
nineties seems to have been stimulated by the convergence of five factors:

1. The emergence of singularities as a legitimate field of study, as opposed
to a pathology that merely indicates the failure of global existence or
regularity.

2. The existence of a mature theory of elliptic and hyperbolic PDEs, which
could be generalized to singular problems.

3. The failure of the search for a weak functional setting that would include
blowup singularities for the simplest nonlinear wave equations.

4. The rediscovery of complex analysis stimulated by the emergence of soliton
theory.

5. The availability of a beginning of a theory of Fuchsian PDEs, as opposed
to ODEs, albeit developed for very different reasons, as we saw.
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On a more personal note, a number of mathematicians have, directly or indi-
rectly, helped the author in the emergence of reduction techniques: D. Aronson,
C. Bardos, L. Boutet de Monvel, P. Garrett, P. D. Lax, W. Littman,
L. Nirenberg, P. J. Olver, W. Strauss, D. H. Sattinger, A. Tannenbaum,
E. Zeidler. In fact, my indebtedness extends to many other mathematicians
whom I have met or read, including the anonymous referees. H. Brezis, whose
mathematical influence may be felt in several of my works, deserves a special
place. I am also grateful to him for welcoming this volume in this series, and
to A. Kostant and A. Paranjpye at Birkhäuser, for their kind help with this
project.

Paris Satyanad Kichenassamy
February 27, 2007
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1

Introduction

This introduction defines Fuchsian reduction, or reduction for short, illus-
trates it with a number of simple examples and outlines its main successes.
The technical aspects of the theory are developed in the subsequent chap-
ters. The upshot of reduction is a parameterized representation of solutions
of nonlinear differential equations, in which singularity locus may be one of
the parameters. We first show, on a very simple example, the advantages of
such a representation. We then describe the main steps of the reduction pro-
cess in general terms, and show in concrete situations how this reduction is
achieved. We close this introduction with a survey of the impact of reduction
on applications.

1.1 Singularity locus as parameter

Consider the ODE
du

dt
= u2.

The solution taking the value a for t = t0 is

u(a, t0, t) =
a

1 − a(t − t0)
.

The set of solutions may be parameterized by two parameters (a, t0). The
procedure is quite similar to solving the algebraic equation s2 + t2 = 1 in
the form s = s(t) = ±√

1 − t2, in which t plays the role of a parameter, or
local coordinate. But unlike the representation s = s(t), the representation
u = u(a, t0, t) is redundant: only one parameter suffices to describe the general
solution. Indeed, let b = a/(1 + at0); we obtain

u(a, t0, t) =
b

1 − bt
.



2 1 Introduction

The parameter b gives the position of the (only) singular point of the solution,
namely 1/b.

Quite generally, finding the general solution of a differential equation
amounts to finding a set of parameters that label all solutions close to a given
one. The process is comparable to finding local coordinates on a manifold.
Taking singularity locus as one of the parameters, one obtains a parameteri-
zation without redundancy, unlike the parameterization by t0 and the Cauchy
data at time t0.

1.2 The main steps of reduction

A complete application of the reduction technique to a specific problem

F [u ] = 0

follows four steps, detailed below. The square brackets indicate that F may
depend on u and its derivatives, as well as on independent variables.

• Leading-order analysis.
• First reduction and formal solutions.
• Second reduction and characterization of solutions.
• Invertibility and stability of solutions.

Let us briefly describe how these steps would be carried out for a typical class
of problems: those for which the leading term is a power. Many other types
of leading behavior arise in applications, including logarithms and variable
powers. They will be discussed in due time.

The objective of leading-order analysis is to find a function T and a pair
(u0, ν) such that F [u0T

ν ] vanishes to leading order. The hope is to find
solutions such that

u ∼ u0T
ν. (1.1)

The objective of the first reduction is to construct a formal solution of the
typical form

u = T ν
∞∑
j=0

j∑
p=0

ujpT
j(lnT )p. (1.2)

It is achieved by introducing a renormalized unknown v , of which a typical
definition has the form

u = T ν(u0 + T εv ).

Change variables so that T is the first independent variable. Let D = T ∂
∂T . If

ε is small enough, v solves a system of the form

(D + A + ε)v = T σf [T, v ].

One then chooses ε such that σ > 0. Such is the typical form of a Fuchsian
first-order system for us. If it is possible to transform a problem into this form
by a change of variables and unknowns, we say that it admits of reduction.
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Chap. 3 gives general situations in which this reduction is possible, and further
special cases are treated in the applications. General results from Chap. 2 give
formal series solutions, and identify the terms containing arbitrary functions
or parameters. The set of arbitrary functions, together with the equation of
the singular set, form the singularity data. In some problems, the singular set
is prescribed at the outset, and is not a free parameter; the singularity data
consist then only of the arbitrary functions or parameters in the expansion.

Remark 1.1. In some cases, it is convenient to reduce first to a higher-order
equation or system, of the form

P (D + ε)v = T σf [T, v ].

The resonances are then defined as the roots of P .

The objective of the second reduction is to prove that the singularity
data determine a unique solution of the equation F [u ] = 0. Introduce a new
renormalized unknown w that satisfies

(D + A + m)w = T τg[T,w]

with τ > 0. It is typically defined by a relation of the form

v = ϕ + T μw,

where ϕ is known in closed form, and what contains all the arbitrary elements
in the formal series solution. If μ is large enough, it turns out that m also is.
One then chooses μ such that A+m has no eigenvalue with negative real part.
One then appeals to one of the general results of Chaps. 4, 5, or 6 to conclude
that the equation for w has a unique solution that remains bounded as T →
0+. It may be necessary to take some of the variables that enter the expansion,
such as t0 = T , t1 = T lnT , as new independent variables; this is essential
for the convergence proof, and provides automatically a uniformization of
solutions; see Chap. 4.

We now turn to the fourth step of the reduction process. Denoting by SD
the singularity data, we have now constructed a mapping Φ : SD �→ u . If, on
the other hand, we have another way of parameterizing solutions, we need to
compare these two parameterizations. For instance, if we are dealing with a
hyperbolic problem, we have a parameterization of solutions by Cauchy data,
symbolically represented by a mapping Ψ : CD �→ u . The objective of the
“invertibility” step is to determine a map CD �→ u �→ SD. This requires
inverting Φ; hence the terminology. At this stage, we know how singularity
data vary: perturbation of Cauchy data merely displaces the singular set or
changes the arbitrary parameters in the expansion, or both.

Thus, the main technical point is the reduction to Fuchsian form and its
exploitation. For this reason, we now give a few very simple illustrations of
the process leading to Fuchsian form.
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1.3 A few definitions

Let us define some terminology that will be used throughout the volume. Let
T be one of the independent variables, and let

D = T
∂

∂T
.

A system is said to be Fuchsian if it has the form

(D + A)u = F [T,u], (1.3)

where F vanishes with T , and A is linear. The eigenvalues of −A for T = 0
are called resonances, or (Fuchs) indices; they determine the exponents λ
such that the equation (D+A)u = 0 may be expected to have a solution that
behaves like T λ for T small, real, and positive. Similarly, an equation will be
called Fuchsian if it has the form

P (D)u = F [T, u],

where P is a polynomial, possibly with coefficients depending on variables
other than T , and F vanishes with T . The roots of P are called resonances or
Fuchs indices, and they are again associated to solutions with power leading
behavior. Unlike Fuchs–Frobenius theory, the right-hand side and the solution
may not have a continuation to a full complex neighborhood of the origin. The
unknown may have several components, and if so, it is written in boldface;
A is generally a matrix, but could be a differential operator—this makes no
difference in the formal theory. Seemingly more general equations in which
A = A(T,u) may usually be reduced to the standard form (1.3); see Problem
2.7. Note that T 2∂/∂T = s∂/∂s if s = exp(−1/T ), so that equations with ir-
regular singularities may be reduced to Fuchsian form by a nonanalytic change
of variables. A treatment by reduction of some equations with irregular sin-
gular points is given in Problem 4.3. Similarly, higher-order equations may be
reduced to first-order ones, by introducing a set of derivatives of the unknown
as new unknowns, just as in the case of the Cauchy problem.

1.4 An algorithm in eight steps

Let us further subdivide the four basic steps into separate tasks. This yields
an algorithm in eight steps:

• Step A. Choose the expansion variable T . Change variables so that u =
u(y, T ), where y represents new coordinates.

• Step B. List all possible leading terms and choose one. This is generally
achieved by writing

F [u0T
ν] = φ[u0, ν]T ρ(1 + o(1))
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and choosing u0 and ν by the conditions

φ[u0, ν] = 0 and u0 �≡ 0. (1.4)

• Step C. Compute the first reduced equation. If convenient, convert the
equation into a first-order system.

• Step D. Choose ε and determine the resonance equation.
• Step E. Determine the form of the solution. Determine in particular which

coefficients are arbitrary.
• Step F. Compute the second reduced equation.
• Step G. Show that formal solutions are associated to actual solutions.
• Step H. Determine whether the solutions of step G are stable, by inverting

the mapping from singularity data to solutions.

1.5 Simple examples of reduced Fuchsian equations

We show, on prototype situations, how a Fuchsian equation arises naturally,
and how reduction techniques encompass familiar concepts: the Cauchy prob-
lem, stable manifolds, and the Dirichlet problem. We also work out completely
a simple example of analysis of blowup, and outline another, which introduces
the need for logarithmic terms.

1.5.1 The Cauchy problem as a special case of reduction

Consider, to fix ideas, the equation

utt = u2,

and the solution of the Cauchy problem with data prescribed for t = a. Let
T = t− a and

u = u0 + T (u1 + v),

where u0 = u(a) and u1 = u′(a). We obtain

D(D + 1)v = T (u0 + Tu1 + Tv).

This is a Fuchsian equation. We have taken ν = 0, ε = 1, and the reso-
nances are 0 and 1. The solution, which contains three parameters (u0, u1, a),
is redundant, because the mapping (u0, u1, a) �→ u is many-to-one, as in the
example of Sect. 1.1.
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1.5.2 Stable manifolds

Let us seek the (one-dimensional) manifold of solutions of

utt − u = 3u2

that decay as t → +∞. Let T = exp(−t). Since ∂t = −T∂T = −D, we obtain

(D + 1)(D − 1)u = 6u2.

Letting u = aT + T 2v, where a is a given constant, we obtain

(D + 1)(D + 3)v = 3(a + Tv)2.

This is not yet a Fuchsian equation, because the right-hand side is not divisible
by T . We therefore let v = a2 + w, and obtain

(D + 1)(D + 3)w = 3[(a + Tv)2 − a2] = 3Tv(2a2 + Tv).

We have achieved a Fuchsian reduction with ν = 1 and ε = 1. The resonances
are 0 and −2. The stable manifold is parameterized by a.

1.5.3 Dirichlet problem

Consider the problem
−Δu + f(u) = 0

on a smooth bounded domain Ω, with boundary condition u = ϕ(x) on ∂Ω.
Let d(x) denote the distance from x to the boundary of Ω; it is smooth in a
neighborhood of the boundary; see Part IV. Let u = ϕ + dz and g(x, z) :=
df(ϕ + dz). Substituting into the equation and multiplying by d, we obtain

−d2Δz − 2d∇d · ∇z + dg(x, z) = 0.

That z admits an expansion in powers of d is a consequence of Schauder theory.
However, scaled Schauder estimates are not sufficient to handle equations of
the form −d2Δz−ad∇d ·∇z+ bz+dg(x, z) = 0, for general values of a and b.
Now, such operators arise naturally from the asymptotic analysis of geometric
problems leading to boundary blowup. We develop an appropriate regularity
theory in Chap. 6 to obtain an expansion of solutions in such cases.

1.5.4 Blowup for an ODE

Consider the equation
utt − 6u2 − t = 0. (1.5)

We illustrate with this example a practical method for organizing computa-
tions. We are interested in solutions that become singular for t = a.
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Leading-order analysis

Let T = t − a. The equation becomes uTT − 6u2 − T − a = 0. We seek a
possible leading behavior of the form u ∼ u0T

ν with u0 �= 0. It is convenient
to set up the table1

utt −6u2 −T −a
Exponent ν − 2 2ν 1 0
Coefficient ν(ν − 1)u0 −6u2

0 −1 −a

We now seek the smallest exponent in the “Exponent” line in this table.
If ν < 0, the smallest is ν − 2 or 2ν. If these two exponents are distinct,

φ[u0, ν] is proportional to a power of u0, and therefore may vanish only if
u0 = 0, which contradicts (1.4). Therefore, ν − 2 = 2ν, or ν = −2. We then
obtain φ[u0, ν] = 6(u0 − u2

0); hence u0 = 1.
If ν ≥ 0, we obtain 2ν > ν − 2. We are therefore left with the following

cases:

• If 0 ≤ ν < 2, φ[u0, ν] = ν(ν − 1)u0. Therefore, ν = 0 or 1, corresponding
to solutions such that u ∼ u0 and u ≡ u0T respectively. These are special
cases of the Cauchy problem in which the Cauchy data are nonzero.

• If ν = 2, the terms utt and −a balance each other, leading to 2u0 = −a,
or u ∼ − 1

2aT
2. This is admissible if a �= 0.

• If ν > 2, the only possibility for a nontrivial balance is a = 0 and ν−2 = 1.
This leads to u ∼ 1

6T
3.

The last two cases correspond to the Cauchy problem in which both Cauchy
data vanish. Since these solutions may be investigated by standard means, we
do not pursue their study any further.

First reduction

Consider first the case u0 = 1, ν = −2. Upon multiplication by T 2, equation
(1.5) turns into

D(D − 1)u− 6(Tu)2 − T 3 − aT 2 = 0.

Let
u =

1
T 2

(1 + T εv(T )).

Substituting into the equation for u, and multiplying through by T 2−ε, we
obtain

1 For ODEs, it is possible to use a variant of Newton’s diagram, as in Puiseux
theory. For PDEs in which u0 may be determined by a differential equation,
rather than an algebraic equation, it is not convenient to do so. For this reason,
we do not use Newton’s diagram.
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(D + ε− 2)(D + ε− 3)v − 6T−ε[(1 + T εv)2 − 1] − T 2−ε[T 3 + aT 2] = 0.

Since
(D + ε− 2)(D + ε− 3) − 12 = (D + ε + 1)(D + ε− 6),

this may be rearranged into

(D + ε + 1)(D + ε− 6)v = 6T εv2 + T 4−ε[T + a].

The resonance polynomial is read off from the previous step: P (X) = (X +
1)(X − 6). The resonances are −1 and 6. Since the right-hand side involves
T ε and T 4−ε, we may take ε in the range [0, 4]. The best is to take ε as large
as possible, namely ε = 4. This gives

(D + 5)(D − 2)v = a + T + 6T 4v2.

Replacing v by v − a
10 leads to a Fuchsian equation with right-hand side

divisible by T . The general results of Chap. 2 yield the formal series solution

u =
1
T 2

− a

10
T 2 − 1

6
T 3 + T 4(b + · · · ),

where b is arbitrary. The first reduction is now complete.

Second reduction

The second reduction is carried out as follows: define w by

u =
1
T 2

− a

10
T 2 − 1

6
T 3 + T 4w(T ).

In other words, v = − a
10 − 1

6T +T 2w. One finds, by direct computation, that
w solves

D(D + 7)w = Tg(T, a, w),
w(0) = b,

where

g(T, a, w) = 6T 2

(
− 1

10
− 1

6
T + T 2w

)2

.

The general results of Chap. 5 show that this problem for w has a unique local
solution. The second reduction is now complete: given any pair (a, b), there is
a unique solution u(t; a, b) of equation (1.5) of the form

u(t; a, b) =
1

(t − a)2
− a

10
(t − a)2 − 1

6
(t − a)3 + b(t− a)4 + · · · ,

where the expansion converges on some disk |t− a| < 2R, where R = R(a, b)
depends smoothly on its arguments. The singularity data are (a, b); solutions
have a double pole for t = a, and b is the coefficient of (t− a)4 in the Laurent
expansion of u.
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Stability of singular behavior

To fix ideas, restrict a and b to a neighborhood of 0 in such a way that the series
converges for |t| < 3R(0, 0)/2. We may then compute u and its derivatives for
t = 0, for a �= 0. We obtain

u(0; a, b) =
1
a2

+ · · · + ba4 + · · · and ut(0; a, b) =
2
a3

+ · · · − 4ba3 + · · · .

It follows that

∂(u, ut)
∂(a, b) t=0

=
∣∣∣∣−2/a3 + · · · a4 + · · ·
−6/a4 + · · · −4a3 + · · ·

∣∣∣∣ = 14 + · · · �= 0.

The map (a, b) �→ (u(0), ut(0)) therefore satisfies the assumptions of the in-
verse function theorem near any (a, b) with a �= 0 and b both small. To sum
up, we have proved the following theorem:

Theorem 1.2. Consider a solution u = u(t; a, b) with a �= 0. If a and b are
small, and if v is a solution with Cauchy data close to (u(0), ut(0)), then
v = u(t; ã, b̃), with (ã, b̃) close to (a, b).

If a becomes large, it is conceivable that the solution has another singularity
between 0 and a. The appropriate stability statement, which involves setting
up a correspondence between singularity data at the two singularities, is left
to the reader.

1.5.5 Singular solutions of ODEs with logarithms

Let us seek singular solutions of

u′′ = u2 + et. (1.6)

It is proved in [14, p. 166] that (1.6) has no solution of the form u = T−2(u0 +
u1T + · · · ), T = t − a, and that terms of the form T 4 ln T must be included.
However, this leads to higher and higher powers of lnT if the computation
is pushed further. We cope with this difficulty by expanding the solution in
powers of T and T lnT .

Theorem 1.3. There is a family of solutions of (1.6) such that u ∼ 6/T 2.
This family is a local representation of the general solution: the parameters
describing the asymptotics are smooth functions of the Cauchy data at a nearby
regular point.

Proof. The argument is similar to the one just given, and we merely indicate
the differences. The formal solution now takes the form

u =
6
T 2

− A

10
T 2 − A

6
T 3 +

A

14
T 4 lnT + T 4v(T, T lnT ) (1.7)
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with A = ea. Here, v is a power series in two variables T and T lnT , entirely
determined by its constant term. Since we have the form of the solution at
hand, let us directly write the equation solved by v, which is the second
reduced equation:

D(D + 7)v = T 2

(
− A

10
− AT

6
+ T 2w

)2

+ A

(
T

3!
+

T 2

4!
+ · · ·

)
. (1.8)

It has the general form

D(D + 7)v = Tf(T, T lnT, v), (1.9)

and Theorem 4.3 gives the existence and uniqueness of a local solution with
v(0) prescribed; it is the sum of a convergent power series in T and T lnT .
Let b = v(0). The singularity data are (a, b). We conclude with the stability
analysis. Since A = ea, we have

∂u

∂a
=

12
T 3

A

5
T + A

(
− 1

10
+

1
3

)
T 2 + O(T 3),

∂u

∂b
= T 4 + o(T 4).

These relations can be differentiated with respect to t. We can therefore com-
pute the Jacobian of the mapping Φ : (a, b) �→ (u(t0), u′(t0)) if t0 is close
enough to zero. In fact, in that case, one may replace ∂u/∂a and ∂u/∂b by
their equivalents. We can then invert the map Φ and conclude, as before, that
we have achieved a local representation of the general solution. �

Even though v exhibits branching because of the logarithm, it is obtained
from a single-valued function of two variables by performing a multivalued
substitution. In other words, this representation is a uniformization of the
solution.

1.5.6 Blowup for a PDE

We now move to the next level of difficulty: a PDE that requires logarithmic
terms in the expansion of solutions. Since the manipulations involved are
typical of those required for all the applications to nonlinear waves, we write
out the computations in detail. In particular, all background definitions from
Riemannian geometry are included, so that the treatment is self-contained.

Let us perform the first reduction for the hyperbolic equation:

�u = expu,

where � = ∂tt−Δ is the wave operator in n space variables. This equation is
the n-dimensional Liouville equation. In one space dimension, this equation
is exactly solvable; see Sect. 10.6. It was this exact solution that suggested
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the introduction of Fuchsian reduction in the first place [120]. The objective
is to show that near singularities, the equation is not governed by the wave
operator, but by an operator for which the singular set is characteristic. This
suggests that blowup singularities for nonlinear wave equations are not due
to the focusing of rays for the wave operator, and that the correct results
on the propagation of singularities must be based on this Fuchsian principal
part rather than the wave operator. This statement will be substantiated
in Chap. 10, where the other steps of reduction, including stability, will be
carried out.

Leading-order analysis

Let us first define new independent variables:

X0 = T = φ(x, t) = t− ψ(x), X i′ = xi for 1 ≤ i ≤ n. (1.10)

Note that ∂iT = −ψi and ∂ig = ∂i′g if g = g(X), so that Δg = Δ′g in
particular. It is convenient to put coordinate indices as exponents, and to use
primed indices to denote derivatives with respect to the coordinates (X,T ).

Lemma 1.4. In these coordinates, the wave operator takes the form

� = γ∂2
T −

(∑
i′

∂2
i′ − 2ψi∂Ti′

)
+ (Δψ)∂T , (1.11)

where
γ = (1 − |∇ψ|2). (1.12)

Proof. For fixed i, ∂ii can be expressed as follows (we write ∂i′ for δi
′
i ∂i′):

(∂i′ − ψi∂T )2 = (∂i′ − ψi∂T )∂i′ − ∂i(ψi∂T )
= (∂i′ − ψi∂T )∂i′ − (Δψ)∂T − ψi∂iT

= ∂2
i′ − ψi∂Ti′ − (Δψ)∂T − ψi(∂i′ − ψi∂T )∂T

= ∂2
i′ − 2ψi∂Ti′ + |∇ψ|2∂2

T − (Δψ)∂T .

The result follows. �

By tabulating possible cases as before, we find that there is no consistent
leading term for which u behaves like a power of T ; therefore, we seek u
with logarithmic behavior, and require expu ∼ u0T

ν . Substituting into the
equation and balancing the most singular terms leads to u0 = 2 and ν = −2.
The leading term is therefore u ≈ ln(2/T 2).
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First Reduction

We define a first renormalized unknown v(X,T ) by

u = ln(
2
φ2

) + v(X,T )T ε.

We leave it to the reader to compute the first reduced equation and check that
ε = 0 leads to a Fuchsian PDE for v. We obtain the resonance polynomial
P (X) = (X + 1)(X − 2). The indices are therefore −1 and 2.

General results from Chap. 2 imply that no logarithms enter the solution
until the term in T 2, since the smallest positive index is 2; furthermore, since it
is simple, there is a formal solution in powers of T and T lnT , which is entirely
determined by the coefficient of T 2. To perform reduction, we need to compute
the first few terms of the expansion. Inserting v = v(0)(X) + Tv(1)(X) + · · ·
into the first reduction and setting to zero the coefficients of T−2 and T−1 in
it, we obtain

v(0) = ln γ, v(1) = −γ−1Δψ.

However, it is not possible to continue the expansion with a term v(2)T 2:
substitution into the equation shows that v(2) does not contribute any term
of degree 0 to the equation. In fact, v(2) is arbitrary, and we must include a
term in R1(X)T 2 lnT in the expansion.

Second reduction

Define the second renormalized unknown w by

u = ln
2
T 2

+ v(0) + v(1)T + R1T
2 lnT + T 2w(X,T ), (1.13)

where R1 will be determined below.

Lemma 1.5. The second reduction leads to the Fuchsian PDE

γ(T∂T )(T∂T + 3)w

+ T
[
(Δψ)(R1 + (T∂T )w) + 2ψiδi

′
i ∂i′(R1 + (T∂T )w)

−T lnTΔR1 − TΔw
]

+ 4ψiδi
′
i ∂i′(R1T lnT + Tw) + 2(Δψ)(R1T lnT + Tw) − TΔv(1)

= (1 − |∇ψ|2)
{

(v(1) + R1T lnT + Tw)2 − [v(1)]2 (1.14)

+T (v(1) + R1T lnT + Tw)3

×
∫ 1

0

(1 − σ)2 exp(Tσ(v(1) + R1T lnT + Tw)) dσ

}

for w.
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This equation for w has the form

(1 − |∇ψ|2)D(D + 3)w + α(X) + 3γR1 = O(T ),

where O(T ) refers to terms that all have a factor of T . We must therefore take
R1 = −α/3γ. The vanishing of α is the necessary and sufficient condition for
the absence of logarithmic terms in the expansion of w; in that case, expu
does not involve logarithms at all. In the analytic case, the existence theorems
from Chap. 4 imply that the equation �u = eu has a solution such that e−u

is holomorphic near the hypersurface of the equation t = ψ(x). Since this
regularity statement is independent of the representation of the hypersurface,
we expect the vanishing of α to have a geometric meaning in terms of the
geometry of the blowup surface in Minkowski space. In this case, one can say
more:

Theorem 1.6. The quantity R1 equals −2R/(3γ), where R is the scalar cur-
vature of the blowup surface; furthermore, α = 2R.

For the proof, see Problem 3.8.

Remark 1.7. For other nonlinearities, the no-logarithm condition may also in-
volve the second fundamental form of the blowup surface. An example of such
computations will be outlined in Chap. 10. Similar results are available in the
elliptic case. Taking T to be the distance to the singular surface enables one
to give a geometric interpretation for other elements of the expansion of the
solution.

Stability is proved in Sect. 10.2.

1.6 Reduction and applications

We have seen that reduction arises naturally when one attempts to perform
an asymptotic analysis of nonlinear PDEs near singularities. We now turn to
the benefits of such information for applications.

1.6.1 Blowup pattern

Applications to nonlinear wave equations rest on the notion of a blowup pat-
tern, which is not a wave. To describe the difference in intuitive terms, con-
sider the following situation. Take a flashlight, and direct it toward a wall.
One sees a spot of light. Now move your hand slightly, so that the spot of
light moves on the wall. Clearly, the motion of the spot is not a wave propa-
gation, because the spot does not move by itself, but merely because its source
moves. Similarly, it is a familiar fact that nonlinear wave equations may have
solutions that develop singularities in finite time. Due to the finite speed of
propagation, singularities usually do not appear simultaneously at all points
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in space. The locus of singular points at any given time therefore defines a
specific evolving pattern that forms spontaneously. This pattern is a collec-
tive result of the evolution of the solution as a whole, for one singularity is
not necessarily causally related to nearby singularities in space-time. If this
causal relation does hold, we may talk of wave propagation; but patterns are
distinct from wave propagation, in which a definite physical quantity is being
tracked as it propagates gradually and causally. In the problems considered
here, the pattern at time t is given by an equation of the form ψ(x) = t. The
considerations leading to this concept are further elaborated in Sect. 10.1.

If a singularity pattern is to be significant, it is necessary that it should
be stable under perturbations of the initial data. If the equation itself is
a model in which various effects have been neglected, we should also re-
quire stability of the pattern under perturbations of the equation: thus,
if a singularity pattern is present for an exactly solvable model, it should
also be present for its nearly integrable perturbations, as in Sect. 10.5.
Reduction techniques investigate whether it is possible to embed a singu-
lar solution into a family of solutions with the maximum number of free
functions or parameters; if this is the case, we say that the singular solution
is stable.

Advantages of this viewpoint include the following: (i) the blowup time
is obtained as the infimum of the equation ψ of the blowup surface; (ii) un-
like self-similar estimates, one obtains precise information on the behavior of
solutions in directions nearly tangential to the blowup surface; (iii) geomet-
ric information on the blowup set is obtained; (iv) continuation after blowup
may be studied easily whenever it is relevant. In addition, unlike asymptotic
methods, reduction provides a representation of solutions in a finite neigh-
borhood of their singular set. Therefore, it represents large-amplitude waves
accurately, a short time before blowup. This is appropriate since in many ap-
plications, the solution becomes large, but not actually infinite; in particular,
reduction predicts the approximate shape of the set where the size of the solu-
tion exceeds a given quantity, and furnishes combinations of the solution and
its derivatives that remain finite at blowup.

1.6.2 Laser collapse

We consider a model for laser collapse, which improves on the familiar NLS
model in media with Kerr nonlinearity, by taking into account normal disper-
sion and lack of paraxiality. Modeling leads to a nonlinear hyperbolic equation
with smooth data for t = 0, the solutions of which blow up on a hypersur-
face t = ψ(x); see Chap. 10 for details. The main practical consequences of
reduction are these:

• The rate of concentration of energy may be computed, and is related to
the mean curvature of the singular locus.

• It is possible to compute solutions that blow up at two nearby points, pos-
sibly at different times; such solutions may account for “pulse-splitting.”
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• The solutions are stable in the sense that a small deformation of the blowup
set and the asymptotics induces a small change in the solution, even though
it is singular.

• Near singularities, solutions have the form u = v + w, where v is given
in closed form and may therefore be treated as a substitute for an exact
solution, which takes over when numerical computations break down.

From a mathematical standpoint:

• The local model near the singularity is not the wave equation, but a linear
Fuchsian equation for which the blowup surface, which is spacelike, is
characteristic.

• Reduction methods give in particular self-similar asymptotics, but it also
provides information in a full neighborhood of the blowup set, in particular
outside null cones or backward parabolas under the first blowup point.

• If we decompose u = v + w, where v contains the first few terms of the
expansion of u, and write CD for the Cauchy data for t = 0, the map
CD�→ u(t, .) fails to be continuous in, say, the H1 topology for t large,
even if CD is very smooth; nevertheless, reduction shows that the map
CD�→ w(t, .) is well behaved, and that v is determined by two functions
that are also well behaved.

1.6.3 The weak detonation problem

The mathematical issue is to analyze the solution of a nonlinear hyperbolic
problem, with smooth data, that blows up, representing the onset of det-
onation. In addition to the above advantages (explicit formulas, geometric
interpretation, substitute for numerics), reduction explains how to interpret
rigorously the linearized solutions that are more singular than the solution
of the detonation problem. The blowup surface is spacelike, reflecting the
supersonic character of the detonation front.

As in the previous application, Reduction shows that blowup leads to
the formation of a pattern—as opposed to a wave: the various points on the
blowup surface are not causally related to one another, but nearby points on
this surface have nearby domains of dependence. These two points are respec-
tively reflected in two facts: (i) blowup singularities do not propagate along
characteristic surfaces for the wave operator; (ii) the regularity of the blowup
surface is related to the regularity of the Cauchy data. These facts will be as-
certained by a direct procedure: construct the solution almost explicitly, and
read off the desired information. The explicit character of reduction accounts
for its practical usefulness.

1.6.4 Cosmology

As a further application, we turn to cosmology, referring to Chap. 8 for de-
tails. The big-bang model has been derived on the assumption that the large-
scale structure of the universe is spatially isotropic and homogeneous. Since
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the universe is obviously not exactly homogeneous, and since the Friedmann–
Lemâıtre–Robertson–Walker (FLRW) solution of Einstein’s equation underly-
ing the model does not seem to be stable under inhomogeneous perturbations,
it is desirable to find cosmological solutions that allow inhomogeneities, and
to investigate whether stable solutions are at least asymptotically isotropic
and inhomogeneous. In the mid-seventies, the mathematical issue was clearly
identified [54]: is there a mechanism whereby “space derivatives” dominate
“time derivatives” near the singularity? If this is the case, the space-time is
said to be “asymptotically velocity-dominated” (AVD). After many inconclu-
sive attempts, numerics were tried; they were consistent with AVD behavior,
except at certain places corresponding to spikes in the output of computation.

Reduction gave an explanation of AVD behavior: the relevant equations
can be reduced to a Fuchsian form

tut + A(x)u = tεf(t, x, u, ux),

with ε > 0, in which x-derivatives are indeed less important than time deriva-
tives as t → 0, because the time derivatives enter with an expression homo-
geneous of degree zero in t (the left-hand side), while the space derivatives
are homogeneous of positive degree ε. Thus, any term in the expansion of
u of the form tk, with k constant, contributes terms of order tk to the left
hand side, but tk+ε to the right hand side. Since the exponent k must also
be allowed to depend on x, a careful treatment is necessary, but the above
justification remains in essentials. A detailed analysis of the expansion of the
solutions in this case shows that it involves four arbitrary functions, and that
the form of the expansion changes if the derivative of one of the arbitrary
functions vanishes. Some spikes observed in computations are not numerical
artefacts, but correspond precisely to the extrema of this arbitrary function.
Other spikes, due to a poor choice of coordinates, may also be analyzed. This
work has been extended to other types of matter terms. It seems to be the only
practical and rigorous procedure for systematically constructing solutions of
Einstein’s equations with singularities containing arbitrary functions.

1.6.5 Conformal geometry

Conformal geometry is the geometry of a class of metrics related to one an-
other by a multiplicative conformal factor e2σ that varies from point to point.
Thus, angles between curves are well determined, but length scales may vary
from point to point.

The first application of reduction in this context concerns the two-
dimensional Liouville equation. It is one of the very first nonlinear PDEs to
have been studied. The number of contexts in which it arises is extremely
large, and contributions to its study span one and a half centuries, from
Liouville’s paper [136] onward. Our results pertain to the so-called confor-
mal radius, defined in terms of conformal mapping.
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Let us therefore recall some background information on conformal map-
ping. The Riemann mapping theorem states that any simply connected do-
main Ω ⊂ R

2, which we assume bounded for simplicity, may be mapped
onto the unit disk by an analytic function of z = x + iy; this mapping is
not isometric, but effects a conformal change of metric, with conformal factor
|f ′(z)|2. This map, unique up to homographies, may be found as follows: fix
any z0 = x + iy ∈ Ω, and consider the class of all analytic functions f(z)
defined on Ω such that f(z0) = 0 and f ′(z0) = 0. For any such f , let R(f, z0)
be the least upper bound of the numbers R such that f(Ω) is included in the
disk of center 0 and radius R. Let

r(z0) = inf
f

R(f, z0),

where f varies in the class of analytic mappings defined on Ω. It turns out that
there is a conformal mapping from Ω onto the disk of radius r(z0) about the
origin; a rescaling furnishes a conformal mapping onto the unit disk. The con-
sideration of minimizing sequences for R is the simplest strategy to prove the
Riemann mapping theorem. The function (x, y) �→ r(z0) is the mapping radius
function of Ω; it is also called conformal radius or hyperbolic radius because
the metric r−2(dx2 + dy2), which blows up at the boundary, is a complete,
conformally flat metric that generalizes Poincaré’s hyperbolic metric on the
unit disk or the half-plane. It is possible to recover a conformal mapping from
Ω to the unit disk from the mapping radius function. The mapping radius
was extensively studied in the twentieth century, and has several other ap-
plications that require understanding the boundary behavior of the mapping
radius; see the review article [8].

It was conjectured in the mid-eighties that the mapping radius is a C2+α

function up to the boundary if Ω is of class C2+α. Reduction leads to a proof
of this result, without assuming the domain to be simply connected. This
improves the result of [36] to the effect that r is of class C2+β for some β > 0
if Ω is (convex and) of class C4+α.

To see how reduction enters the problem, which at first sight has no con-
nection with singular solutions of PDEs, let us write v(x, y) = r(x + iy). It
turns out (Problem 9.1) that u = − ln v satisfies

−Δu + 4 exp(2u) = 0 (1.15)

in Ω; v solves vΔv = |∇v|2 − 4. Equation (1.15) is known as the Liouville
equation [136]. No boundary condition is imposed; u tends to +∞ as (x, y) ap-
proaches ∂Ω and majorizes all solutions of this equation with smooth bound-
ary values. The latter property holds in higher dimensions, and for large classes
of superlinear monotone nonlinearities, in non-simply-connected domains as
well. As a consequence, solutions to the Liouville equation satisfy an interior a
priori bound involving only the distance to the boundary and not the bound-
ary values at all. Keller and Rademacher also studied this equation in three
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dimensions, which is relevant to electrohydrodynamics. The minima of the ra-
dius function also occur as points of concentration of minimizing sequences in
variational problems of recent interest. This and many other applications re-
quire a detailed knowledge of v [8]. Finally, the numerical computation of the
radius function is effected by solving a Dirichlet problem in a slightly smaller
domain, with Dirichlet data obtained from asymptotics of v. For these reasons,
it is desirable to know the boundary behavior of v.

We will also give a similar result for the n-dimensional analogue of
Liouville’s‘ equation, introduced by Loewner and Nirenberg [137], who showed
that some of the properties of the mapping radius may be generalized by con-
sidering the equation

−Δu + n(n− 2)u
n+2
n−2 = 0 (1.16)

in an n-dimensional domain. Letting v = u−n/(n−2), one solves vΔv =
n
2 (|∇v|2 − 4). We seek to obtain C2+α regularity of v to ensure that v is
a classical solution of this equation. By contrast, u cannot be interpreted as
a distribution solution of (1.16).

After these preliminaries, if v = 2d+d2w, w solves a Fuchsian PDE of the
form

Lw := d2Δw + (4 − n)d∇d · ∇w + (2 − 2n) − 2Δd + dF (w, d∇w); (1.17)

the Liouville equation leads to the same problem, with n = 2. In fact, it is
not necessary that n should be equal to the dimension of Ω; inspection shows
that all we need is that the parameter n in the equation should be larger than
1+α. For this reason, we now allow n to be a real parameter, unrelated to the
space dimension. Therefore, the Liouville and Loewner–Nirenberg equations
admit of reduction, and the regularity of the hyperbolic radius is equivalent to
the extension of Schauder theory to the Fuchsian, degenerate elliptic equation
(1.17).

Even though Δd is of class Cα, the modern form of the interior weighted
Schauder estimates is insufficient to obtain the desired regularity, namely
d2w ∈ C2+α. The reason is that weighted estimates estimate the scale-
invariant ratio

min(d(x), d(y))2+α
|∇2w(P ) −∇2w(Q)|α

|P − Q|α

(see Chap. 12). It is apparent that such an estimate cannot yield d2w ∈ C2+α,
because the distances occur with the power 2 + α rather than 2. In fact, the
result cannot be the sole consequence of ellipticity; simple examples show
that the result is false if one does not take the form of lower-order terms into
account. This issue is familiar in the theory of PDEs with degenerate quadratic
form, such as the so-called Keldysh or Fichera problems, but the estimates
we need do not follow from these Lp results. Also, the singularity of Green’s
function for the corresponding operator on the half-space—an operator similar
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to the Laplace–Beltrami operator on symmetric spaces—does not seem to be
known. One example of a problem with linear degeneracy has been worked
out [71], but the method does not apply to quadratic degeneracy, such as in
our case.

The hyperbolic form of Liouville’s equation—the one actually solved by
Liouville [136]—can be solved completely in closed form.2 Since the detailed
study of this solution formula motivated the development of reduction, it will
be considered in some detail in Chap. 10.

A second application concerns Fefferman’s ambient metric construction. In
1936, Schouten and Haantjes suggested that it was possible to generalize the
classical derivation of the conformal group of the two-sphere, by embedding
it as the section {t = 1} of the light cone in Minkowski space M4, and letting
the Lorentz group act on M4. The problem is to embed an analytic manifold
M of dimension n in a null hypersurface in a Lorentzian manifold G of di-
mension n + 2. This idea was taken up by Fefferman and Graham, who were
interested in deriving conformal invariants of M from Riemannian invariants
of G; they were also motivated by Fefferman’s discovery, from a completely
different perspective, of embeddings of this type in the context of complex
geometry. The problem reduces to the construction of Ricci-flat metrics with
a homothety, constrained to have a special form on a null hypersurface. There
are no symmetry assumptions on the metric. They solved this problem for the
case of n odd; we have solved the problem in full generality. This seems to be
useful in the so-called holographic representation (Witten).

2 In the elliptic case, and in simply connected domains, the solution of the equation
in closed for depends on knowledge of the Riemann mapping.
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Fuchsian Reduction
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Formal Series

The purpose of this chapter is to construct formal solutions for equations or
systems of the general form (1.3), which, we recall, reads

(D + A)u = F [T,u],

where F vanishes with T , and A is linear.
We are interested in finding solutions in a space FS of formal series of the

form
u =

∑
λ∈Λ

uλT
λ, (2.1)

where the set Λ of possible exponents is countable and admits a total ordering
such that (i) any set of the form {μ ∈ Λ : μ < λ} is finite; (ii) uλ may
itself depend on T , but its form is restricted: it must belong to a suitable
vector space Eλ; (iii) the difference between consecutive exponents is bounded
below. The space and the exponents may be real or complex, depending on
the examples. In the simplest situation, λ is an integer, and uλ is a polynomial
in lnT , with coefficients depending on other “spatial” variables.

The space FS will be chosen so that the Fuchsian system may be solved
recursively: formally, the uλ are given by the equations

(D + λ + A)uλ = Fλ, (2.2)

where Fλ is the coefficient of T λ in the expansion of F [T,u ]. Now, if F vanishes
with T , Fλ will depend only on the uμ with μ < λ; as a consequence, (2.2)
is a recurrence relation for computing the uλ. The spaces Eλ are determined
by two requirements:

1. F should act on FS: in practice, this requires FS to be closed under
products and certain derivations;

2. one should be able to solve (D + λ + A)uλ = Fλ in FS if uμ ∈ FS for
μ < λ.
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These requirements enable one in all practical situations to tailor the space
FS to any one of them. The space FS should be taken large enough to
automatically contain all solutions of (1.3) that remain bounded for T real,
small, and positive. It is convenient to treat certain basic expressions in T ,
such as T lnT , or T x, as new independent variables; this leads to spaces with
several “time variables,” in which the operator D must be replaced by another
first-order operator, which we call N . Systems of the form

(N + A)u = F [T,u ],

with A and F as before, will be called generalized Fuchsian systems.
The main issue is therefore to invert D + A or N + A. For this reason,

we begin with properties of the operator D = T∂T , which are of constant
use. We then discuss the main spaces of power series with constant exponents
(independent of x), focusing on the space A� and its generalizations [124, 112].
We then introduce the operator N and discuss the mapping properties of D+A
and N + A between these spaces. An example of a set of series with variable
exponents is discussed next [16]; further examples are left to the exercises.
Finally, the relation between A� and a representation of SL(2) is outlined.

2.1 The Operator D and its first properties

Consider two variables T and L = lnT , which will have a purely formal
meaning in this chapter. In applications, one may take L = ln |T | if one is
interested in real solutions only, or any branch of the logarithm if one wishes
to have complex-valued solutions. We are interested in expressions

u =
∞∑
λ∈Λ

uλ(L)T λ,

where uλ is a polynomial in L with scalar coefficients.
The following formal properties of operator D = T∂T enable one to define

Du

1. DT λ = λT λ;
2. DL = 1;
3. Du = 0 if u is independent of T and L;
4. D satisfies Leibniz’s rule (D(uv) = uDv+vDu for scalar-valued u and v).

One extends D to functions with coefficients in a fixed vector space E that
does not depend on λ by choosing a basis independent of T and working com-
ponentwise: D(u1, . . . , uk) = (Du1, . . . , Duk). Two properties are of constant
use:

For any λ ∈ C, D(T λu) = T λ(D + λ)u, (2.2a)
For any k = 1, 2 . . . , T k∂kT = D(D − 1) · · · (D − k + 1). (2.2b)
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As a consequence, for any polynomial P ,

P (D)(T λu) = T λP (D + λ)u. (2.3)

Similarly, if u is vector-valued and A is an operator that commutes with
multiplication by T λ, then

(D + A)(T λu) = T λ(D + A + λ)u . (2.4)

Finally, for any polynomial Q,

D[Q(L)] = Q′(L), (2.5)

where Q′ is the derivative of the polynomial Q.

Definition 2.1. The order of a polynomial P at λ ∈ C is the smallest power
that occurs in P −P (λ) with a nonzero coefficient. It is the order of vanishing
of P at λ. It is written ord(P, λ). Similarly, the order of a matrix A at λ is
the maximal size of the Jordan blocks for the eigenvalue λ of A;1 it is zero
if λ is not an eigenvalue of A. It is written ord(A, λ).2 We write ordP for
ord(P, 0), and similarly for matrices.

Theorem 2.2. Let q0 be constant. The equation

P (D)u = q0T
λLm

admits solutions of the form q(L)T λ, with q polynomial in L, with

deg q ≤ m + ord(P, λ).

Proof. Writing u = T λv, we are reduced to the case λ = 0. We may write
P (D) = DmR(D), where m = ord(P, 0), and R(0) �= 0. The action of R(D)
on the space of polynomials in L of degree at most m is therefore represented
by a nonsingular triangular matrix. It follows that there is a polynomial Q1

such that R(D)Q1(L) = q0L
m, and deg Q1 ≤ m. But the degree of Q1 cannot

be less than m. Therefore, degQ1 = m. If q(m) = Q1, we obtain P (D)q(L) =
R(D)Q1(L) = q0L

m, as desired. �

Since DmLk = 0 for k < m, q(L) is determined up to the addition of a
polynomial of degree less than m. We record this observation in the form of
a theorem.
1 It is possible to work with the decomposition A = S+N of A into a diagonalizable

and nilpotent part, instead of the Jordan decomposition [88]. Both are of course
closely related.

2 It is at most equal to the multiplicity of λ as an eigenvalue of A. If λ is an
eigenvalue, ord(A, λ) is the smallest s such that (A − λ)s vanishes on the gen-
eralized eigenspace for eigenvalue λ. If pA is the minimal polynomial of A,
ord(A, λ) = ord(pA, λ).
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Theorem 2.3. If P (D)u = 0, then

u =
∑
λ

T λQλ(L),

where the sum extends over the roots λ of P , and degQλ ≤ ord(P, λ) − 1.

As for systems, we have the following theorem.

Theorem 2.4. Let A be a matrix and q a vector, both independent of T and
L; let m be a nonnegative integer. Then the equation

(D + A)u = qLmT λ (2.6)

has a solution of the form Q(L)T λ, where Q is a polynomial of degree at most
m + ord(A,−λ).

Proof. Writing u = T λv, we may reduce the problem to the case λ = 0. If
A is invertible, for any polynomial Q, ϕ =

∑m
j=0(−1)jA−j−1Q(j)(L) solves

(D + A)ϕ = Q(L). The result follows in this case. If A is singular, we decom-
pose the space on which A acts into the direct sum of a space on which it is
invertible and one on which it is nilpotent.3 Since we have already treated the
case of invertible A, it suffices to determine the component of the solution in
the latter space. We therefore assume that A is nilpotent, and seek a solution
of the form

u =
m+s∑
j=0

uj
Lj

j!
,

where s is to be determined. We obtain

(D + A)u =
m+s−1∑
j=0

(Auj + uj+1)
Lj

j!
+ Aum+s

Lm+s

(m + s)!
.

It follows that

u1 = −Au0, . . . ,um = (−1)mAmu0,

um+1 = m!q−Aum, um+2 = −Aum+1, . . . , Aum+s = 0.

Therefore, all the uk for k < m + s are uniquely determined by u0. The
second line now gives 0 = Aum+s = · · · = (−1)s−1Asum+1. We therefore
need As[q − Aum/m!] = 0, with um = (−1)mAmu0. Choose s and u0 such
that

Asq ∈ Ran(Am+1+s), (2.7)

where Ran denotes the range. Since A is nilpotent of order ord(A), this is
certainly possible with s ≤ ord(A). This completes the proof. �

3 This follows from the Jordan decomposition theorem. Recall that A is nilpotent

if some power of A vanishes.
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2.2 The space A� and its variants

This section collects solvability results for nonlinear Fuchsian equations in
spaces adapted to series in integral powers of T and L; they cover the
most common applications. Still larger spaces of series are considered in the
problems.

2.2.1 The space A�

Definition 2.5. For � ≥ 0, A� is the vector space of formal expressions of the
form

u =
∑

0≤p≤�j
ujpT

jLp,

where the coefficients ujp may depend on additional variables x. The same
notation will be used for vector-valued spaces of series if no confusion ensues.

Remark 2.6. If � = 0, we recover the usual space of formal series in T . If � is a
positive integer and S� = T , we may write any element of A� as a series in S
and SL. If 1/� = m is a positive integer, any element of A� may be written as
a series in T and TmL. The real number � is not necessarily an integer. The
restriction p ≤ �j also occurs in the definition of Ecalle’s “seriable functions”
[56]; the latter are, as a rule, represented by divergent series.

It is convenient to treat the variables t0 = T , t1 = TL, t2 = TL2,. . . as new
independent variables; for this reason, we introduce a second space of series.

Definition 2.7. For any integer � ≥ 0, B� is the vector space of formal series
in � + 1 indeterminates t = (t0, . . . , t�). An element of B� will be written

u(t) =
∑
a

uat
a,

where a = (a0, . . . , a�) and ta = Πjt
aj

j .

Remark 2.8. More formally, one could introduce a D-module structure on the
space of series of the form

∑
q≤lp apqT

pLq, by letting operators of the form∑
k bk(T, TL, . . . , TLl)Dk act on it with the rules DT = T , DL = 1.

The space B� is a graded algebra, with the grading given by total degree.4

The spaces A� and B� are related through the map

ϕ : B� → A�,

tk �→ TLk,

1 �→ 1.

4 In other words, any element of B� may be written as a sum of homogeneous
components of increasing degrees, and the product of homogeneous polynomials
of degrees m and n is homogeneous of degree m+ n.
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Definition 2.9. Elements of Kerϕ will be called inessential. Thus, a polyno-
mial or power series P (t) is inessential if

P (t, t ln t, . . . , t(ln t)�) ≡ 0.

We now identify A� with B�/Kerϕ, and define on B� a counterpart N of the
operator D:

Theorem 2.10. (a) The map ϕ admits a degree-preserving right inverse, and
is onto.

(b) Kerϕ coincides with the ideal I generated by the polynomials tktj −
tk−1tj+1 with 0 ≤ j ≤ k − 2. The space A� is isomorphic to B�/I.

(c) There is a unique derivation N on B� such that ϕ ◦N = D ◦ ϕ.

Proof. (a) We must find ψ such that ϕ ◦ ψ is the identity; that ϕ is onto will
follow. First, let ψ(1) = 1. Next, for any monomial T pLq with p > 0, let k
be the smallest integer such that q ≤ kp. It is easy to check that ϕ(takt

b
k−1) =

T pLq if and only if a = q − (k − 1)p and b = kp− q. We therefore let

ψ(rp(ln r)q) = t
q−(k−1)p
k tkp−qk−1 .

The map ψ has the desired properties. In fact, ϕ is an isomorphism for � = 1;
it is also invertible on polynomials of degree zero or one, for any �.

(b) First of all, it is readily verified that I ⊂ Kerϕ. Next, let u ∈ B�.
Consider a typical monomial ta0

0 · · · ta�

� in u. If a� = 0, it already belongs to
B�−1. If ak > 0 for some k ≤ �−2, we may subtract a multiple of t�tk−t�−1tk+1

from u, and thereby reduce a�. In finitely many steps, we are left, at most,
with a monomial of the form ta� t

b
�−1. One repeats this operation for every

monomial occurring in u. This generates a decomposition

u = u1 + u2 + w, (2.8)

where u1 ∈ B�−1, u2 ∈ I, and ψ ◦ϕ(w) = w. In fact, w is a linear combination
of terms of the form ta� t

b
�−1 with a > 0; it follows that ϕ(w) ∈ Ak−1 if and

only if w = 0.
Let us now assume in addition that u ∈ Kerϕ. Since ϕ(w) = −ϕ(u1)

and u1 ∈ B�−1, we obtain ϕ(w) ∈ A�−1. Therefore, w = 0. We have therefore
proved that Kerϕ ⊂ B�−1+I. Since ϕ is injective on B1, we find, by induction
on �, that Kerϕ ⊂ I. This concludes the proof.

(c) Since ϕ is injective on polynomials of degree one, we must have Ntk =
ψ(D(TLk)) = tk + ktk−1. Similarly, N must annihilate terms that do not
contain t . Since the action of a derivation on polynomials of degrees zero and
one determines it completely, we obtain

N =
�∑

k=0

(tk + ktk−1)
∂

∂tk
, (2.9)



2.2 The space A� and its variants 29

with the convention t−1 = 0. This operator has the desired properties. The
result amounts to the identity

D[w(T, T ln T, . . . , T (lnT )�)] = (Nw)(T, T lnT, . . . , T (lnT )�).

2.2.2 Operations on A� and B�

One can define f(u) for u ∈ A� or B�, provided that the Taylor series of f
converges at the constant term of u. We will need a more precise result. Write
t a for ta0

0 · · · ta�

� and |a| = a0 + · · · + a� for the length of the multi-index a.

Lemma 2.11. Let f(u) =
∑

k tkfk(u) and u = v+
∑

|a|=μwat
a, where v and

the coefficients wa belong to B�. Then, if f is analytic at the constant term of
u, we may write

f(u) = f(v) +
∑
|a|=μ

t a

[∑
k

tkφak[w]

]
,

where w denotes the collection of the coefficients wa.

Proof. It suffices to expand f in a Taylor series around v: writing z =∑
|a|=μwat

a, we have

fk(v + z) = fk(v) + f ′
k(v) ·

(∑
a

wat
a

)
+ · · ·

= fk(v) +
∑
a

t a
(
f ′
k(v) · wa +

1
2
f ′′
k (v) · (wa, z) + . . .

)
.

�

Remark 2.12. The decomposition of the lemma is not unique in general. Also,
if f involves Du or x-derivatives of u, the φak will involve the Dwa as well as
spatial derivatives of wa; finally, if the dependence of f(u) on spatial deriva-
tives is linear, then φak will be linear in the corresponding derivatives of w.

Lemma 2.13. If u is as in the preceding lemma, then

N

⎛
⎝∑

|a|=μ
wat

a

⎞
⎠ =

∑
|a|=μ

t a[(N + μ + B)w]a,

where Bwa is a linear combination of the wa′ for which

(a′�, a
′
�−1, . . . , a

′
0) < (a�, a�−1, . . . , a0),

in the sense of lexicographical ordering. In particular, B is nilpotent.
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Proof. One obtains

N(wat a) = t a(N + μ)wa +
∑
a,k

kakwat
a0
0 · · · tak−1+1

k−1 tak−1
k · · · ta�

� ,

which has the desired form. �

The solution of equations in A� rests on Theorems 2.2 and 2.4. From them,
we can determine � such that a given equation admits solutions in A�. We
turn to such results.

2.2.3 Solving Fuchsian equations in A� and B�

Consider first
P (D)u = T aLbf [u], (2.10)

where P is a polynomial, f maps A� to A�, a > 0, and b ≥ 0. The function f
could also involve spatial derivatives, since such operators leave A� invariant.

Theorem 2.14. Equation (2.10) admits a formal solution in A�, provided
that

a� ≥ b + max
j∈N\{0}

ord(P, j).

Proof. Since a > 0, one may seek u =
∑
j≥0 T juj , where the uj are polyno-

mials in L. They can be computed recursively using Theorem 2.2. We must
show that the degree of uj does not exceed j�. It suffices to check that for
every integer j ≥ 0,

(j − a)� + b + ord(P, j) ≤ j�.

This is equivalent to the condition given in the theorem.

Remark 2.15. If we replace (2.10) by a system of the same form, we must
replace ord(P, j) by an integer Mj such that P (D)u = T jQ(L) admits a
solution of the form T jR(L), with degR ≤ degQ + Mj .

We record a simple special case.

Corollary 2.16. If f : A� → A�, P is a polynomial, then the equation

P (D)u = Tf(u)

is solvable in A� if � ≥ maxj>0 ord(P, j).

For generalizations of these spaces to other sets of exponents, see Problem 2.2.
We turn to the main solvability result relative to the operator N .
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Lemma 2.17. If k is an integer, q is independent of t , and A is a constant
matrix, there is an integer �0 that depends on k such that if � ≥ �0, the equation

(N + A)u = qtk (2.11)

has a solution of the form
�∑
j=0

tjvj ,

where the vj are independent of t .

Proof. First, we observe that

(N + A)
�∑
j=0

tjvj =
�∑

j=0

tj{(N + A + 1)vj + (j + 1)vj+1},

where v�+1 is taken to be zero. We therefore need to solve

(N + A + 1)vj + (j + 1)vj+1 = δjkq.

This leads to the system

(A + 1)vj + (j + 1)vj+1 = δjkq.

We may decompose the vj along two complementary subspaces, on which
A + 1 is invertible and nilpotent respectively. The invertible part is solved
immediately by taking v0 = (A+1)−1q and all the other vj = 0. We therefore
assume that (A + 1) is nilpotent. We may then take v0 = 0 and solve for the
other vj recursively. We have vk+1 = q/(k + 1) and

vj =
[−(A + 1)]j−k−1vk+1

j(j − 1) · · · (k + 2)
,

for j > k +1. To find a solution with �+1 variables, we need to choose � such
that one can satisfy the last equation of this system, namely

(A + 1)�−kq = 0,

which holds for � large enough if A is nilpotent.

We close this section with a few results on still more general spaces of series.
They allow us in particular to solve equations in spaces in which � may be less
than one, corresponding to a more economical representation of the solution.

Definition 2.18. For any nondecreasing sequence L = (�0, �1, . . . ), AL is the
space of formal series of the form

u =
∑

0≤p≤j�j
ujpT

jLp,
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where the coefficients ujp are functions of “space” variables (x1, . . . , xn), and
AL,s is the space of series of the form

∑
j≥0

qj(x, L)T j,

where deg qj ≤ �j(j + s) and s ≥ 0. For any of the above series, we write {u}j
for the coefficient of T j; it is a polynomial in L.

Thus, T sAL,s ⊂ AL. The following is easily checked.

Proposition 2.19. If j�j + k�k ≤ (j + k)�j+k for every j and k, AL is closed
under products.

We first analyze the action of nonlinear functions on AL,s.

Lemma 2.20. If u ∈ AL,s, j ≥ r ≥ 1, and p and r are integers, then {T rup}j
has degree in L equal to at most �j−r(j + ps− r).

Proof. Writing u =
∑

j≥0 qj(L)T j, and suppressing the x dependence, we
need to estimate the degree of any expression qj1 · · · qjp in which j1 + · · · +
jp = j − r and, for every k, deg qjk ≤ �jk(jk + s). Since the sequence L is
nondecreasing, this degree is at most

p∑
k=1

�jk(jk + s) ≤ �j−r(j − r + ps),

as announced. �

We now turn to solvability results for Fuchsian equations in AL,s. The un-
known u may have several components.

Lemma 2.21. Let p and r be integers equal to at least 1. Let g be a polynomial
of total degree in u at most p. Then the equation P (D)u = T rg(u) is solvable
in AL,s if (p− 1)s ≤ r and, for j ≥ r,

�j − �j−r ≥ ord(P, j)
j + s

.

Proof. By assumption, T rg is a sum of expressions to which Lemma 2.20
applies. By Theorem 2.2, we need to have, for j ≥ r,

�j(j + s) ≥ �j−r(j + ps− r) + ord(P, j).

In other words, we need (�j−�j−r)(j+s) ≥ �j−r[(p−1)s−r]+ord(P, j). If we
require s to satisfy (p− 1)s − r ≥ 0, the statements of the lemma follow. �

We may now state the main result.
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Theorem 2.22. If g is a polynomial in the components of u, g′ its lineariza-
tion, and f(u) = [g(Tu)− g(0) − g′(0)Tu]/T , the equation

P (D)u = f(u)

is solvable in AL,1 if for every j ≥ 0, �j − �j−1 ≥ ord(P, j)/(j + 1).

Proof. The assumption on f implies that it is a sum of terms of the form
T p−1up with p ≥ 2. We therefore take r = p − 1 and s = 1 in Lemma 2.21;
the theorem follows. �

Remark 2.23. More generally, we may allow g to be a formal power series in
u, A1u, . . . , where A1, . . . are linear.

2.2.4 Two tools for the second reduction

We present two general results that simplify the determination of the second
reduced equation. The first shows how to transform the first reduced equation
so as to increase the eigenvalues of A. The second shows how to perform
a second reduction directly if a formal solution of high order is already at
hand.

How to increase the eigenvalues of A

Since the existence theorems require the eigenvalues of A to have nonnegative
real parts, it is useful to be able to transform the equation at hand so as
to achieve this. The Fuchsian form, thanks to Lemma 2.13, is convenient
for this purpose. Consider a generalized Fuchsian system with several time
variables

(N + A)u =
∑
q≤k0

tqfq(t0, . . . , t�, x,u , ∂xu). (2.12)

Theorem 2.24. Given a Fuchsian system (2.12), one can, after increasing �
if necessary, produce another system of the same form, the solutions of which
generate solutions of (2.12), in which the eigenvalues of A have been raised
by one.

Proof. We write ∂ for ∂x. We seek u in the form

u = u0(x) + t · v(x, t) = u0 + t0v0 + · · · + t�v�. (2.13)

We must choose u0 in the null space of A. The new unknown v = (v0, . . . , v�)
has (� + 1) times as many components as u . Substituting, we find as before
that

(N + A)
�∑
j=0

tjvj =
�∑

j=0

tj{(N + A + 1)vj + (j + 1)vj+1},
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where v�+1 is taken to be zero, and

tqfq(t, x, u0 + t · v, ∂(u0 + t · v)) = tq(fq(0, x, u0, ∂u0) +
�∑
j=0

tjgqj(t, x, v, ∂v)).

We therefore require v to solve the system

(N+A+1)vj+(j+1)vj+1 =
∑
q

δjqfq(0, x, u0, ∂u0)+tqgqj(t, x, v, ∂v), (2.14)

where δjq is the Kronecker symbol. Any solution of (2.14) generates a solution
of (2.12) via (2.13). We now need to absorb δjqfq(0, x, u0, ∂u0) into v . This is
where the value of � may need to be changed. By Lemma 2.17 it is possible to
find w = (wj) such that

(N + A + 1)vj + (j + 1)wj+1 = δjqfq(0, x, u0, ∂u0)

if � is chosen large enough. Therefore, ũ := v − w solves a new Fuchsian
system of the form

(N + A1)ũ =
∑
q≤�

tqgq(t0, . . . , t�, x, ũ , ∂xũ),

in which the eigenvalues of A1 have the form λ+ 1, where λ runs through the
eigenvalues of A. Thus, we have replaced (2.12) by a Fuchsian problem of the
same form, but in which the eigenvalues of A have been raised by 1. �


How to make use of an approximate solution to high order

Given the existence of an approximate solution to a very high order, one
can directly obtain a second reduced equation; in addition to clarifying the
structure of the argument, this technique is useful when it is not convenient to
write out the details of the formal solution. Consider a nonlinear generalized
Fuchsian system

(N + A)u =
∑

0≤j≤�
tjfj. (2.15)

For definiteness, we work with systems in which no derivative higher than the
first occurs in the right-hand side.

Definition 2.25. An expression v =
∑

j≤g vg is a formal solution of (2.15)
up to order g if

(N + A)v =
∑

tjfj[v ] +
∑

|a|=g+1

taφa(t , x), (2.16)

where φa ∈ B�. The remainder may be written in the form

∑
|a|=g+1

taφa(t , x) =
�∑

j=0

∑
|b|=g

tbφbj(t , x).
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Theorem 2.26. If (2.15) has a solution up to order g, there is a system of
the form

((N + A′)w)a =
∑
j

tjgj,a[w],

the solutions w = (wa) of which generate solutions of (2.15) via the substitu-
tion

u = v +
∑
|a|=g

tawa.

The eigenvalues of A′ have the form λ + g, where λ runs through the eigen-
values of A.

Proof. We compute the result of the substitution to find the desired system
for w: by Lemma 2.13, there is a nilpotent matrix B such that

(N + A)
∑
|a|=g

tawa =
∑
|a|=g

ta[(N + A + g + B)w]a.

As for the nonlinear terms, there are functions hj,a such that

fj(x, t, v +
∑
a

tawa) = fj [v ] +
∑
a

tahj,a(x,w, ∂w).

Since v is a formal solution up to order g, (2.16) holds. Letting A′ =
A + g + B, we are led to the system

(N + A′)wa =
∑
j

tj[hj,a(x,w, ∂w) + φaj ],

which has the desired property. �


2.3 Formal series with variable exponents

We now study a space of series adapted to variable powers, such as T x. Situa-
tions of this type are relevant for the applications in Chap. 8. After introducing
the basic variables and studying the action of D and ∂x on them, we turn to
the spaces of series on which the equations Du = f and (D− x)u = f will be
solved. The space of power series in x with positive radius of convergence is
denoted by C{x}.

2.3.1 Basic variables and their properties

We start from the three indeterminates t, tx, and ln t, and the operator D =
t∂t. They satisfy the formal rules

Dt = t, D ln t = 1, Dtx = xtx, ∂xt
x = tx ln t.
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All the formal results in this section are derived from them. We cannot work
with power series in t and tx because the operator D is not invertible on this
space. We need to enlarge our space of series to include solutions of equations
Dku = 1 and Dku = tx for every k ≥ 0. Let us define indeterminates τk and
θk by τk = (ln t)k/k!, θ0 = tx, and

θk = x−k

⎛
⎝tx −

k−1∑
j=0

(x ln t)j

j!

⎞
⎠ = x−k

⎛
⎝tx −

k−1∑
j=0

xjτj

⎞
⎠ . (2.17)

It is convenient to make the convention τ−1 = 0. These new variables are not
independent, since we have

xθk+1 = θk − τk for k ≥ 0. (2.18)

However, it is convenient to keep τk as an independent variable, because it is
annihilated by ∂x.

Remark 2.27. If we consider θk as a holomorphic function for, say, Re x > 0
and Re t > 0, we have

θk =
∞∑
j=k

xj−kτj = kτk

∫ 1

0

(1 − σ)k−1tσxdσ, (2.19)

using Taylor’s formula with integral remainder.

These new variables are adapted to the solution of equations involving D and
D − x because of the following results.

Proposition 2.28. For k ≥ 0, we have

Dτk = τk−1, Dθk+1 = θk, (2.20)
(D − x)θk+1 = τk, Dθ0 = xθ0. (2.21)

Proof. The first and fourth relations are readily verified. Using (2.17) and
(2.18), the second and third relations follow. �

Proposition 2.29. For k ≥ 1 and q ≥ 0, we have

D(θkτq+1) = θkτq + θk−1τq, D(θk+1τ0) = θk,

D(θ0τq+1) = θ0τq + xθ0τq+1, D(θ0τ0) = xθ0.

Proof. This is a direct consequence of Proposition 2.28. �

Proposition 2.30. For k ≥ 1 and q ≥ 0, we have

(D − x)τk = τk−1 − xτk, (D − x)(θ0τk) = θ0Dτk = θ0τk−1,

and
(D − x)(θkτq+1 −

(
k+q
q+1

)
θk+q+1) = θkτq.
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Proof. The first two relations follow from Proposition 2.28. We have, using
(2.20),

(D − x)(θkτq+1) = τk−1τq+1 + θkτq = θkτq +
(k + q)!

(k − 1)!(q + 1)!
τk+q .

The result follows. �

Proposition 2.31. For k ≥ 0, ∂xθk = θk ln t− kθk+1.

Proof. The statement is true if k = 0. If k ≥ 1, we have, using the relation
jτj = τj−1 ln t,

∂xθk = − kx−1−k
(
tx −

k∑
0

xjτj + xkτk

)
+ x−k

(
tx −

k−2∑
0

xjτj

)
ln t

= − kθk+1 +

(
tx −

k−2∑
0

xjτj − xk−1τk−1

)
x−k ln t,

= θk ln t− kθk+1.

�

Since ln t = θ1 − xθ2, the variables τq may be expressed in terms of the θk

if we allow x-dependent coefficients.

Proposition 2.32. The variables τq belong to the algebra over C{x} generated
by the θk. This algebra is invariant under the operators D and ∂x.

2.3.2 Spaces of series

We now define three families of finite-dimensional spaces: for M ≥ 0,

EM :=

⎧⎨
⎩u(x, t) : u =

∑
k+q=M

akq(x)θkτq

⎫⎬
⎭ ,

FM :=

⎧⎨
⎩u(x, t) : u =

∑
k+q=M

akq(x)θkτq + b0(x)τM

⎫⎬
⎭ ,

GM :=
⊕
p≤M

Fp,

where the coefficients are holomorphic near x = 0. The main result of this
section is the inversion of D, D − x, and D − λ(x) (with λ holomorphic and
nonzero at the origin) in these spaces.
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Theorem 2.33. Let λ(0) �= 0 and M ≥ 0. Then

1. The equation Du = f has a solution in FM+1 if f ∈ FM .
2. (D − x) : EM+1 → FM is an isomorphism. On E0, (D − x) vanishes.
3. (D − λ(x)) : GM → GM is an isomorphism.
4. If f involves only the variables τk, there is a solution of Du = f that does

not involve the θk. The same holds for the equation (D − λ(x))u = f .
5. ∂x maps FM to FM+1.

Proof. (1) Let k + q = M . We obtain

D

⎛
⎝ q∑
j=0

(−1)jθk+j+1τq−j

⎞
⎠ = θkτq.

Furthermore, DτM+1 = τM . The result follows. Note that DGM+1 is not
included in GM since D(θ0τM+1) = θ0(τM + xτM+1).

(2) Proposition 2.30 shows that

(D − x)(θkτM−k+1 −
(

M
M − k + 1

)
θM+1) = θkτM−k

if 1 ≤ k ≤ M . Also, Proposition 2.28 gives

(D − x)(θ0τM+1) = θ0τM ,

(D − x)θM+1 = τM .

The result follows.
(3) GM admits the basis {θkτq, τq}k+q≤M . Define an operator D0 that

satisfies D0(θ0τq) = xθ0τq and sends the other basis elements to zero. By
Proposition 2.29, D restricted to GM is the sum of a nilpotent operator and
the operator D0. Now, if λ(0) �= 0, D0−λ(x) is an invertible diagonal operator
that differs from D − λ(x) by a nilpotent operator. The result follows.

(4) Since Dτk = τk−1, the space generated by the τk is invariant under D.
(5) This follows from Proposition 2.31. �


We now solve Fuchsian PDEs with variable indices [16] in spaces of series of the
form

∑
j≥0 uj(t, x)tj with uj ∈ GM(j), where M(j) depends on the problem

at hand. Unlike the spaces A�, such spaces are not algebras. However, they
are included in the algebra generated by t, x, and the θk.

2.3.3 Formal solutions of linear Fuchsian PDEs

Consider Fuchsian PDEs of the form

Lu = f(x, t), (2.22)

where
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L = (D − c)(D − x− d) − t2P2(x, ∂x),

P2 is a second-order operator with analytic coefficients, and f is analytic, both
near the origin. The parameters c and d are real. The goal is to find formal
solutions of the form

u =
∑
j≥0

uj(t, x)tj , (2.23)

where uj ∈ GM(j), and M(j) will be specified below.

Theorem 2.34. (a) If neither c nor d is a nonnegative integer, equation
(2.22) has a unique formal solution in integral powers of t:

U3(x, t) =
∞∑
j=0

uj(x)tj .

(b) If c or d is a nonnegative integer, equation (2.22) has formal solutions

U3(x, t) =
∞∑
j=0

uj(x, t)tj ,

where uj ∈ Gj+2.

Proof. We prove (a) and (b) together. Write f(x, t) =
∑

j fj(x)tj . Let us
seek solutions of (2.22) of the form u =

∑
j uj(x, t)t

j . Substitution into the
equation yields

(D + j − c)(D + j − x− d)uj = P2uj−2 + fj ,

with the convention that fj = 0 if j is negative. From the results of Sect. 2.3.2,
if uj−2 ∈ GM(j−2), one can find uj ∈ GM(j−2)+k(j) , where k(j) = 2 if j − c
and j − d are both nonzero, k(j) = 3 if precisely one of them vanishes, and
k(j) = 4 if both vanish. If neither c nor d is a nonnegative integer, we see by
induction that there is a solution with uj independent of t: u is a solution in
pure powers of t. If precisely one of them is a nonnegative integer, k(j) equals
2 except for precisely one value j0 of j. It follows that M(j) = j for j < j0,
and j + 1 for j ≥ j0.

If both are nonnegative integers, but c �= d, then k(j) equals 2 for j �= c,
d, and 3 otherwise. Therefore, M(j) ≤ j + 2.

If c = d is a nonnegative integer, k(j) equals 2 for j �= c, and 4 otherwise.
Therefore, we again have M(j) ≤ j + 2. �


2.4 Relation of A� to the invariant theory
of binary forms

We relate Fuchsian analysis in the space A� to the Lie algebra of the group
SL(2) of complex 2× 2 matrices with unit determinant. This group therefore
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serves as a symmetry for singularity analysis of very general classes of PDEs
without nontrivial point symmetries. This is the only section of the book that
requires some knowledge of representation theory, and will not be needed in
the sequel. For further information on invariant theory, see [81].

A binary form is an expression

p(x, y) :=
�∑

k=0

(
�

k

)
tkx

ky�−k.

The group SL(2) acts on the coefficients of p in the following way: if x =

ax′+by′, y = cx′+dy′, where
(

a b
c d

)
∈ SL(2), we define another binary form, p′,

in x′ and y′, such that p(x, y) = p′(x′, y′). If (t′0, . . . , t
′
�) are the coefficients of

p′, the SL(2) action is expressed by the mapping (t0, . . . , t�) �→ (t′0, . . . , t
′
�). An

invariant is a function of the coefficients (t0, . . . , t�) that remains unchanged
under this transformation; a covariant has the same property, but is allowed to
have homogeneous dependence on x and y. We consider polynomial invariants
and covariants. Thus, invariants are elements of the algebra B�.

At the infinitesimal level, the invariance of u under the subgroups
(

1 ε
0 1

)

and
(

1 0

ε 1

)
is expressed by Mu = 0 and M ′u = 0 respectively, where

M =
�∑

k=0

ktk−1∂/∂tk

and

M ′ =
�∑

k=0

(�− k)tk+1∂/∂tk,

with the convention that t−1 = t�+1 = 0. We also define G =
∑

k tk∂k and
P =

∑
k ktk∂k, where ∂k = ∂/∂tk. Thus, G + M may be identified with

the operator N of Sect. 2.2. One can also show that the coefficients of the
top power of x in covariants coincide with the solutions of Mu = 0; these
coefficients are called semi-invariants. These operators are related to SL(2)
in the following way.

Theorem 2.35. G commutes with P , M , and M ′. In addition, {W =
lG − 2P,M,M ′} satisfy [W,M ] = −2M , [W,M ′] = 2M ′, and [M,M ′] =
W . The triplet (−W,−M ′,−M) gives the standard presentation of the Lie
algebra sl(2).

Proof. For any monomial ta, we have

Gta = g(a)ta and P ta = p(a)ta,

where g(a) =
∑
j aj and p(a) =

∑
j jaj ; they are respectively called the degree

and the weight of the monomial ta.
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It suffices to check the statements of the theorem on monomials. First, for
any monomial u of degree g and weight p, the polynomials Mu and M ′u are
homogeneous of the same degree, but their respective weights are p − 1 and
p+ 1. Therefore, relations [G,M ] = [G,M ′] = 0, [P,M ] = −M and [P,M ′] =
M ′ hold on all monomials. Also, by direct calculation, [M,M ′] = (�G− 2P ).
The other commutation relations follow easily from these. �

Theorem 2.36. Let u be a sum of monomials of the same degree g and weight
p, in the variables (t0, . . . , t�), and k ≥ 1.

1. If Mkv = u and u is inessential in the sense of Definition 2.9, then v is
the sum of a linear combination of tg0, . . . , t

g−k+1
0 tk−1

1 , and an inessential
polynomial. Conversely, if u is inessential, so is Mu.

2. If u is a monomial with �g − 2p > 0, then u is in the range of M�. In
particular, any monomial in (t0, . . . , tk) is in the range of M� if � > 2k.

3. Assume u =
∑

q≤k0 tqu
′
q(t0, . . . , t�′) and k0 ≤ �′ ≤ �. Then, modulo

inessential polynomials, the equation Mkv = u has a polynomial solution
that depends only on (t0, . . . , t�′), provided that k + k0 ≤ �′.

Proof. (1) The statement is clear if g = 0. Let us therefore assume g > 0.
Let s(t) = v(t, t ln t, . . . ) and assume k = 1. We have, since N − g = M on
polynomials of degree g,

t
ds

dt
− gs = (Mv)(t, t ln t, . . . ) = u(t, t ln t, . . . ) = 0.

Since s(0) = 0, s ≡ ctg, so u − ctg0 is inessential. This settles the case k = 1.
The other cases, as well as the converse, are proved similarly.

(2) The statement follows from a general property of representations of
sl(2): the irreducible representations contained in the present one act on a
chain

(vk, vk−2, . . . , v−k)

of polynomials of degree g, where for every j, vj is an eigenvector of �G− 2P .
Now, M maps every vj to a nonzero multiple of vj+2 if j < k respectively
0 if j = k; therefore, any vj with j > 0 must lie in the range of M . But
these polynomials span precisely the sum of the eigenspaces of �G− 2P with
positive eigenvalues, as desired. In particular, if u = u(t0, . . . , tk), we have at
any rate p ≤ kg, and � > 2k is certainly sufficient.

(3) It suffices to consider monomials. Let u(t) = ta = ta0
0 ta1

1 . . . , and
u(t, t ln t, . . . ) = tg(ln t)p(a). We know that g = a0 + · · · + al′ , and that there
is an index q ≤ k0 such that aq > 0. Write v(t, t ln t, . . . ) = r(t); we want

(
t
d

dt
− g

)k
r = tg(ln t)p(a),

so that r =
∑

h<k cht
g(ln t)h + tgR(ln t), where R is a polynomial of degree

p(a) + k, and the ch are arbitrary. Now, since aq > 0, one can always write
any expression tg(ln t)p(a)+k in the form
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[t(ln t)q]aq−1[t(ln t)k+q ]
∏
j �=q

[t(ln t)j ]aj .

If k + k0 ≤ �′, replacing t, t ln t, . . . by t0, t1, . . . in the above expressions, we
obtain a polynomial v′ in (t0, . . . , t�′) such that Mkv′ − u is inessential. This
is the desired result. �


Problems

2.1. For each of the following equations, find a space of formal series, as
large as possible, in which one can find at least one solution, and specify
the arbitrary coefficients in it. Reduce it to a first-order system for u =
(u,Du, . . . ):

1. D(D − 2)(D − 3)2u = T sinu.
2. (D2 − 16)u = T 4 lnT (u2 + 1).
3. (D2 − 16)(D − 2)3u = T 4 lnT (u2 + 1).
4. (D2 − 4D + 5)u = exp(Tu) − 1.
5. (D + 2)(D − 3)u = T + T 3(ln T )3 + (lnT )/T 2 + T 6u2 (first let u = v +

q(ln T )/T 2, for a suitable polynomial q).

2.2. (a) Discuss the formal solutions of (D + A)u = Tf(u) representing so-
lutions bounded as T → 0+ along the real (positive) axis, when A is
diagonal with real nonzero eigenvalues and f is a polynomial.

(b) Same question if A is real, but may have complex eigenvalues with nonzero
real part. Study separately the case of real and complex solutions. In par-
ticular, show that in the real case, the appropriate space of formal series
should contain all expressions of the form q(L,C1, C2, . . . )T λ, where λ
runs through all linear combinations, with nonnegative integral coeffi-
cients, of the real parts of the nonnegative eigenvalues, and the Ck repre-
sent cos(T Imλ) and sin(T Imλ), where λ runs through the nonreal eigen-
values of A.

(c) Examples: write out the spaces of formal series if A is 2×2 with eigenvalues
(i) 1 and 5/3; (ii) 1 and

√
2; (iii)

√
2 + i

√
3 and

√
2 − i

√
3.

(d) For 2 × 2 systems, interpret the results in terms of phase plane analysis.
Generalize to n × n systems.
Remark: In a somewhat more modern form, this is how Poincaré studied
the behavior of trajectories near a fixed point, around 1900.

2.3. Consider a problem of the form

(D + 1)(D − 4)u = (f(Tu)− f(0) − Tf ′(0))/T,

where f is an analytic function of one variable u. Show that there are nontrivial
formal solutions such that Tu ∈ A1/4 [34]. Extend the result to more general
equations.
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2.4. Build an algebra of formal series invariant under multiplication by t,
tk(x), t1−k(x), and the operators D = t∂t, t∂x, assuming that k is smooth and
satisfies a ≤ k(x) < b, where a and b are constants in (0, 1). This question is
relevant for the Gowdy problem; see Chap. 8.

2.5. (a) Show that |u | = r−ord(u), where r is a fixed number in (0, 1) defines an
ultrametric absolute value5 on A�, which makes it complete. Henceforth,
A� is endowed with the associated topology.

(b) Show that polynomials act continuously on A�. What about analytic func-
tions?

(c) Show that D and spatial differentiations also act continuously on A�.
(d) Show that (A − λ) is continuously invertible on A� if for any integer k,

λ− k is not an eigenvalue of A.
(e) Show that if F satisfies the conditions in (b), the mapping u �→ TF [T,u]

is a contraction. Conclude that the equation (D+A)u = TF [T,u] admits
a unique solution in A� if all the eigenvalues of A have positive real parts,
by applying the contraction mapping theorem.

(f) Generalize this approach to other examples of spaces of formal series in
this chapter.

2.6. Find solutions to
(t∂t − 3)u = t2 − 3u1/3

such that u = 1 + o(1) near t = 0.

2.7. Consider a Fuchsian PDE of the form

(D + A(T,u))u = F [T,u],

and a space FS of formal series. Assume, as usual, that F [T,u ] has no con-
stant term if u ∈ FS. Let u = u0 + T εv(T ). Give sufficient conditions on
A, F , and the space FS for v to satisfy a Fuchsian system in standard form
(1.3).

5 In other words, this defines a distance for which |u + v | ≤ max(|u |, |v |). This is
stronger than the triangle inequality.
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General Reduction Methods

We describe two general situations in which Fuchsian reduction with integer
indices is possible. They are adapted to applications to nonlinear waves, and
cover in particular all the applications to soliton theory. We limit ourselves
to fairly common situations, and do not strive for the best hypotheses on the
nonlinearities. Results are taken from [120] and [124].

3.1 Reduction of a single equation

We consider first a scalar equation with polynomial dependence on the un-
known and its derivatives, written

F [u] := F (t, x1, . . . , xn, u, ∂tu, ∂x1u, . . . ) = 0. (3.1)

We assume that variables have been chosen so that the singular set has equa-
tion t = 0. Let m be the order of the equation, which will also be assumed to
be the order of the highest time derivative. Thus, the singularity surface is as-
sumed to be noncharacteristic. All considerations are local, near (x, t) = (0, 0).

3.1.1 Preliminaries

To represent and manipulate in a compact form nonlinear combinations of the
derivatives of a function u of n+1 variables (x1, . . . , xn, t), it is convenient to
introduce a multi-index notation: any spatial derivative will be labeled by a
multi-index I = (i1, . . . , in):

∂Ixu :=
n∏
q=1

(
∂

∂xq

)iq
.

The total order of derivation in ∂Ixu is the length of the multi-index I, written
|I| = i1+· · ·+in. Similarly, any derivative with respect to space and time vari-
ables has the form ∂jt ∂

I
xu. Any product of u and its derivatives is labeled by a

list of multi-indices a = (aI), where each aI has the form aI = (a1,I , . . . , am,I):



46 3 General Reduction Methods

ua :=
∏
j,I

(
∂jt ∂

I
xu
)aj,I

. (3.2)

The degree g(a) and weight p(a) of the multi-index a are defined by

g(a) =
∑
j,I

aj,I , p(a) =
∑
j,I

jaj,I . (3.3)

It is helpful to introduce a special notation for monomials that do not contain
space derivatives:

uA = uA0(uA1
t ) · · · (∂mt u)Am .

They correspond to monomials (3.2) with I = (0, . . . , 0). To minimize techni-
calities, we assume that F is polynomial in u and its derivatives, so that the
sum in the definition of F is finite. The most general PDE with polynomial
nonlinearity may now be written

F [u] :=
∑

a=(aI)

fa(x, t)ua. (3.4)

We shall assume that
fa =

∑
b≥0

fab(x)tμ(a)+b.

3.1.2 Leading-order analysis

We seek solutions of the form u = u0t
ν + h.o.t., where h.o.t. refers to higher-

order terms in t; u0t
ν represents a balance of the top-order time derivatives

and some nonlinear terms. Assume

u = [u0(x) + v(x, t)tε]tν ,

where ν and ε are constant. We need the notation

[ν]j := ν(ν − 1) · · · (ν + j − 1), (3.5)

and the relation
∂jt u = ([ν]j + tε[D + ν + ε]jv) tν−j ,

where [D]j = D(D− 1) · · · (D − j + 1). We have ∂jt (tνv) = tν−j [D + ν]jv. We
prove in this section and the next that

F [u] = tρ[P (u0) + tεQ(D + ε)v + o(tε)].

Definition 3.1. Any pair (u0, ν) such that

1. P [u0] = 0 and
2. u0 �≡ 0

is said to determine a leading balance u ∼ u0t
ν . Since Q does not in-

volve derivatives with respect to x, Q is a polynomial, and its roots, which
maydepend on x, are the resonances. Solutions corresponding to the same
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value of u0 and ν, and differing only by the choice of arbitrary coefficients,
are said to belong to the same branch.

If u = u0(x)tν + h.o.t., we have

∂jt ∂
I
xu = [ν]jtν−j∂Ixu0 + h.o.t.

Therefore
∏
j

(∂jt ∂
I
xu)aj,I = c(ν, aI)tνg(aI )−p(aI)

∏
j

(∂Ixu0)aj,I + h.o.t.,

where
caI (ν) =

∏
j

[ν]aj,I

j .

It follows that

fa(x, t)
∏
j,I

(∂jt ∂
I
xu)aI = tμ(a)+νg(a)−p(a)fa0(x)c(ν, a)

∏
j,I

(∂Ixu0)aj,I + h.o.t.

(3.6)
The assumption that the leading balance does not involve space derivatives
implies that the most singular terms one obtains upon substitution of the
leading behavior into the equation never contain any space derivatives, and
that the top-order time derivatives enter only into the most singular terms.
This enables us to write

F [u0(x)tν + h.o.t.] = tρ(P (u0) + h.o.t.),

where
ρ = minA{νg(A) − p(A) + μ(A)}, (3.7)

and
P (u0, ν) :=

∑
νg(A)−p(A)+μ(A)=ρ

fA0(x)c(ν,A)ug(A)
0 . (3.8)

Thus, the leading term is determined by an algebraic equation (P (u0) = 0),
rather than a differential equation. Let us summarize the results:

Theorem 3.2. Leading-order terms u ∼ u0t
ν are determined by those solu-

tions of P (u0, ν) = 0 with u0 �= 0, where P is given by (3.8).

Remark 3.3. In practice, one determines ν by requiring that the minimum
in (3.7) be attained for two values of A, the corresponding monomials in F
balancing each other.
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3.1.3 First reduction

We now perform the first reduction, with ε = 1 for simplicity; this creates
some complication if 1 is a resonance, but avoids having to introduce new
variables in the expansion. We further require that the second most singular
terms also not involve space derivatives.

Remark 3.4. A still more general reduction would be obtained by taking t1/p

as expansion variable, where p is a large integer. This is necessary if there
are resonances between 0 and 1; one should then take ε less than the smallest
of them; otherwise, arbitrary functions associated with these indices will be
missed. However, many examples do not require this more complete treatment.

We therefore take

t−νu = u0 +
∑
q≤k0

hq(x)t(ln t)q + tw(x, t), (3.9)

where the integer k0 will be determined later. Fix u0 among the roots of
P . Assume that we are not in the case of the Cauchy problem, so that ν(ν −
1) · · · (ν−m+1) �= 0. We prove that the substitution (3.9) leads to a Fuchsian
equation for w. In fact, we will establish that

F [tν(u0 +
∑
q≤k0

hq(x)t(ln t)q + tw(x, t)]

= tρ

⎡
⎣P (u0) + t

⎧⎨
⎩Q(x,D + 1)w −

∑
q≤2k0

t(ln t)qGq

⎫⎬
⎭
⎤
⎦

if the hq and k0 are chosen suitably.

Theorem 3.5. (a) After performing substitution (3.9), (3.1) is equivalent to
an equation of the form

Q(x, t∂t + 1)w = ϕ(x) +
∑
q≤l0

t(ln t)qGq(t, t ln t, (3.10)

· · · , t(ln t)l0 , x, w, . . . , Dm−1w, {tDk∂Jxw}k+|J|≤m, k<m),

where D = t∂t, for a suitable integer l0.

(b) Q is given by

Q(x, r) =
∑

νg−p+μ=ρ

c(ν,A)fA0

×
[
A0 +

ν + r

ν
A1 + · · · + [ν + r]j

[ν]j
Aj

]
u
g(A)−1
0 . (3.11)



3.1 Reduction of a single equation 49

(c) If Q(x,D + 1) = DsR(x,D) with R(x, 0) �= 0, one can choose k0 and the
functions hq so that l0 = 2k0 = 2s and ϕ = 0. In particular, if Q(x, 0) �= 0,
no logarithm is required on the right-hand side.

Remark 3.6. The equation Q(x, r) = 0 is the resonance equation. Resonances
could vary with x. However, in many cases, even if u0 is not constant, the
resonances are.

Remark 3.7. It will follow from the proof that k0 = (l0/2) equals the multi-
plicity of 1 as a resonance.

Proof. Step 1: First change of unknown. Let u = tνv(x, t) and D = t∂t.
Since ∂jt u = tν−j [D + ν]jv,

ua =
∏
j,I

(
tν−j [D + ν]j∂Ixv

)aj,I = tνg(a)−p(a)
∏
j,I

[
[D + ν]j∂Ixv

]aj,I
.

Substituting into the equation and setting t = 0, one recovers the relation
P (u0) = 0.

Step 2: Introduction of logarithms and second change of un-
known. Fixing u0 among the roots of P , we now let

v = u0 +
∑
q≤k0

hq(x)tq + tw(x, t),

where tq = t(ln t)q, and the hq, as well as the integer k0, will be determined
below. We obtain

[D + ν]j∂Jx v = [ν]j∂Jxu0 + t0[D + ν + 1]j

[
∂Jxw +

∑
q

∂Jxhq(ln t)q
]
.

This expression is a first-degree polynomial in (t0, . . . , tk0), with coefficients
involving functions of x, and derivatives of w of the form tDk∂Jxw.

Step 3: Substitution into (3.4). Upon substitution, one obtains a series
in the tq, in which the most singular term is tρP (u0). From Step 2, we obtain

ua = tνg(a)−p(a)Φa(x, t, {tq∂hq}, {tDjw}j≤m, {tDj∂Jw}),
where ∂ stands for all space derivatives. We now substitute this result into
(3.4), which produces an expression of the form tρP (u0)+O(tρ+1(ln t)2k0). We
divide this by tρ+1, since the sum of the terms in tρ vanishes by the choice of
u0. Consider each term fau

a separately. Each such term contributes terms of
degree νg(a)−p(a)+μ(a) or higher. We also know that νg(a)−p(a)+μ(a) ≥ ρ,
and that this sum equals ρ or ρ+1 only for terms that do not contain spatial
derivatives. Now, the terms such that νg(a)− p(a) + μ(a) ≥ ρ+ 2 still have a
factor of t left after division by tρ+1, and therefore already have the desired
form. For the others, use the Taylor expansion of ua up to second order to
extract the contributions in tρ and tρ+1. We therefore need to consider only
two types of terms:
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1. Monomials with νg(a) − p(a) + μ(a) = ρ; they contribute

tρ

[
P (u0) + t(Q(x,D + 1)

[
w +

∑
q

hq(ln t)q
]

+ ϕ1(x))

+ t
∑
q≤2k0

t(ln t)qΨ1q(x, {tq}, {Djw}j≤m)

⎤
⎦ .

By inspection, the operator Q has the announced form; ϕ1 is a function
of x, the expression of which is not needed.

2. Monomials with νg(a) − p(a) + μ(a) = ρ + 1; they contribute

tρ+1

⎡
⎣ϕ2(x) + t

∑
q≤2k0

t(ln t)qΨ2q(x, {tq}, {Djw}j≤m)

⎤
⎦ .

The function ϕ2 depends only on x.

Combining these equations, we reach the desired assertion.
Step 4: Choice of k0 and (hq). We now finish the proof by showing that

one can choose k0 and (hq) to eliminate ϕ(x). We have to solve

DsR(x,D)
∑
q≤k0

hq(ln t)q + ϕ = 0,

where ϕ is independent of t. Therefore, R(x,D)
∑

q≤k0 hq(ln t)q+ (ln t)s

s! ϕ must
be a polynomial of degree less than s in ln t. The arguments of Sect. 2.2 give
a ϕ with these properties if R(x, 0) �= 0 and k ≥ s; it contains s arbitrary
constants. The theorem is proved, with l0 = 2k0 = 2s, as announced.

3.1.4 Is −1 a resonance?

We give a necessary and sufficient condition for Q(−1) to be equal to zero. It
holds for translation-invariant PDEs. Recall that P (u0) = 0, where P is given
by (3.8).

Theorem 3.8. Assume that ν �= 0, 1, . . . ,m−1. Then, Q(−1) = 0 if and only
if ∑

νg−p+μ=ρ

c(ν,A)fA0μ(A)ug(A)
0 = 0. (3.12)

This holds in particular if μ(A) is independent of A, or if balancing terms do
not involve t.



3.2 Introduction of several time variables and second reduction 51

Proof: We compute Q(−1):

u0Q(−1) =
∑

c(ν,A)fA0u
g(A)
0

×
[
A0 +

ν − 1
ν

A1 +
(ν − 1)(ν − 2)

ν(ν − 1)
A2 + · · ·

]

=
∑

c(ν,A)fA0u
g(A)
0

×
[
A0 + (1 − 1

ν
)A1 + (1 − 2

ν
)A2 + · · ·

]

=
∑

νg(A)−p(A)+μ(A)=ρ

c(ν,A)fA0u
g(A)
0 [g(A) − p(A)/ν]

=
∑

c(ν,A)fA0u
g(A)
0 [ρ − μ(A)]/ν

=
1
ν

[
P (u0) −

∑
c(ν,A)fA0μ(A)ug(A)

0

]
.

Since P (u0) = 0, the result follows.

3.2 Introduction of several time variables
and second reduction

We now view w as a function of the independent variables (x, t0, . . . , t�); w
solves the generalized Fuchsian equation

Q(N + 1)w =
∑
q

tqGq[w,Nw, . . . ]. (3.13)

We begin by proving that (3.13) may be replaced by a first-order Fuchsian
system of the form

(N + A)u =
∑
q

tqGq.

Introduce the new unknown (w, . . . ,Dm−1w, {tDk∂Jxw}k+|J|<m), where
m is the order of the equation. Compute the action of D on each of the new
unknowns, taking (3.10) into account. Let wk = Dkw and tDk∂Jxw = wk,J .
We have

Dwk = wk+1 (3.14)

for k + 1 < m. On the other hand, let ∂J = ∂j1∂j2 · · · = ∂j1∂
J′
x , with j1 ≤

j2, . . . . If k + 1 + |J | < m,

Dwk,J = wk,J + wk+1,J . (3.15)

If k + 1 + |J | = m,

Dwk,J = wk,J + tDk+1∂Jxw = wk,J + t∂j1wk+1,J′ . (3.16)
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For the last derivative, namely D(Dm−1w), use (3.10). Next, any tDk∂Jxw with
k + |J | = m and k < m may be expressed as a first-order spatial derivative of
one of our unknowns. We then write Q as

Q(x,D + 1) = Dm + Q1D
m−1 + · · · ,

and obtain

Dwm−1 +
∑
j>0

Qjwm−j =
∑
q

tqGq(x, t0, . . . , w, {∂jwk,J}). (3.17)

Equations (3.14)–(3.17) now form a Fuchsian system, where A may depend
on x. In practice, u0 and the fA0 are constant, and so are the coefficients Qj .
Using Theorem 2.24 m times, one may, after a further reduction, replace A by
A+m; in other words, we may assume that the eigenvalues of A have positive
real parts. This completes the second reduction.

3.3 Semilinear systems

We now show how to cast rather general semilinear systems in the form (2.12),
given a set of assumptions that encapsulate the result of leading-order analy-
sis. Again, for simplicity, we limit ourselves to a simple setup with algebraic
leading behavior and constant resonances. Consider a system of the form

ut =
n∑
j=1

aj∂ju + b(u), (3.18)

where aj = aj(x, t) =
∑
k≥0 ajk(x)tk, and t is one-dimensional. All considera-

tions are local near x = 0, t = 0. We are interested in solutions that blow up
on Σ defined by t = ψ(x); we seek u ∼ (t−ψ(x))−p/qv0(x) for integers p and
q as below. Four assumptions are now described and motivated.

1. Ensure that the blowup surface Σ is noncharacteristic:

Q(x) =

⎛
⎝1 +

∑
j

aj0∂jψ

⎞
⎠ is invertible. (3.19)

2. Require power growth for the nonlinearity b(u): assume that there are
integers p and q, with q > 0, such that τp+qb(τ−pξ) is analytic in τ ∈ C

and ξ ∈ C
m, near τ = 0, ξ = 0. We write

τp+qb(τ−pξ) = c(τ, ξ) :=
∑
j≥0

cj(ξ)τ j . (3.20)



3.3 Semilinear systems 53

3. Express that the leading term balances the derivatives with the nonlin-
earity: substitution of the leading behavior into the equation leads to

−pv0 = qQ(x)−1c0(v0), (3.21)

which we assume has a nontrivial solution v0.
4. Ensure that the resonances are constant: there exists a matrix-valued func-

tion P (x) such that

P−1Q−1c′0(v0)P is constant. (3.22)

Here, c′0 is the matrix of derivatives of c0 with respect to the components
of u.

Theorem 3.9. Under assumptions (3.19)–(3.22), system (3.18) admits of re-
duction to a generalized Fuchsian system.

Proof. Introduce the new time variable T = t− ψ(x), and write the equation
as

QuT = a(∂u) + b(u) + (a0 − a)(∂ψ)uT ,

where a(∂u) =
∑

j a
j∂ju and a0(∂u) =

∑
j a

j
0∂ju; ∂u stands for all the first-

order spatial derivatives of u. Note that (a0−a) = O(T ). Next, since we expect
u to behave like T−p/q, we let T = τq and u = vτ−p; using the assumption
on b(u), we obtain

Q(τvτ − pv)/q = τqa(∂v) + c(τ, v) + (a0 − a)(∂ψ)(τvτ − pv)/q.

Since by (3.19), Q−1 exists, we may write (Q−(a0−a)(∂ψ))−1 = Q−1+O(T ) =
Q−1 + τqR, and we obtain

τvτ − pv = q(Q−1 + τqR)[τqa(∂v) + c(τ, v)]. (3.23)

We now substitute

v = v0 + τ · w := v0 + τ0w0 + · · · + τlwl,

where τj = τ(ln τ)j and τ = (τ0, . . . , τl). We obtain, using (3.20),

c(τ , v) = c(τ0, v0 + τ · w)

= c0(v0) + c′0(v0)[τ · w] + τ0c1(v0) +
∑
k

τkτ · hk(τ , x, w, ∂w).

It will be convenient to write τ · [c′0(v0)w] for c′0(v0)[τ · w], where

c′0(v0)w = (c′0(v0)w0, . . . , c
′
0(v0)wl).

Since τ∂τv = N(τ · w), where N =
∑
k(τk + kτk−1)∂/∂τk, we have
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(N − p)(τ · w) =
l∑

j=0

τj{(N − p)wj + wj + (j + 1)wj+1}.

Since q ≥ 1, there exist ϕ1 and h1 such that

q(Q−1 + τq0R)(τq0 a(∂v0)) = τ ·
(
δj0ϕ1(x) +

∑
k

τkh1k(τ , x, w, ∂w)

)
,

while there exist ϕ2 and h2 such that

q(Q−1 + τq0R)

[
τq0a(τ · ∂w) + c0(v0) + τ · [c′0(v0)w] +

∑
k

τkτ · hk
]

= qQ−1c0(v0) + τ ·
{
qQ−1[c′0(v0)w] + δj0ϕ2(x) +

∑
k

τkh2k(τ , x, w, ∂w)

}
.

We are ready to write (3.23), which now becomes

(N − p)(τ · w) − pv0

= q(Q−1 + τq0R)

[
τq0 (a(∂v0) + τ · a(∂w)) + c0(v0) + τ · [c′0(v0)w]

+ τ0c1(v0) +
∑
k

τkτ · hk(τ , x, w, ∂w)

]

= qQ−1c0(v0) + τ · [qQ−1[c′0(v0)w] + (ϕ1 + ϕ2)δj0 +
∑
k

τk(h1k + h2k + hk)].

Letting ϕ = ϕ1 + ϕ2 and g = h1 + h2 + h, it is now natural to consider the
system

(N − p− qQ−1c′0(v0))wj + wj + (j + 1)wj+1 = ϕδj0 +
∑
k

τkgkj ,

where gkj is the jth component of gk. Letting wj = Pzj, to take advantage
of (3.21), we obtain a system of Fuchsian form. It remains to eliminate ϕ by
introducing more variables as necessary, as in Theorem 2.24. This completes
the reduction. �


3.4 Structure of the formal series with several
time variables

We revert to a single equation, of the form

Q(t∂t)u =
∑
q≤k0

t(ln t)qGq[t, t ln t, . . . , t(ln t)�0 , u,Du, tD∂xu, . . . ]. (3.24)
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Recall that D = t∂t. There is an integer � such that solutions in powers of
t(ln t)j , j ≤ �, exist. We give here an estimate of the optimal (i.e., smallest)
value of � that enters in the solution. This estimate will be called �′. It is
useful in practice to take �′ as small as possible, to minimize the amount of
computation. We begin by viewing the solution as a function of (x, t0, . . . , t�);
we therefore replace D by N . The basic observation is that we may perform
all computations modulo inessentials in the sense of Definition 2.9. Thus, we
may replace (3.13) by

Q(N)u =
∑
q

tq(Gq + Iq), (3.25)

where Iq is any inessential polynomial. An appropriate choice of Iq will enable
us to considerably lower the value of �. We now state the results:

Theorem 3.10. Let �′ be the the sum of (i) twice the multiplicity of 1 as
a resonance, or �0 = 2k0 if it is greater, and (ii) the maximum multiplicity
of any other positive resonance. Then there are inessential polynomials I0,
. . . , I�0 such that all formal formal solutions of (3.13) have the form u =
u(t, . . . , t(ln t)�

′
), where u(t0, . . . , t�′) solves

Q(N)u =
∑
q

tq(Gq + Iq(t0, . . . , t�′)).

The number of arbitrary functions in the resulting solution equals the sum of
the multiplicities of the positive integer resonances.

Specializing to the case of simple resonances, we obtain the following corol-
lary:

Corollary 3.11. If all resonances are simple and greater than 1, one may
take � = �′ = 1. More precisely, there is a formal solution of (3.13) of the
form u = u(t, t ln t), with as many arbitrary functions as there are positive
resonances.

Proof. To say that u is a solution of (3.25) means that

Qu−
∑
q

tqGq[u]

is inessential, and therefore may be written
∑
q tqJq(t). We therefore consider

the most general series solution of this equation and show that its essential
part is independent of Jq. We then compute the formal solution to some high
order, and introduce the Iq. Let us substitute

u =
∑
g

ug,
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where ug is a homogeneous polynomial in (t0, . . . , t�), of degree g, into equation
(3.13). We first prove, by induction on g, that ug is the sum of an essential and
an inessential part, the former depending on (t0, . . . , t�′), where �′ is defined
below. We then show that one may introduce inessential polynomials Iq into
the equation in such a way that the resulting equation will have a solution in
which the inessential part is identically zero.

Step 1: Case Q(g) �= 0. The ug must be determined recursively from
equations of the form

Q(N)ug =
∑
q

tq{Gq + Jq}g−1,

where { }g indicates that one takes the homogeneous part of degree g only.
We argue by induction on g. On polynomials of degree g, N = g + M , with
M =

∑
k ktk−1∂/∂tk. Therefore, writing Q(N) = MkR(N) with R(g) �= 0,

the recurrence relation reduces to

MkR(N)ug =
∑
q

tq{Gq + Jq}g−1,

where k is the multiplicity of g as a resonance. The operator M has been
studied in Sect. 2.4. Since Q(g) �= 0, k = 0. We merely need to check that the
right-hand side has the desired form, since ug will be uniquely determined.
Indeed, R(N) is invertible on the space of polynomials in (t0, . . . , tl′). Since
{Gq}g−1 involves only u0, . . . , ug−1, we may use the induction hypothesis and
write

∑
j<g uj = v(t0, . . . , t�′) + w, where w is inessential. It follows that

Gq = Gq(t0, . . . , t�0 , v + w, . . . )
= Gq(t0, . . . , t�0 , v, . . . )

+
∫ 1

0

[Fu(t, v + sw,Nv, . . . )w + FDu(t, v,Nv + sNw, . . . )Nw + · · · ]ds.

Now, w, Nw,. . . , and all their derivatives are inessential. Since inessential
functions are stable by product with other functions (i.e., they form an ideal),
we see that {Gq + Jq}g−1 is the sum of a polynomial in (t0, . . . , t�′) and an
inessential polynomial.

Step 2: General case. We now assume k > 0. The earlier results about
the form of Gq still hold. Using Theorem 2.36 of Sect. 2.4, the general solution
has the form

ug = G(t0, . . . , tk+�0) + inessential.

Therefore, we need �′ ≥ k + �0. Also, the essential part of ug involves k ar-
bitrary functions of x, because case (1) of Theorem 2.36 ensures that ug is
determined, modulo inessentials, up to a combination of tg0, . . . , t

g−k+1
0 tk−1

1 .
Since the solutions of Mkv = tqJq for different Jq’s differ by inessential poly-
nomials, the essential part of u does not depend on Jq. In practice, we have
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to solve at each resonance an equation of the form Mku = known, and we
can make use of the special form of the right-hand side to further reduce the
value of �.

Step 3: Introduction of Iq. We now fix g very large, and let vg be the
essential part of the formal solution we just computed, truncated at order g.
Define Iq of degree g so that vg is a formal solution, up to order g, of

Q(N)vg =
∑
q

(Gq[vg] + Iq).

We may now apply Theorem 2.24 to conclude. Note that vg contains arbitrary
functions of x corresponding to each resonance. This completes the proof of
Theorem 3.10.

Step 4: Proof of Corollary 3.11. If all resonances are simple and greater
than 1, or if 1 is a simple and compatible resonance (i.e., if it does not introduce
logarithms), an important simplification is that �0 = k0 = 0: no logarithms
appear in the first step of the reduction. If we assume that g is a simple
resonance, and that for j < g, ug = ug(t0, t1), we must, in order to find ug,
solve an equation of the form

MR(N)ug = t0Fg(t0, t1),

where Fg is a polynomial of degree g − 1. The operator R(N) is invertible
on the space of such polynomials. By case 3 of Theorem 2.36, we may find a
solution that depends only on t0 and t1. The argument is now finished as in
the general case. This completes the proof. �

Remark 3.12. If there is a single simple resonance r > 1, the solution is given
by a series in t0 and tr−1

0 t1 (i.e., t and tr ln t). Indeed, since 1 is not a resonance,
we have k0 = �0 = 0, and the formal solution u =

∑
j uj is computed by

solving recursively an equation of the form

Q(N)uj = t0Rj(t0, t1),

where Rj and uj are independent of t1 if j < r. Now N (and therefore Q(N))
leaves invariant the space of polynomials in t0 and tr−1

0 t1 of total degree
j �= r; Q(N) is invertible on this space. On the other hand, the right-hand
side Rj must involve t1 linearly if j < 2r. Assume by induction that the uk
for k < j contain only monomials of the form tb0t

c
1 where c ≤ [k/r]. Then Rj

is a combination of polynomials

uj1 · · ·ujq
such that j1 + · · · + jq + 1 = j. Each of the ujs contains only monomials
tbs
0 tcs

1 with cs ≤ [js/r]. It follows that t0Rj , and therefore uj, contains only
monomials tb0t

c
1 with
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c =
∑
s

cs ≤
∑
s

[js/r] ≤
∑
s

js
r

= (j − 1)/r,

as announced. This property may fail if 1 is a resonance.

3.5 Resonances, instability, and group invariance

3.5.1 Practical determination of resonances

The determination of resonances may be greatly simplified using shortcuts
given below. The resonances are obtained by the following procedure: deter-
mine the leading term, say u0T

ν , linearize about it and seek solutions of the
linearized equation with leading order w(x)T ν+r . The values of r leading to a
nontrivial solution are the resonances. While it is easy to prove this result in
the general situations described in the previous chapter, it is as easy to check it
afresh in new situations. Therefore, the practical procedure is, with the nota-
tion of Sect. 3.1.2, to compute the coefficient of T ρ+r in F [u0T

ν +w(x)T ν+r],
and set it equal to zero.

If the problem admits a group action, we may obtain solutions of the
linearization from any solution that is not invariant by the group. Indeed,
the existence of a one-parameter group action, with parameter ε, means that
there is a one-parameter family ε �→ u(ε) such that whenever F [u(0)] = 0,
necessarily F [u(ε)] = 0. It follows, by differentiating this equation with respect
to ε, that

∂u(ε)
∂ε

always solves the linearized equation. For instance, assume u(x, t) ∼ u0(t −
ψ(x))ν , with u0 �= 0, solves an autonomous equation (i.e., one in which x
and t do not enter explicitly). It follows that for every ε, u(x, t + ε) is also a
solution. If it is permissible to differentiate the equation, we find that if ν �= 0,

∂u(ε)
∂ε

∼ νu0(t− ψ(x))ν−1

solves the linearized equation; indeed, the term involving the ∂xu0 is only of
order ν and does not enter at leading order. It follows that

−1 is necessarily a resonance.

This result, which is a special case of Theorem 3.8, is often useful as a double
check. Intuitively, the presence of the resonance −1 in a translation-invariant
problem is related to the possibility of perturbing a singular solution by shift-
ing the singularity locus. Since this operation does not affect the type of sin-
gularity, it is compatible with stability of the singularity. If the only resonance
with negative real part is −1, we may expect stability.
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3.5.2 Instability: a case study

We discuss in this section one of the few examples for which an analysis of
instability can be made complete [108]. Some information is also available
for homogeneous systems of ODEs [5]; a complete classification seems out of
reach at the present time. A simpler example is provided by Problem 3.4(2).

The Chazy equation

y′′′ − 2yy′′ + 3y′2 = 0 (3.26)

possesses the exact solution −6/x, for which the resonances are −1, −2, and
−3. The negative resonances express that all nonzero solutions of the lin-
earized equation are more singular than the reference solution −6/x; however,
this does not suffice to indicate instability, since the negative resonance −1 is
compatible with stability, as we just saw.

The objective of this section is to prove that there are families of solutions
y(x; ε, r) such that

y(x; 0, r) = −6/x and
dy

dε
(x; 0, r) = x−1+r

for r = −1, −2, and −3. This will account for the three “negative resonances,”
by giving the singular behavior of solutions close to the reference solution. It
will be apparent from the proofs that y(x; ε; r) may in fact be expanded to
higher order, and that the coefficients of the higher-order terms are increas-
ingly more singular in x.

Background

The Chazy equation came up in the course of Chazy’s extension of Painlevé’s
program to third-order equations [41, 42, 43]. It is one of the “class XII”
equations

y′′′ − 2yy′′ + 3y′2 = E(6y′ − y2)2, (3.27)

where E = 4/(36 − k2) with k ≥ 0, omitting the “complementary” terms.
This equation has the same special solution −6/x, but the general solution is
completely different. It is possible for the simple pole to split into two or more
poles by perturbation. This behavior cannot be captured adequately in a series
representation in powers of x: take a solution with two poles at x = 0 and
x = α. The radius of convergence of a pole expansion around x = 0 cannot be
greater than |α|, and therefore tends to zero if there is a confluence of the two
singularities (α → 0). A perturbative approach can correctly describe what
happens at a fixed location away from the singularities, but its asymptotics
as x → 0 do not describe the confluence correctly.

Equation (3.26) is also closely related to a system considered by Halphen,
and its general solution can be parameterized using the solutions of a hy-
pergeometric equation if k > 0, and the Airy equation if k = 0; see [45, 1].
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This equation has attracted recent interest as a reduction of self-dual Yang–
Mills equations [3, 1, 175]. It also arises in connection with one of the special
reductions of Einstein’s equations in a Bianchi IX space-time. A particular
solution is

1
2

d

dx
lnΔ(x),

where Δ(x) is the discriminant modular form [175, 32, 33, 43, 126]; it has the
real axis as a natural boundary.

The Chazy equation admits an SL(2) action: if y(x) is a solution, so is

ad − bc

(cx + d)2
y

(
ax + b

cx + d

)
− 6c

cx + d
(3.28)

for any choice of the complex parameters a, b, c, and d, subject to ad−bc �= 0.
There are effectively only three parameters, since scaling the parameters by
a common factor does not generate a new solution. The transformed solution
has, in general, a circular natural boundary.

Results

The results below actually apply to any equation that admits the transforma-
tion formula (3.28) and for which any uniform limit of analytic solutions is also
a solution. This assumption is clear for ODEs; it allows one to extend (3.28)
to some cases in which the transformation (ax + b)/(cx + d) is noninvertible,
by viewing it as a limit of invertible transformations.

Fix a solution y(x) analytic near x = 0. The construction below depends on
the possibility of prescribing y, y′, y′′ arbitrarily at one point. This construc-
tion precisely fails for the nongeneric solutions −6/x + A/x2. The resonance
structure will be derived on the sole basis of the representation formula.

Consider the family

y(x; ε) = − 6
x− η

+
μ

(x− η)2
y

( −μ

x− η

)
, (3.29)

where η and μ depend on ε, and are assumed to be small as ε → 0. This is a
special case of the transformation (3.28). Our results are as follows.

Theorem 3.13. If μy(0) − 6η = ε, and μ and η are proportional to ε, then

y(x; 0) =
−6
x

and
dy

dε
(x; 0) =

1
x2

.

Theorem 3.14. Assume μy(0) − 6η = 0, but 6y′(0) − y(0)2 �= 0. Then, if μ
and η are both proportional to ε1/2, we have

y(x; 0) =
−6
x

and
dy

dε
(x; 0) =

c

x3
,

where c �= 0.
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Theorem 3.15. Assume μy(0) − 6η = 0 and 6y′(0) − y(0)2 = 0, but y′′ −
yy′ + y3/9 �= 0 when x = 0. Then, if μ and η are both proportional to ε1/3,
we have

y(x; 0) =
−6
x

and
dy

dε
(x; 0) =

c

x4
,

where c �= 0.

Theorem 3.16. If an equation of order three or higher to which the Cauchy
existence theorem applies admits the special solution y = −6/x, and if the
linearization of the equation at this solution does not have 1/x2, 1/x3, and
1/x4 among its solutions, then the given equation cannot admit the SL(2)
action (3.28).

The restriction that the solution y(x) be analytic is essential. In fact, we can
obtain quite different results if y admits branching:

Theorem 3.17. If there is a solution of the form y(x) = x−1h(xk), where h
is analytic, k > 0, and h(0) = (k− 6)/2, there exist two families of solutions,
y1(x; ε) and y2(x; ε), such that

y1(x; 0) = y2(x; 0) = −k + 6
2x

and
dy1

dε
(x; 0) =

c

x2
and

dy2

dε
(x; 0) =

c

xk+1
.

Remarks

If we take y = −6/(x − x0) + A/(x − x0)2, then Theorem 3.14 applies, but
Theorem 3.15 does not. Indeed, in this case,

y′ − y2/6 =
−A2(x− x0)−4

6
, (3.30)

and

y′′ − yy′ +
y3

9
=
(

d

dx
− 2

3
y

)(
y′ − y2

6

)
= A3 (x− x0)−6

9
. (3.31)

It is therefore not possible to make (3.30) vanish without having A = 0, in
which case (3.31) vanishes as well. One can rephrase the assumption in The-
orem 3.15 as follows: y′ = y2/6 but y′′ �= y3/18, for x = 0. Theorems 3.13,
3.14, and 3.15 all apply, for example, when there is a solution for every choice
of y(0), y′(0), and y′′(0). These results therefore hold for any third-order au-
tonomous equation, hence for both equations (3.26) and (3.27), which have
completely different singularity structures. It follows from Theorem 3.19 be-
low that Theorem 3.17 applies to equations (3.27). A result similar to Theo-
rem 3.16 could of course be stated for this situation. An illustration of Theo-
rem 3.16 is the equation
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y′′′ = 2yy′′ − 3y′2 + cy′(6y′ − y2),

which has the solution −6/x, but whose resonance equation is (r + 1)[(r +
2)(r + 3) − 36c] = 0. Therefore −2 and −3 are both resonances only if c = 0.
We conclude, without computing the symmetry group of the equation, that
this equation does not admit the transformation law (3.28) if c �= 0.

Proofs

Any solution y(x) generates the one-parameter family of solutions

y(x; ε) = − 6
x− η(ε)

+
μ(ε)

(x− η(ε))2
y

(
− μ(ε)

x− η(ε)

)
.

If x is fixed and nonzero, and if μ and η are small as ε → 0, we can expand
this solution in the form

y(x; ε) =
−6
x

+
μy − 6η

x2
+

μ(2ηy − μy′) − 6η2

x3

+ x−4[−6η3 + μ(3η2y − 3ημy′ + μ2

2 y′′)]
+ O(η4, η3μ, η2μ2, ημ3, μ4),

where y, y′, . . . stand for y(0), y′(0), . . .
Any such family has the property that y(x; 0) = −6/x. Furthermore, it is

clear that the above expansion could be pushed to all orders, and that the
coefficients of the higher-order terms contain higher and higher powers of 1/x.

Proof of Theorem 3.13 : If we take μ and η proportional to ε in such
a way that μy(0) − 6η ∼ ε, we have ∂y/∂ε = 1/x2 for ε = 0.

Proof of Theorem 3.14 : If we take μ and η proportional to ε1/2 in
such a way that μy(0)− 6η = 0, and if y is such that 6y′(0) �= y(0)2, we have
∂y/∂ε = const/x3 for ε = 0.

Proof of Theorem 3.15 : If we take μ and η proportional to ε in such a
way that μy(0) − 6η = 0, and assume that 6y′(0) − y(0)2 = 0 but y′′ − yy′ +
y3/9 �= 0 for x = 0, we find that ∂y/∂ε = const/x4 for ε = 0.

This proves Theorem 3.13, 3.14, and 3.15.
Proof of Theorem 3.16: Consider an equation F [u] = 0 of order three

or higher with such a group action. Solving the Cauchy problem, we can
construct solutions to which each of Theorems 3.13, 3.14, and 3.15 applies.
Consequently, there are differentiable families of solutions y(x; ε) as in these
theorems. Since F [y(x; ε)] is identically zero, we have

0 =
d

dε
F [y(x; ε)]

ε=0

= F ′[−6/x]
(

dy

dε
(x; 0)

)
,

where F ′ denotes the linearization of F . We conclude that this linearized
equation must admit the three solutions 1/xm, m = 2, 3, and 4. If these three
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functions do not solve the linearization, there can be no such group action,
QED. The specific coefficients of the group action are not essential to the
result: only the existence of an expansion of families of solutions matters.

Proof of Theorem 3.17 : The solution y(x) in the statement of the the-
orem is constructed in Theorem 3.19. From y, we construct the one-parameter
family

y2(x; ε) = − 6
x
− 1

x
h
( ε

xk

)
,

using (3.28) for the inversion x �→ ε1/k/x. Letting ε → 0, we find that −(6 +
h(0))/x = −(k + 6)/2x must be a solution. We now define

y1(x; ε) = −k + 6
x− ε

.

The properties listed in the theorem are now readily verified.

Instability of isolated poles

Even though the construction of the perturbation expansion of solutions close
to −6/x can be made solely on the basis of the group action on solutions, the
singularities that arise by perturbation of simple poles are different for (3.26)
and (3.27). We know that perturbation series near a single pole do not allow
an analytical description of confluence phenomena. However, even though a
function such as (x − a)−1 + (x − b)−1 is not jointly analytic in x, a and b
small, it is the logarithmic derivative of (x− a)(x− b), which is perfectly well
behaved. More generally, we show that a Cole–Hopf transformation provides
an analytical description of confluence phenomena in the Chazy equation.

Theorem 3.18. For any constant a, equation (3.26) has precisely one solu-
tion of the form y(x) = u′/2u with

u(x) = ex(1 + exw(ex)),

where w is analytic when its argument is small, and w(0) = a. Using trans-
formations (3.28), this solution generates a one-parameter family of perturba-
tions of −6/x, with a natural boundary shrinking to a point as the parameter
vanishes.

For equation (3.27), we have the following result.

Theorem 3.19. Let a be a constant. For k �= 0 or 1, equation (3.27) has a
unique solution of the form

y(x) = x−1h(xk),

where h is analytic when its argument is small, h(0) = (k− 6)/2, and h′(0) =
a. If k = 2, 3, 4, or 5, this solution is rational. Using transformations (3.28),
this solution generates a one-parameter family of perturbations of −6/x, where
all poles, except possibly one, cluster at the origin as the parameter vanishes.
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Thus, −6/x is unstable; the next result shows that (k − 6)/2x is stable, but
−(k + 6)/2x is unstable:

Theorem 3.20. For k = 2, 3, 4, 5, there is a three-parameter family of solu-
tions of (3.27) that contains the solution (k− 6)/2x. These parameters are in
correspondence with the Cauchy data at a nearby regular point. Solutions with
leading term −(k+6)/2x, on the other hand, are unstable under perturbation:
they arise from the confluence of all singularities save one.

These three theorems are proved in Problem 3.3. We close this chapter with
a general result on stability of solutions.

3.6 Stability and parameter dependence

We prove a stability result for pole singularities of an equation with the max-
imum number of coefficients in their pole expansions. This result makes rig-
orous the idea that a series with as many free parameters as there are Cauchy
data must represent the general solution locally. It is the simplest case in
which Step H of the general program can be carried out. To prove the result,
one must show that these parameters are not redundant. We achieve this by
a reduction to the implicit function theorem.1

To fix ideas, let us consider an autonomous equation of the form

(d/dx)mu = f(u, . . . , u(m−1)), (3.33)

where f is a polynomial. Let u(x − x0, c1, . . . , cm−1) be a family of solutions
that depends analytically on (x0, c1, . . . , cm−1) for |x0| and |ck| < a and 0 <
|x− x0| < b, for some positive a and b. We have the following result:

Theorem 3.21. Assume that ∂u/∂x0, ∂u/∂c1,. . . , ∂u/∂cm−1 form a linearly
independent set of solutions of the linearization of (3.33). Then

u(x− x0, c1, . . . , cm−1)

is a local representation of the general solution.

Proof. Consider the reference solution U = u(x, 0, . . . , 0) for definiteness.
Given any point x1 with 0 < |x1| < b, consider

ϕ : (x0, c1, . . . , cm−1) �→
(
u(x1), u′(x1), . . . , u(m−1)(x1)

)
,

1 An example of a redundant representation is the two-parameter family of series

u(x; ε, η) =
∑
j≥0

ηj

(x− ε)j+1
. (3.32)

The parameters ε and η are redundant, because u(x; ε, η) = 1/(x − ε − η): the
pairs (ε, η) with the same value of ε+ η define the same function.
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where u(x1) = u(x1 − x0, c1, . . . , cm−1), and similarly for the derivatives of
u. Applying the inverse function theorem to this map near (x0, 0, . . . , 0), we
conclude that any set of Cauchy data close to the data of U at x1 coincides
with the Cauchy data set of a member of our family. �

Remark 3.22. The assumption usually holds for any pole expansion with the
maximum number of parameters if ν �= 0. Indeed, it suffices to consider the
family u(x− x0, c1, . . . , cm−1), where the cl’s are the arbitrary coefficients in
the expansion of u. The functions ∂u/∂x0, ∂u/∂cl are derivatives of families
of solutions, and are therefore solutions of the linearized equation. It is easy
to check that these derivatives all have different leading behaviors at x = x0,
and are therefore linearly independent.

Remark 3.23. If ν = 0, we are in the case of the Cauchy problem, and the
series for the solution contains m + 1 parameters, namely the location of the
initial point and the m Cauchy data. These data are clearly redundant. In the
case of (3.32), the representation is redundant because ∂u/∂ε = ∂u/∂η.

Problems

3.1. Prove that the space of homogeneous inessential polynomials of degree
n in � + 1 variables, as defined in Sect. 3.4, is a vector space over R. Find a
basis of this space for small values of n and �.

3.2. (a) Show that −1 is not a resonance for the Cauchy problem uTT = f(u),
u = 1 + O(T 2) if f is, say, a polynomial.

(b) Study solutions of the ODE [46]

uTuTTT − 2u2
TT + 18uT = Tuu2

T

such that u = a0 + O(T 2). Is −1 a resonance?

3.3. Apply reduction to the ODE ut = 2
√

u, and construct solutions such
that u ∼ a(t − t0)2 for t > 0. Show that even though the Cauchy problem
with initial condition u(0) = 0 has infinitely many solutions near t0, there is
only one solution with the properties u(0) = 0 and utt �= 0.

3.4. For each of the following equations, choose an expansion variable and
determine (a) the possible leading balances; (b) the first reduction; (c) the
resonances in each case; (d) the most general formal solution for each of them:

1. ut = u2 + 1.
2. utt + 3uut + u3 = 0. What happens if one introduces a new unknown via

u = vt/v?
3. utt = eu − e−2u.
4. utt = u2 + cut, with c constant.
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5. utt = u4.
6. uttt + uutt = 0.
7. uttt − uput = 0 with p > 0.

See Problem 10.1 for further examples.

3.5. Prove Theorems 3.18 to 3.20.

3.6. Reduce the following equations to a first-order Fuchsian system:
(a) The Euler–Poisson–Darboux (EPD) equation

utt − λ− 1
t

ut = Δu,

where Δ is the Laplace operator in n variables.
(b) (t∂t)2u− tuxx = 0.

3.7. Perform reduction for the Lotka–Volterra system

dx/dt = ax + cxy,
dy/dt = bx + dxy,

where a, b, c, d are nonzero constants.

3.8. Prove Theorem 1.6.

3.9. In Sect. 3.4, can one lower �′ by allowing it to be fractional?

3.10. Let Dk = ∂rr + (k/r)∂r . Let u solve the EPD equation Dku = Δu.
(a) Show that rk−1Dku = D2−k(rk−1u).
(b) Show that tk−1u solves another EPD equation. Show that r−1ur also

solves an EPD equation [76, 184]. The transformation ρ = rk−1, ξ = x/(k−1)
for k �= 1 transforms the EPD equation into a generalized Tricomi equation.

(c) Reduce the generalized Stokes–Beltrami system y3φx = ψy, y3φy =
−ψx to (the elliptic analogue of) an EPD equation for φ [183].

3.11. Find all solutions of

x2(a + bxn)
d2u

dx2
+ x(c + exn)

du

dx
+ (f + gxn) = 0,

where a, b, c, e, f , g are constants, a �= 0, and n is a positive integer (Euler
[58]).



Part II

Theory of Fuchsian Partial Differential
Equations



4

Convergent Series Solutions of Fuchsian
Initial-Value Problems

This section presents the two basic existence theorems for complex solutions
of Fuchsian PDEs. Thanks to them, as soon as the second reduction has been
achieved, one can immediately conclude that the singularity data determine a
unique singular solution, and that the formal asymptotics of Part I are valid.
The first result, Theorem 4.3, yields solutions that are continuous in time and
analytic in space; the second, Theorem 4.5, yields convergent series solutions
in both space and generalized time variables T, . . . , T (lnT )�. The method of
proof is based on an iteration in a Banach space, as in the modern approach to
the Cauchy–Kovalevskaya theorem. We begin with an overview of the classical
Fuchs–Frobenius theory for ODEs in the complex domain.

4.1 Theory of linear Fuchsian ODEs

Consider a first-order linear system of ODEs

u ′ = A(z)u ,

where the prime denotes the derivative with respect to z. We review some
basic facts, without proofs [50, 23]. If A is analytic and single-valued in a
pointed neighborhood of the origin, {0 < |z| < a}, any fundamental matrix
Φ(z) of solutions1 may be continued analytically about the singularity at
the origin. Therefore Φ(e2iπz) must be of the form Φ(z)C, with C constant.
Writing C = e2iπP , we find that Φ(z)z−P = S(z) is single-valued.

Now let us assume in addition that A(z) has at most a pole of first order
at z0; the system is then said to be Fuchsian, or of Fuchs type at z0. The
point z0 is said to be a singular point of the first kind. The point at infinity
is said to be a Fuchsian singularity if the change of variables z �→ z′ = 1/z
leads to an equation with a Fuchsian singularity for z′ = 0. For the rest of

1 Φ(z) is a fundamental matrix if its columns form a basis of the space of solutions.
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this section, we assume that the origin is a Fuchsian singularity; Problem 4.3
shows that certain matrices A with stronger singularities may be converted
into Fuchsian ODEs with nonanalytic coefficients.

Next, for any Fuchsian singularity, S has at most power growth as z → 0.
The converse is not true (see Problem 4.4). One often calls the origin a regular
singular point if there is a fundamental solution of the form S(z)zP , where S
has at most a pole at the origin, and P is constant; non-Fuchsian ODEs may
admit the origin as a regular singular point.2 For a regular singularity, if Ψ(z)
is a formal solution in powers and logarithms of z and finitely many negative
powers, it must always converge: because solutions have power growth, the
matrix S(z) must be a Laurent series with finitely many negative powers;
since Ψ−1Φ must be formally equal to the identity, and Φ and Ψ are both
series of the same form, they must be equal, so that Φ converges.

A more direct approach is to construct a fundamental matrix. Let R be
the residue of A at the origin, so that A(z) − R/z is analytic at the origin.
The Fuchs indices are, by definition, the eigenvalues of R. This tallies with
the developments of Chap. 2. If no two eigenvalues of R differ by an integer,
one can find a fundamental matrix of the form Φ = SzR, where S is given
by a series in nonnegative powers of z, the constant term of which is the
identity matrix. The proof is achieved by direct recursive computation of
the coefficients of the expansion of S. In Chap. 2, we directly computed the
expansion of each of these solutions instead of dealing with the fundamental
matrix; this approach is preferable if one is interested only in solutions that
tend to zero.

If two eigenvalues do differ by an integer, the natural route, from our
point of view, would be to introduce new logarithmic variables and seek a
solution of the form zνv , where the components of v belong to a space A�,
with � sufficiently large. The classical procedure is different: it seeks to reduce
the difference between the eigenvalues as follows. Performing a linear change
of unknown, it is always possible to assume that R has been reduced to a
block-diagonal form (

R1 0
0 R2

)
,

where R1 is the Jordan block corresponding to the eigenvalue λ1, and R2 does
not have λ1 as an eigenvalue. Assume that R1 has size p × p, while u has n
components. Perform the change of unknown3

u = Mv, where M =
(
zIp 0
0 In−p

)
.

Write A = z−1R + A0 + A1z + · · · , where

2 However, there is a tendency in the literature to use the phrase “regular singu-
larity” for “Fuchsian singularity,” and we shall follow this usage.

3 Ip denotes the p× p identity matrix.
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A0 =
(
A11 A12

A21 A22

)
.

Direct computation shows that v solves a Fuchsian equation in which R has
been replaced by (

R1 − Ip A12

0 R2

)
.

This operation therefore has the net effect of replacing λ1 by λ1 − 1. Iterating
this operation, one reduces the problem in finitely many steps to a problem in
which R has been replaced by a matrix R̃ of which no two eigenvalues differ
by an integer. It follows that there is a fundamental system of solutions of the
form S̃(z)zR̃, where S̃(z) is analytic near the origin.

Let us review some corresponding facts for nth-order ODEs

Lw := w(n) + an−1(z)w(n−1) + · · · + a0(z)w = 0.

The origin is said to be a Fuchsian singularity if for every k between 0 and n−1,
bk := zkak is analytic at the origin. Taking u := (w, zw′, . . . , zn−1(d/dz)n−1w)
as the new unknown, one then obtain an equation of the form

zu′ = B(z)u,

with B analytic. The Fuchs indices may be found directly from the equation:
they are the roots of the polynomial

P (λ) := [λ]n +
∑
k<n

bk(0)[λ]k = 0

using the notation introduced in (3.5). Frobenius’s trick consists in noticing
that if one can find a family of solutions uε satisfying

Luε = f(ε)uε,

where f(0) = f ′(0) = 0, then (d/dε)uε|ε=0 solves the equation Lw = 0. This
trick, and its obvious generalizations to higher-order derivatives, is useful for
finding several solutions in the case in which P has multiple roots. It does
not seem to be applicable to nonlinear situations and is therefore not further
discussed.

4.2 Initial-value problem for Fuchsian PDEs
with analytic data

Consider now a Fuchsian system for a “vector” unknown u(x, t) of the form

(D + A(x))u = F [u ] := tf(t, x,u ,ux). (4.1)

We assume that A is an analytic matrix near x = 0, where x = (x1, . . . , xn),
such that ‖σA‖ ≤ C for 0 < σ < 1. The unknown u depends on complex x,
but only on real t > 0.
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Remark 4.1. The seemingly more general system (D + A)u = tεf may be
reduced to the form (4.1) by taking tε as time variable, and by modifying A
accordingly. Similarly, if A depends on t, and may be written A = A0(x) +
tA1(x, t,u), the system may be written

(D + A0)u = t(f −A1u).

For these reasons, we limit ourselves to the case A = A(x).

Remark 4.2. If the equation contains parameters, it is often useful to view
them as new space variables, whose derivatives do not enter into f . In this
way, analytic dependence with respect to parameters is obtained as a by-
product of the proof.

The nonlinearity f is assumed to preserve analyticity in space and continuity
in time, and to be Lipschitz in u and ux whenever u is bounded. That is,
we assume that f depends linearly on ux; fully nonlinear equations may be
reduced to this case by differentiation; see Problem 4.1. To fix ideas, we assume
that f is a sum of products of analytic functions of x, u , and ux by powers
of t, tk(x), and ln t; this suffices to ensure estimate (4.2) below.

Theorem 4.3. The system (4.1) has exactly one solution near x = 0 and
t = 0, which is analytic in x, continuous in t, and tends to zero as t ↓ 0.

Proof. Let

H [v] =
∫ 1

0

σA(x)−1v (σt) dσ.

This provides the solution of

(D + A)u = v ,

with u(0) = 0, provided that v = O(t) near t = 0. The proof will consist in
showing that the operator v �→ G[v ] := F [H [v ]] is a contraction for a suitable
norm. Its fixed point generates a solution u = H [v ] to our problem. We are
ultimately interested in real values of x in some open set Ω. We therefore
work in a small complex neighborhood of the real set Ω. We also define two
norms. The s-norm of a function of x is given by

‖u‖s = sup{|u(x)| : x ∈ C
n and d(x,Ω) < s}.

The a-norm of a function of x and t is defined by

|u|a = sup

{
s0 − s

t
‖u(t)‖s

√
1 − t

a(s0 − s)
: t < a(s0 − s)

}
.

The objective is to prove that the iteration u0 = 0, un+1 = G[un] is well
defined and converges to a fixed point of G, which gives us the desired solution.
This will be achieved by exhibiting a set of functions that contains zero and
on which G is contractive in the a-norm. Since a contraction has a unique
fixed point, we also obtain uniqueness.
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Remark 4.4. The a-norm allows functions to become unbounded when t =
a(s0 − s). Thus, the solution will be bounded on a domain that shrinks with
time; this is consistent with the behavior of the domain of dependence of
solutions of the Cauchy problem. The iteration would not be well defined
if we had worked simply with the supremum of the s-norm over some time
interval, because the derivative of a holomorphic function is not bounded by
its supremum on the same domain, but on a slightly larger domain.

We choose R > 0 and s0 such that ‖F [0](t)‖s0 ≤ Rt. This can always be
achieved since we are allowed to take R very large.

Step 1: Estimating H

Using the definition of |u|a, we obtain, after the change of variables ρ =
σt/a(s0 − s),

‖H [u](t)‖s ≤ |u|a
s0 − s

∫ 1

0

|σA|σt
σ

(
1 − σt

a(s0 − s)

)−1/2

dσ

=
C|u|a
s0 − s

∫ t/a(s0−s)

0

a(s0 − s) dρ√
1 − ρ

≤ C0a|u|a.

Step 2: Estimating F

We claim that there is a constant C1 such that

‖F [p] − F [q]‖s(t) ≤ C1t

s′ − s
‖p− q‖s′ (4.2)

if s′ > s and ‖p‖s and ‖q‖s are both less than R; this constraint will be
ensured in Step 3 thanks to the argument of Step 1.

Proof. F [p] is the product of t by a linear expression in the gradient of p,
with coefficients that are Lipschitz functions of p. The bound on the s-norm
ensures that all the partial derivatives of F with respect to p and ∇xp are
bounded by some constant C. Therefore, we have

|F [p] − F [q]| ≤ Ct(|p − q| + |∇xp−∇xq|).

We now estimate the supremum of this expression as x varies so as to satisfy
dist(x,Ω) < s. The first term is bounded by ‖p − q‖s, and is a fortiori no
larger than ‖p− q‖s′. The second is estimated by Cauchy’s inequality on each
variable. Thus, to estimate ∂1(p − q), we write

p(x, t) − q(x, t) =
1

2πi

∫
|z−x1|=s′−s

(p(z, x2, . . . , t) − q(z, x2, . . . , t))dz
z − x1

.
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Differentiating with respect to x1, we obtain

|∂1(p − q)| =

∣∣∣∣∣
1

2πi

∫
|z−x1|=s′−s

(p(z, x2, . . . , t) − q(z, x2, . . . , t))dz
(z − x1)2

∣∣∣∣∣
≤ 1

2π

∫
|z−x1|=s′−s

|p(z, x2, . . . , t) − q(z, x2, . . . , t)||dz|
(s′ − s)2

≤ 1
2π

‖p− q‖s′ 2π(s′ − s)
(s′ − s)2

,

which provides the desired estimate for the second term as well. �


Step 3: G is a contraction

Assume that |u|a and |v|a are both less than R/2C0a. We claim that

|G[u] −G[v]|a ≤ C2a|u− v|a.
Proof. First write

G[u] −G[v] =
n∑
j=1

F [wj ] − F [wj−1],

where

wj =
∫ j/n

0

σA−1u(σt) dσ +
∫ 1

j/n

σA−1v(σt) dσ.

By Step 1, we have ‖wj‖s < R/2 for t < a(s0 − s). We therefore have, using
Step 2 with p = wj and q = wj−1,

‖G[u]−G[v]‖s(t) ≤
n∑
j=1

Ct

sj − s
‖wj − wj−1‖sj .

We now choose sj = s(j/n), where

s(σ) =
1
2

(
s + s0 − σt

a

)
.

We then obtain

‖wj − wj−1‖sj =
∥∥ ∫ j/n

(j−1)/n
σA−1[u(σt) − v(σt)] dσ

∥∥
sj

≤ ∫ j/n
(j−1)/n C‖u− v‖s(σ)(σt) dσ/σ

≤
∫ j/n

(j−1)/n

Ct

s0 − s(σ)
|u− v|adσ√

1 − σt/a(s0 − s(σ))
.

Letting n tend to infinity, we obtain
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‖G[u] −G[v]‖s(t) ≤
∫ 1

0

C
t2|u− v|a

(s(σ) − s)(s0 − s(σ))
dσ√

1 − σt/a(s0 − s(σ))
.

Perform the change of variables ρ = σt/a(s0 − s). Since

(s(σ) − s)(s0 − s(σ)) =
(s0 − s)2

4
(1 − ρ2), 1 − σt

a(s0 − s(σ))
=

1 − ρ

1 + ρ
,

we obtain

‖G[u] −G[v]‖s(t) ≤ Cat|u− v|a
s0 − s

∫ t/a(s0−s)
0

dρ

(1 − ρ)3/2
.

≤ Cat|u− v|a
s0 − s

(
1 − t

a(s0 − s)
)−1/2

Using the definition of the a-norm, we obtain the desired estimate. �


Step 4: End of proof

Let u0 = 0 and define inductively un by un+1 = G[un]. We show that this
sequence converges in the a-norm if a is small.

Since ‖u1‖s0 ≤ Rt, |u1|a < R/4C0a if a is small. We may assume C2a < 1
2 .

It follows by induction that |un+1 − un|a ≤ 2−n|u1|a and |un+1|a < R/2C0a,
hence ‖Hun‖s < R/2. Therefore, all the iterates are well defined and lie in
the domain in which G is a contraction. As a result, the iteration converges,
as desired. �


4.3 Generalized Fuchsian systems

Consider the problem

Nz + Az = f(t , x, z,Dz), (4.3)

where N = Nl =
∑l
k=0(tk + ktk−1)∂/∂tk, A is constant, and f is analytic

near (0, 0, 0, 0) without a constant term in t ′. The unknown z has m com-
ponents, and t ′ = (t0, . . . , tl). All functions are analytic in their arguments
unless otherwise specified. One may, by introducing new dependent variables,
assume, as we will, that f is linear in Dz. We prove the following result.

Theorem 4.5. If A has no eigenvalue with negative real part, (4.3) has, near
the origin, exactly one analytic solution that vanishes for t = 0.

Remark 4.6. Instead of requiring A to be constant, one may require that there
exist a matrix-valued function P (x) such that P (x)−1AP (x) is constant, since
the latter case reduces to the former by a redefinition of u. Also, N may
be replaced by a more general first-order operator, with similar proofs, but
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the present setup is sufficient for most applications. Since there are several
“time” variables, this result is not a consequence of the previous one; however,
the techniques are very similar, and the main differences are outlined at the
end of this chapter. The special case (k = 0) of the equation tut + Au =
tf(t, x,u , Du), where u and f are vector-valued, with m components, could
also be handled by Theorem 4.3.

Proof. We first treat the case of two time variables (l = 1), and indicate
the modifications in the general case afterward. We let (t0, t1) = (T, Y ). The
problem therefore reads:

(N + A)z = f(T, Y, x, z,∇z),
z(0, 0, x) = z0(x) ∈ KerA,

(4.4)

where ∇ = ∇x and f ≡ 0 for T = Y = 0. Replacing z by z − z0(x), we may
assume, since Az0(x) = 0,

z0(x) = 0.

The solution of (4.4) therefore depends on the choice of one function z0(x)
which has been incorporated into the right-hand side. We define

F [z] := f(T, Y, x, z,∇z).

The argument is in five steps.

Step 1

For given k = k(T, Y ), the problem

(N + A) z(T, Y ) = k(T, Y ), (4.5)
z(0, 0) = 0,

where k is analytic, independent of x, and vanishes for T = Y = 0, has a
unique analytic solution, given by

z(T, Y ) = H [k] :=
∫ 1

0

σA−1k(σT, σ(T lnσ + Y )) dσ. (4.6)

Indeed, let g(σ) = z(σT, σ(T lnσ + Y )) for 0 < σ < 1. We obtain

d

dσ
(σAg(σ)) = σA−1k(σT, σ(T lnσ + Y )).

Since g(σ) must tend to zero as σ goes to zero, while σA remains bounded,
we have

σAg(σ) =
∫ σ

0

τA−1k(τT, τ(T ln τ + Y )) dτ.
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Since k vanishes at the origin, the contribution from k to the integral is
O(τ1−ε) for any ε > 0, and the integral converges. Equation (4.6) follows
by letting σ = 1 in the last equation. One checks directly, using the Cauchy–
Riemann equations, that this does provide an analytic solution to the problem.
Let u = F [z], and write (4.4) as the integral equation

u = G[u] := F [H [u]]. (4.7)

It will be solved by a fixed-point argument. The desired solution will then be
given by z = H [u].

Step 2

We define two norms. Assume that f is analytic for x ∈ C
n and d(x,Ω) < 2s0,

and u ∈ C
m with |u| < 2R, for some positive constants s0 and R, where Ω is

a bounded open neighborhood of 0. For any function u = u(x) we define the
s-norm

‖u‖s := sup{|u(x)| : d(x,Ω) < s}. (4.8)

For any function u = u(T, Y, x), and a a sufficiently small positive number, to
be chosen later, we define the a-norm

|u|a := sup
δ0(T,Y )<a(s0−s)0≤s<s0

{
δ−1
0 ‖u‖s(T, Y )(s0 − s)

√
1 − δ0

a(s0 − s)

}
,

(4.9)
where δ0 = δ0(T, Y ) := |T |+θ|Y |, and 0 < θ < 1 is fixed. We write ‖u‖s(T, Y )
for the s-norm of u(., T, Y ). We also let δ(σ) = δ0σ(1 − θ lnσ). The main
properties of δ(σ) are

1. δ(σ) increases strictly from 0 to δ0,
2. δ0(σT, σ(Y + T lnσ)) ≤ δ(σ) if 0 < σ < 1,
3. dδ(σ)/dσ ≥ δ(σ)/(C0σ). One can take C0 = 1 − θ.

In particular, if |u|a < ∞,

‖u‖s(σT, σ(T lnσ + Y )) ≤ δ(σ)|u|a
s0 − s

(
1 − δ(σ)

a(s0 − s)

)−1/2

.

Step 3

We estimate the s-norm of Hu in terms of the a-norm of u. From the defini-
tions of the various norms, it follows that

‖Hu‖s(T, Y ) ≤ |u|a
s0 − s

∫ 1

0

|σA|δ(σ)
σ

{
1 − δ(σ)

a(s0 − s)

}−1/2

dσ (4.10)

if δ0 < a(s0 − s). We estimate σA by a constant C1. Let us define
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ρ =
δ(σ)

a(s0 − s)

so that by property 3 above,

dσ

dρ
≤ C0

σ

δ(σ)
a(s0 − s).

It follows that

‖Hu‖s(T, Y ) ≤ |u|a
s0 − s

∫ 1

0

C0C1
a(s0 − s) dρ√

1 − ρ
= 2C0C1a|u|a,

or
‖Hu‖s(T, Y ) ≤ C2a|u|a. (4.11)

Step 4

Since f is linear in the spatial derivatives, Cauchy’s inequality gives

‖F [u]− F [v]‖s′(T, Y ) ≤ C3δ0(T, Y )
s− s′

‖u− v‖s (4.12)

for 0 < s′ < s < s0, if ‖u‖s ≤ R and ‖v‖s ≤ R.

Step 5

Assume now |u|a, |v|a < R/(2C2a). Let G[u] = F [Hu]. We prove

|G[u] −G[v]|a ≤ C4a|u− v|a (4.13)

for some constant C4. To this end, let σj = j/n, for 0 ≤ j ≤ n, and

wj =
∫ σj

0

σA−1u(σT, σ(T lnσ + Y )) dσ −
∫ 1

σj

σA−1v(σT, σ(T lnσ + Y )) dσ,

and observe that

G[u] −G[v] =
n∑
j=1

F [wj ] − F [wj−1]. (4.14)

Using the argument of Step 3, we obtain ‖wj‖s ≤ R for δ0(T, Y ) < a(s0 − s),
so that F [wj ] is indeed defined. If sj ∈ (s, s0−δ0(T, Y )/a) for every j, we find
from Step 4 that

‖F [wj] − F [wj−1]‖s ≤ C3δ0

sj − s
‖wj − wj−1‖sj .

On the other hand,
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‖wj − wj−1‖sj ≤
∫ σj

σj−1

|σA−1| ‖u− v‖sj (σT, σ(T lnσ + Y )) dσ.

This suggests the choice sj = min{s(σ) : σj−1 ≤ σ ≤ σj}, where

s(σ) =
1
2

[
s + s0 − δ(σ)

a

]
.

Observe next that
∑

j sjχ[σj−1,σj) → s(σ) as j tends to infinity, uniformly and
from below on (0, 1), if δ0(T, Y ) < a(s0 − s). Furthermore, if σj−1 ≤ σ ≤ σj ,

‖u− v‖sj (σT, σ(T lnσ + Y )) ≤ ‖u− v‖s(σ)(σT, σ(T lnσ + Y ))

≤ δ(σ)|u − v|a
s0 − s(σ)

(
1 − δ(σ)

a(s0 − s(σ))

)−1/2

.

We therefore obtain, since |σA−1| ≤ C1/σ, letting j → ∞,

‖G[u] − G[v]‖s(T, Y )

≤ C3δ0

∫ 1

0

δ(σ)|u − v|a
(s(σ) − s)(s0 − s(σ))

(
1 − δ(σ)

a(s0 − s(σ))

)−1/2

C1
dσ

σ
.

Since

s(σ) − s =
s0 − s

2

(
1 − δ(σ)

a(s0 − s)

)

and

s0 − s(σ) =
s0 − s

2

(
1 +

δ(σ)
a(s0 − s)

)
,

we again let ρ = δ(σ)/[a(s0 − s)]. As σ varies from 0 to 1, ρ varies from 0 to
δ0/[a(s0 − s)] (which is always less than 1); also,

1 − δ(σ)
a(s0 − s(σ))

=
1 − ρ

1 + ρ
.

Performing this change of variables, we obtain, using dσ/dρ ≤ C0σ/ρ,

‖G[u] −G[v]‖s(T, Y )

≤ C1C3δ0

∫ δ0/[a(s0−s)]

0

C0δ(σ)
4|u − v|a
(s0 − s)2

(1 − ρ2)−1

√
1 + ρ

1 − ρ

a(s0 − s) dρ

δ(σ)

= 4a(s0 − s)−1C0C1C3δ0|u− v|a
∫ δ0/[a(s0−s)]

0

dρ/(1 − ρ)3/2

= C4δ0a(s0 − s)−1|u− v|a
(

1 − δ0

a(s0 − s)

)−1/2

.

Therefore
|G[u] −G[v]|a ≤ C4a|u− v|a.
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End of proof (l = 1)

Let us define u0 = 0 and u1 = G[u0]. There is a constant R0 such that

‖u1‖s0 ≤ R0δ0(T, Y )

if |T | + θ|Y | = δ0. Assume that a is chosen so small that

C4a < 1/2 and R0s0 < R/(4C2a).

In particular, |u1|a ≤ R0s0 < R/(4C2a). The mapping G is a contraction in
the a-norm on the set {|u|a ≤ R/(2C2a)}. The existence and uniqueness of
the desired solution now follow from the contraction mapping principle. This
completes the proof of the theorem in this case.

End of proof (general case)

The proof parallels the one given for (4.4), and we therefore only indicate the
differences. Write

N =
∑
j

mijtj∂i

for suitable coefficients mij forming a matrix M , with only one eigenvalue.
One must then replace H [k] by

∫ 1

0

σA−1k(σM t) dσ,

and use δ0(t0, . . . , tl) =
∑l

k=0 θk|tk|, where θ ∈ (0, 1/l) is fixed. We then use
for δ(σ) the quantity δ0σ(1 − θ lnσ)l.

We need to check the three properties of δ in Step 2. The first follows
from the assumption 0 < θ < 1/l. The second is checked as follows: Since
t(σ) := σM t solves σ dt/dσ = Mt , t(1) = t , we obtain, using the expression
of M ,

(σM t)k =
k∑
j=0

tj

(
k

j

)
σ(ln σ)k−j .

We then compute

δ0(σM t) =
∑
k

θk|tk(σ)| ≤ σ
∑

0≤j≤k≤l
tjθ

k

(
k

j

)
| lnσ|k−j

= σ
∑

0≤j≤k≤l
θj |tj |

(
k

j

)
(−θ lnσ)k−j
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= σ
∑

0≤j≤k≤l
(−θ lnσ)j

(
k

j

)
θk−j |tk−j |

≤ σ

l∑
j=0

(−θ lnσ)j
(

l

j

)∑
k≥j

θk−j |tk−j |

≤ σδ0(t)
l∑

j=0

(−θ lnσ)j
(
l

j

)

= σδ0(t)(1 − θ lnσ)l,

which is the desired result. The third property follows from

δ′(σ)
δ(σ)

≥ 1 − lθ

σ
.

The rest of the proof proceeds verbatim. We obtain existence on domains of
the form

{δ(t) < a(s0 − s); d(x,Ω) < s}.
This completes the proof of the existence result.

We include a closely related result that could be used to prove an existence
result for generalized Fuchsian systems in which the matrix M is still more
general; see Sect. 5.3.

Lemma 4.7. For any matrix M with positive eigenvalues, there is a function
δ(t) such that

1. δ is continuous for all t , and C∞ for t �= 0,
2. δ(σM t) increases from 0 to δ(t) as σ increases from 0 to 1.
3. δ(σM t) ≤ δ(t)σm(1 − θ lnσ)q for some positive m and q, and some θ ∈

(0, 1).

Proof. Assume that a linear change of variables has been performed to put
M in block diagonal form, with blocks of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

λr
1 λr

2
. . .
. . . . . .

lr λr

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with λr > 0. The integer lr may be zero, in the case of a 1 × 1 block. (It
is convenient not to take the off-diagonal elements equal to 1.) Let us label
(tr0, tr1, . . . , trlr) the components of t corresponding to the rth block. Define
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δ(t) =
∑
r

(
lr∑
k=0

θk|trk|
)

.

We show that one can choose θ > 0 so that δ(t) has the required properties.
First, by solving the equation σ∂t/∂σ = Mt , one shows that

(σM t)rk =
k∑
j=0

trj

(
k

j

)
σλr (lnσ)k−j

for k ≤ lr. We now compute, for σ ∈ (0, 1),

δ(σM t) =
∑
k,r

θk|(σM t)rk|

≤
∑
r

∑
0≤j≤k≤lr

σλr |trj|θk
(
k

j

)
(ln σ)k−j

≤
∑

0≤j≤k
σλr

(
k

j

)
[−θ lnσ]k−jθj |trj|

=
∑

0≤j≤k
σλr

(
k

j

)
[−θ lnσ]jθk−j |tr,k−j |

≤
∑
r

lr∑
j=0

(
lr
j

)
[−θ lnσ]j

∑
k≥j

θk−j |tr,k−j |σλr

≤
∑
r

σλr δ(t)(1 − θ lnσ)lr . (4.15)

(We used the inequality
(
k
j

) ≤ (
l
j

)
if k ≤ l.) If we choose m such that 0 < m ≤

λr for all r, and estimate lr by, say, q, we find that

δ(σM t) ≤ δ(t)σm(1 − θ lnσ)q.

We finally choose θ ∈ (0,m/q), to ensure that σm(1− θ lnσ)q is increasing for
σ ∈ (0, 1). All the desired properties follow.

4.4 Notes

The classical Fuchs–Frobenius theory is treated in most treatises on ODEs in
the complex domain, such as [50]. An abstract convergence result for linear
ODEs may be found in [99]. For classical applications, see for instance [23].
For ODEs with non analytic coefficients, the classical equivalence “Fuchsian
≡ all formal solutions converge” is either false, or meaningless; indeed, the
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coefficients might themselves be given by divergent series. The results for
PDEs have a long history. It seems that Nagumo [146] first realized in 1942
that it was possible to drop the analyticity condition in time in the Cauchy–
Kovalevskaya theorem: continuity in time and analyticity in space suffice.
It was also realized gradually that the Cauchy–Kovalevskaya theorem could
be proved by an iteration procedure, at first in scales of Banach spaces; the
most famous contributions in this direction are due to Ovsjannikov [154], and
to Nirenberg [148], who stressed the parallel with the Nash–Moser inverse
function theorem. In fact, it is possible to prove the result using the contraction
mapping principle, but as the reader can see, the choice of norm is non trivial,
motivated as it is by the proofs based on iteration in scales of Banach spaces.
The modern interest in Fuchsian PDEs seems to go back to [77, 11], although
the stage had been prepared to some extent by work on the Euler–Poisson–
Darboux equation; see [135, 184]. The techniques of the convergence proofs
are essentially modifications of those from [11]; see also [178, 120, 122, 161].
Generalized Fuchsian problems are necessary to deal with in order to take
logarithmic terms into account [120]. As far as reduction is concerned, the
iteration used in the proof of the existence theorem generates automatically
the expansion of the solution: it is not necessary to know beforehand the
form of this expansion. On the contrary, it is generated automatically; this
is important for applications in relativity, where the form of the expansion is
difficult to determine beforehand. The results on generalized Fuchsian systems
prove that if the expansion contains powers and logarithms alone, there is a
unique expansion that converges; it has been uniformized by the introduction
of the higher “time variables.” These results are taken from [120, 104, 124],
with minor extensions suggested by [103].

Problems

4.1. Recover the Cauchy–Kovalevskaya theorem for equations linear in the
derivatives from the results of this chapter. Reduce the general “fully nonlin-
ear” equation to this case, by adjoining to the equation all its derivatives, and
adding to the list of unknowns all the first-order derivatives of the unknown.

4.2. What type of equation would lead to an initial-value problem involving
the operator N

∑
j mijtj∂i with a matrix (mij) of the type considered in

Sect. 4.3?

4.3. This problem shows how to recover asymptotics of solutions of linear
equations with irregular, or non-Fuchsian, singularities by Fuchsian reduction.
Question (a) shows how to simplify such an ODE by a change of variables
that itself solves a nonlinear Fuchsian equation; (b) shows how to construct
solutions of the simplified equation, and (c–d) give examples. Results are taken
from [91].
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(a) Consider

a(y) = a−1y
−1 + a0 + aεy

ε + yε+να(y),
b(y) = b−2y

−2 + b−1y
−1 + bε−1y

ε−1 + b0 + yσβ(y),

with a−1, a0, aε, b−2, b−1, b0, bε−1 complex constants, b−2 �= 0, ε > 0,
σ > 0, ε + ν > 1, and where α(y) and β(y) are continuous for y ≥ 0 and
small. Find functions ψ1(y), ψ2(s), and a change of variables y = θ(s), with
θ(s) = s + as2 ln s + 0(s2+μ), such that the function

f(s) = v(y) exp(−ψ1(y) − ψ2(s))

satisfies

D2
sf(s) + [2γs−1 + 1 + sμα1(s)]Dsf(s) + sμ−1α0(s)f(s) = 0, (4.16)

for some positive μ < min(1, ε, ε + ν − 1, σ), with Ds = s d/ds, and α0, α1

continuous for s ≥ 0 and small.
(b) Using the results of Sect. 5.1, show that equation (4.16) has precisely

one solution such that f(s) = 1 + o(1) as s → 0.
(c) Show that the modified Mathieu equation

−u′′(x) + c2 sinh2(x)u(x) = λu(x),

with real parameters c, λ, where c > 0, has a solution characterized by the
asymptotic behavior

u(x) = (sinh(x))−1/2e−c/ sinh(x)[1 + o(1)]

for the eigenfunction with fastest decay.
(d) Show that

Δu +
(
C|x|−1 + D|x|−1−ε)u = λu

has a unique radial solution such that if λ = −k2 �= 0 (hence γ = −ik),

u(x) ∼ |x|(−n+1)/2 exp(i(k|x| + C(2k)−1 ln |x|)), |x| → ∞.

4.4. Give an example of a non-Fuchsian system with a regular singular point.
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Fuchsian Initial-Value Problems
in Sobolev Spaces

This chapter is devoted to the main techniques for solving the initial-value
problem for Fuchsian ODEs and PDEs without analyticity assumptions. The
results are adapted to application to Fuchsian equations obtained by the sec-
ond reduction, see Sect. 5.5, in which the matrix A has no eigenvalue with
negative real part. Recall that Sect. 2.2.4 gave general methods for reducing
the situation to this case.

The simplest result, which parallels the Cauchy–Lipschitz theorem, is easy
to state and to prove. In any Banach space X , the problem

tut + Au = tεF (t, u),

where F is locally Lipschitz in u and continuous in both variables, and ε > 0,
has precisely one solution defined for small t that tends to zero as t → 0+, as
soon as the operator norm of σA is bounded for σ ∈ (0, 1]. To prove it, one
casts the equation into the integral equation

u(t) = tε
∫ 1

0

σA−1+εF [tσ, u(tσ)]dσ,

and one applies the Banach fixed point theorem in the space C([0, τ ];X)
of continuous X-valued functions defined for 0 ≤ t ≤ τ , with τ sufficiently
small. The corresponding result for generalized Fuchsian ODEs is given in
Theorem 5.7. We begin this chapter with a more precise theorem, Theorem 5.1,
which will be needed in Chap. 7; it allows the right-hand side to behave like
an inverse power of ln t rather than tε. We then turn to the case of PDEs, in
which we allow several Fuchsian variables, to cope with the type of equations
that may arise in applications. We first assume that the Fuchs indices are
constant, then indicate the simple modifications for the case in which the
indices depend on the space variables. The development is modeled on the
theory of symmetric-hyperbolic systems [116, 176], which it contains as a
special case.
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5.1 Singular systems of ODEs in weighted spaces

5.1.1 Setup and assumptions

We are interested in problems of the form

tdVdt (t) + AV (t) = f(λ, t, V (t)),
V (t) = O(ζ(t)) as t → 0+,

(5.1)

for 0 < t < T , where ζ is a given nonnegative weight function, and V has p real
components. The nonlinearity f depends smoothly on a (vector) parameter
λ. All estimates and assumptions below are assumed to hold uniformly for λ
in a fixed ball {|λ| ≤ λ0}. Denote by ‖A‖ the matrix norm of A. We let

Et,ζ = {V ∈ C([0, T ]; Rp) : V/ζ is bounded on (0, τ)}
and

|V |τ,ζ := sup
t∈(0,τ)

|V (t)/ζ(t)|.

If no confusion is possible, we write |V |ζ for |V |τ,ζ . We assume τ < 1 since
the only difficulty arises from the degeneracy for t = 0. In all assumptions, m
is a fixed constant.

(H1) A is a constant p× p matrix, 0 < ζ ≤ 1, and

ζ(t) → 0 and ζ(t)‖tA‖ → 0 as t → 0 + .

(H2) The equation

t
dV

dt
(t) + AV (t) = f(λ, t, 0) (5.2)

has a unique solution in Eτ,ζ , with norm |V |τ,ζ ≤ m.
(H3) f is continuous in (λ, t, V ) for |λ| ≤ λ0, 0 ≤ t ≤ τ , and |V | ≤ 2m.
(H4) For |λ| ≤ λ0, |V | ≤ 2m, |W | ≤ 2m, and 0 < t < τ ,

|f(λ, t, V ) − f(λ, t,W )| ≤ ψ(t)|V −W |, (5.3)

where

K(t) :=
1

ζ(t)

∫ 1

0

‖σA‖ζ(σt)ψ(σt)
dσ

σ

is bounded on [0, τ ] and tends to zero as t → 0+.
(H5) f is continuously differentiable with respect to λ and V . In addition, |fλ|

is O(ψ0(t)), where

1
ζ(t)

∫ 1

0

‖σA‖ψ0(σt)
dσ

σ
≤ m. (5.4)

Furthermore, if λn → λ and Vn → V in the Eτ,ζ norm, with |Vn|τ,ζ ≤ 2m,
then the sequence of functions fλ(λn, t, Vn(t)) tends to fλ(λ, t, V (t)) in
Eτ,ψ0 . The same holds for the partial derivatives fV of f with respect to
the components of V .
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Examples of weight functions satisfying these conditions are given in Sect. 5.1.3.
Given (H1) and (H3), hypothesis (H2) is equivalent to assuming that

t−A
∫ t

0

sA−1f(λ, s, 0) ds

belongs to Eτ,ζ and is bounded by mζ(t) on [0, τ ]. Indeed, (5.2) is equivalent
to

(tAV )t = tA−1f(λ, t, 0),

and (H1) enables one to integrate the equation from 0 to τ for V ∈ Eτ,ζ , since
it implies tAV (t) → 0 as t → 0. Furthermore, if |f | ≤ ψ0(t) with ψ0 as in
(H5), we are led to assumption (H2).

5.1.2 General results

Theorem 5.1. Under assumptions (H1)–(H4), problem (5.1) has a unique
solution in Eτ,ζ for τ small enough.

Proof. Any solution of (5.1) with |V |τ,ζ ≤ 2m satisfies |V | ≤ 2m pointwise
and

(tAV )t = tA−1f(λ, t, V ).

For V ∈ Eτ,ζ , (H1) implies
V = G(V, λ) (5.5)

with

G(V, λ) = t−A
∫ t

0

sA−1f(λ, s, V (s)) ds. (5.6)

We prove that G is a contraction on the ball of radius 2m in Eτ,ζ . (H2) implies

|G(0, λ)|τ,ζ ≤ m

and (H4) that for any V , W ,

|G(V, λ) −G(W,λ)|τ,ζ ≤ sup
[0,τ ]

K(t) |V −W |τ,ζ

if |V | ≤ 2m and |W | ≤ 2m on [0, τ ]. It follows that G is well defined and
satisfies

|G(V, λ)|τ,ζ ≤ m + sup
[0,τ ]

K(t) |V |τ,ζ .

Let us choose τ so small that sup[0,τ ] K(t) ≤ 1/2. If |V |τ,ζ ≤ 2m, then

sup
[0,τ ]

|V (t)| ≤ |V |τ,ζ sup
[0,τ ]

ζ(t) ≤ 2m

and
|G(V, λ)|τ,ζ ≤ 2m.
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Furthermore, if |V |τ,ζ ≤ 2m and |W |τ,ζ ≤ 2m, then

|G(V, λ) −G(W,λ)|τ,ζ ≤ 1
2
|V −W |τ,ζ .

Theorem 5.1 follows. �

If assumption (H5) holds, we have the following Theorem.

Theorem 5.2. Under assumptions (H1)–(H5), and for τ small enough, (5.1)
has a unique solution V (t, λ) ∈ Eτ,ζ. Furthermore, for fixed t ∈ (0, τ), V (t, λ)
is continuously differentiable with respect to λ, for small |λ|, and its differential
may be computed by differentiating the equation.

Proof. The assumptions ensure that the map G is well defined. (H4) implies
|fV | ≤ ψ(t), so that by dominated convergence, one finds that G is Gâteaux
differentiable in (λ, V ), and its differentials, with respect to V or λ, are given
by

GV (λ, t, V ) ·W = t−A
∫ t

0

sA−1fV (λ, s, V (s)) · W (s) ds

and

Gλ(λ, t, V ) = t−A
∫ t

0

sA−1fλ(λ, s, V (s)) ds.

The continuity assumptions on fλ and fV ensure that the differential of
G(λ, V ) is continuous for the topology of R × Eτ,ζ . Therefore (λ, V ) �→
V − G(λ, V ) satisfies the assumptions of the inverse function theorem for
small τ . The result follows. �


5.1.3 Simple special cases

We now turn to two simple cases in which (H1)–(H4) hold if f is continuous
in its arguments.

Theorem 5.3. Assume that the eigenvalues of A have nonnegative real parts,
and that the eigenvalues with zero real part have Jordan blocks of maximal size
M . Assume further that (5.3) holds with

|f(λ, t, 0)| ≤ C1| ln t|−Mζ(t),
0 ≤ ζ(t) ∼ C2| ln t|−α,
0 ≤ ψ(t) ∼ C3| ln t|−a,

where a > M , α > M − 1, α > 0, and C1, C2, and C3 are positive. Then
(H1), (H2), and (H4) hold. They also hold if |t−μf(λ, t, 0)| is bounded and ζ
and ψ are equivalent to C4t

μ with μ > 0.

The proof is given in Problem 5.2. It shows that we may take ζ equal to | ln t|−α
(ln | ln t|)−β and ψ = | ln t|−a(ln | ln t|)−b for small t, with β, b nonnegative.
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Remark 5.4. The assumption on A implies that ‖σA‖ = 0(| lnσ|M−1).

A simple corollary is the following:

Theorem 5.5. Take A as in Theorem 5.3. If f = f(λ, t, V, 1/ ln t) is a smooth
function of its four arguments near (0, 0, 0, 0) such that f , fλ, and fV are all
O(| ln t|−a) with a > 2M , then (5.1) has a unique solution near λ = 0 for τ
small, which is O(| ln t|−a/2) and continuously differentiable with respect to λ.

Proof. The assumptions of Theorem 5.2 are satisfied with ζ = | ln t|−a/2,
ψ(t) = ψ0(t) = | ln t|−a. The results follow. �

Remark 5.6. The optimality of Theorem 5.3, hence of Theorems 5.1 and 5.2,
is shown by the following counter examples. First, take a = M = 1 and
α > M − 1(= 0). For 0 < α < 1, and τ < 1,

t
dv

dt
=

v(t)
| ln t| +

α − 1
| ln t|α+1

has infinitely many solutions, all of which belong to Eτ,ζ :

v(t) =
c

| ln t| +
1

| ln t|α ,

where c is arbitrary. Second, take a > M = 1 and α = M − 1 = 0. Then

t
dv

dt
=

v(t)
| ln t|2 − exp(−1/ ln t)

| ln t|
has the general solution

v(t) = (ln | ln t| + c) exp(−1/ ln t),

where c is arbitrary. None of these solutions is O(1).

5.2 A generalized Fuchsian ODE

We now turn to a simple existence theorem for generalized Fuchsian ODEs
with � + 1 time variables t0, . . . , t�; we use the notation of Sect. 4.3. Let E be
a Banach space. Let f be a Lipschitz map from R

�+1×E to E, with Lipschitz
constant L. We seek solutions of

(N + A)u(t) = t · f(t , u) (5.7)

that remain bounded as t → 0.

Theorem 5.7. Let A be a bounded operator and f as above. Equation (5.7)
has a unique continuous solution, defined for small t , that vanishes at the
origin. If f is infinitely differentiable, so is u.
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Variants are suggested in the problems.

Proof. The problem is to solve the integral equation

u = T (u),

where

T [u] :=
∫ 1

0

σAσM t · f (σM t , u(σM t)
) dσ

σ
.

We let c =
∫ 1

0
|σA|σm−1(1 − θ lnσ)q dσ. Then T is a contraction on C(δ(t) ≤

δ0;E), provided that δ0 < 1/(Lc). The existence of continuous solutions with
values in E follows immediately. For higher t-derivatives, one defines a se-
quence {uk} by u0 = 0, uk+1 = T [uk]. The differential T ′

u of T with respect
to u at u = uk is a contraction on C(δ(t) ≤ δ0;E), so that the sequence of
first-order derivatives {∇tuk} satisfies a recurrence relation

∇tuk+1 = T ′
u∇tuk +

∫ 1

0

σA[∇t(σM t) · f(σM t , uk(σM t)) + σM t · ∂f/∂t ]dσ
σ

,

which has the form
∇tuk+1 = T ′

u∇tuk + ϕ[uk].

Since we know that {uk} converges at an exponential rate in C(δ(t) ≤ δ0;E),
we have, all norms being taken in this space,

‖∇tuk+1 −∇tuk‖ ≤ ε‖∇tuk −∇tuk−1‖ + Cαk,

for some ε and α in (0, 1). It follows by induction that one can choose a and
κ such that ‖∇tuk −∇tuk−1‖ ≤ a(κα)k, while 0 < κα < 1. The existence of
t-derivatives and their continuity follows. For higher derivatives, an iteration
of the same argument proves their existence and continuity. �


5.3 Fuchsian PDEs: abstract results

We solve Fuchsian hyperbolic systems of the form

Q(N + A)u =
�∑

k=0

tk(Bk + fk(t,u)) := t · (Bu + f), (5.8)

where t = (t0, . . . , t�), u is vector-valued, the Bk =
∑n

j=1 Ajk∂j are first-order
differential operators, and N =

∑�
i,j=0 mijtj∂/∂ti, M = (mij) being a matrix

with real, positive eigenvalues. For � = 0, we recover

Q(t∂t + A)u = t(B + f(t,u)), (5.9)

with one time variable. Such problems arise from nonlinear wave equations
by second reduction.
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Assumptions

The assumptions on the coefficients and the nonlinearity spelled out below
follow closely the needs of the blowup problem, and are therefore not claimed
to be optimal; see Sect. 5.4. We first deal with the case of constant A, and
then give the modifications of the proofs for the case of variable A. We seek
solutions for which u is, for t = 0, a prescribed element of the kernel of
A. By redefining u , we may, and will, assume that u(0) = 0. We denote by
(u, v) both the Euclidean scalar product on R

n+2 and the associated L2 scalar
product.

Our assumptions on Q, A, M , B, and f are as follows. For constant A we
require the following conditions:

(A1) Multiplication by Q, Q−1, and Ajk are bounded operators in Hs; all the
eigenvalues of A have nonnegative real parts.

(A2) The function f is C∞ in u and defines a map from R
l+1 × Hs to Hs;

furthermore, f ≡ 0 if ‖u‖L∞ or |t | is large enough.
(A3) There is a positive-definite matrix-valued function V , which commutes

with Q and Ajk, and such that (u , V QAu) ≥ 0, and (u , V Qu) is equiv-
alent to the L2 norm. In addition, V Ajk = Ajk, and multiplication by
V is a bounded operator in Hs.

(A4) The eigenvalues of M are real and positive, and M + MT is positive
definite (MT being the transpose of M).

Remark 5.8. Condition (A2) serves to establish that the Hs norm of f grows
at most linearly with the Hs norm of u , given an L∞ bound on u (“Moser-
type estimate” [144, 143]). In practice, (A2) can be satisfied by truncating
nonlinearities for large arguments if s > n/2 + 1. Since we are interested in
solutions that vanish initially, this truncation is reasonable.

Remark 5.9. The introduction of V should not be confused with the change
of scalar product commonly encountered in the theory of symmetric systems
[116]: it is due here to the fact that (Au, u) may change sign, even if all the
eigenvalues of A are nonnegative. The second part of (A4) is used to prove
the estimates on the time derivatives of the solution. If M is lower triangular
with positive eigenvalues, we may ensure that M +MT is positive definite by
replacing tk by ε−ktk, which replaces mjk by εj−kmjk: taking ε small, we may
arrange so that the off-diagonal elements become arbitrarily small, while the
diagonal elements remain the same. Since the latter are positive, we see that
M + MT can be assumed to be positive definite by redefining t if need be.

Remark 5.10. It is important that the equation should contain Q(N + A)
rather than QN + A = Q(N + Q−1A): indeed, one can find Q diagonal and
positive definite, and A with eigenvalues in the right half-plane, for which
Q−1A has some eigenvalues with negative real parts. In such a case, there
may be nontrivial solutions of (QN +A)u = 0 with zero initial data, violating
uniqueness.
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If A is variable, we replace assumption (A3) by

(A3′) Let AS = A − [A,S]S−1, where S = (1 − Δ)s/2. There is a positive-
definite matrix-valued function V that commutes with Q and Ajk such
that (u , V QASu) ≥ 0 and (u, V Qu) is equivalent to the L2 norm. In
addition, V Ajk = Ajk, and multiplication by V is a bounded operator
in Hs.

Remark 5.11. In practice, one may perform a further reduction to satisfy
(A3′): Sect. 2.2.4 shows that as soon as we have a formal solution ũ of (5.9)
of order m + 1, say, the change of unknown u = ũ + tmv(x, t) leads to a
Fuchsian system for v, of the form (5.9), but with A replaced by A + m. As
a consequence, As is replaced by As + m. (A3′) therefore certainly holds for
m sufficiently large.

It is convenient to measure the size of t in terms of a norm invariant under
the characteristic flow of M ; such a norm is given by Lemma 4.7. We may
now state the result. Let s be an integer.

Theorem 5.12. Under assumptions (A1) through (A4) (respectively (A1),
(A2), (A3′), (A4)), if s > n/2 + 1, equation (5.9) has a unique local solution,
continuous with values in Hs.

Remark 5.13. In case all coefficients are C∞, one could derive Hs estimates
on higher-order derivatives, for all s, by a similar argument.

We first establish a priori estimates, and then apply them to approximate
equations in which B is replaced by a bounded approximation. One then
passes to the limit. We seek continuous solutions defined on sets of the form
{δ(t) ≤ δ0}, rather than {|t | ≤ δ0}, because the latter do not form a basis of
neighborhoods of the origin invariant under the characteristic flow of M .

Estimates

We consider solutions of

Q(N + A)u = t · (Bu + f(u)),

where Q, N , f , A are as in (A1)–(A4), but B is subject instead to the condi-
tions of the next theorem.

We assume u(0) = 0, and prove L2 and Hs a priori bounds. They will be
applied to regularized equations, where B will be a smooth approximation to
B. We recall that S = (1−Δ)s/2. An operator P is said to be bounded above
if (Pu ,u) ≤ C(u ,u). It is equivalent to require P +P ∗ to be bounded above.

Theorem 5.14. (1) If V B +(V B)∗ = C1 is bounded above, then ‖u(t)‖L2 ≤
Cδ(t) for small t ;
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(2) If SQ−1BS−1 −Q−1B = C2 is bounded above, then ‖u(t)‖Hs ≤ Cδ(t)
for small t .

The constants in these estimates depend only on Q, N , f , A, and the
bounds on C1 and C2.

Proof. (1) We have

N(u , V Qu) + (u , V QAu) = t · (u , V Bu + V f(u)).

Now, (u , V QAu) ≥ 0 and (u , V Bu) = (u , C1u)/2 ≤ C(u , V Qu). Therefore
e(σ) := (u(σM t), V Qu(σM t)), which is equivalent to the square of the L2

norm of u(σM t), satisfies e(0) = 0 and

σ∂σe ≤ Cδ(t)σβ [1 + e],

where β > −1. Integrating, we obtain ln(1+e(1)) ≤ Cδ(t). The result follows,
for small t .

(2) Let v = Su . We seek an L2 estimate on v. Now, if A is constant, v
solves

(N + A)v = t · (SQ−1BS−1v + SQ−1f(S−1v)).

Multiplying by Q, we obtain

Q(N + A)v = t · (Bv + QC2v + QSQ−1f(S−1v )).

Since the nonlinear term is bounded and sublinear on L2, we may apply the
procedure of (1) to derive an L2 estimate of v. If A is not constant, but satisfies
(A3′), we have

(N + AS)v = t · (SQ−1BS−1v + SQ−1f(S−1v)).

The argument continues as before. �


Approximate equation

The strategy consists in approximating B by bounded operators. We use the
Yosida regularization

Biλ = λ(λ −Bi)−1Bi,

and let Bλ = (B0λ, . . . , Blλ), which is semibounded. Since s > n/2 + 1 and
B is a first-order operator with coefficients in Hs, we know that B + B∗ is
bounded on L2, and that therefore Bλ exists for λ real and large enough. We
consider the approximate equation

Q(N + A)uλ = t · (Bλuλ + f(uλ)), (5.10)

with uλ(0) = 0. The parameter λ is large and positive, and will eventually
tend to infinity. The existence and differentiability of Hs solutions to this
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equation follow from Theorem 5.7. We establish here a priori estimates. We
check the assumptions of Theorem 5.14 for Bλ, taking care that the operators
C1 and C2 be bounded above uniformly in λ.

First of all, since V and Ajk commute, we have

(V B + (V B)∗)k = −
∑
j

∂j(V Ajk),

which is a bounded function if s > n/2 + 1. To obtain information on Bλ, we
prove the following lemmas; throughout the rest of the argument, we write B
for any of the Bi’s, and let Rλ = (λ−B)−1, Bλ = λBRλ.

Lemma 5.15. Assume |λRλ| ≤ C for λ > λ0, and (Bu ,u) ≤ C(u ,u) for u
in the domain of B. Then (λRλBu ,u) ≤ C′(u ,u), where C′ is independent
of λ > λ0.

Proof. We write

λRλB + (λRλB)∗ = λBRλ + λR∗
λB

∗

= λR∗
λ(B + B∗ − 2B∗B/λ)λRλ,

so that since (R∗
λB

∗BRλu ,u) = (BRλu , BRλu) ≥ 0,

2(λRλBu ,u) ≤ ((B + B∗)λRλu , λRλu) ≤ C(u ,u),

which is the desired result. �

Lemma 5.16. V Bλ + (V Bλ)∗ is bounded above on L2.

Proof. We know that V B = B. We show that V Bλ = Bλ, which, using
Lemma 5.15, will give the desired result. If Bλx = y, we have Bx = (λ−B)y,
and therefore Bx = V Bx = λV y−V By = λV y−λy +Bx, or λ(y−V y) = 0.
Since λ is positive, the result follows. �

Lemma 5.17. There are bounded operators C and C′ such that

SQ−1BS−1 = Q−1B + C

and
SBS−1 = B + C′.

Proof. Both B and Q−1B are sums of terms of the form aj(x)∂j , with aj ∈ Hs

or aj constant. By a well-known theorem,

‖[S, aj]f‖L2 ≤ C(‖aj‖Lip‖f‖Hs−1 + ‖aj‖Hs‖f‖L∞). (5.11)

In particular, for any u,

‖[S, aj ]∂jS−1u‖L2 ≤ C‖u‖L2.

Now
S(aj∂j)S−1 − aj∂j = [S, aj ]∂jS−1,

and we just saw that the right-hand side is a bounded operator if aj ∈ Hs,
the case of constant aj being trivial. The lemma is therefore proved. �




5.3 Fuchsian PDEs: abstract results 95

We also recall for later use the following classical result (see [26]):

Lemma 5.18. If B + B∗ is bounded, then λRλ and BRλ = λRλ − 1 are
uniformly bounded for λ large enough.

Lemma 5.19. SQ−1BλS
−1 is bounded on L2.

Proof. Using Lemma 5.17, we have

SQ−1BλS
−1 = λSQ−1B(λ−B)−1S−1

= λSQ−1BS−1S(λ−B)−1S−1

= λ(Q−1B + C)S(λ− B)−1S−1.

Now [155, pp. 123 and 125],

S(λ−B)−1S−1 = (λ− SBS−1)−1 = (λ−B − C′)−1,

and since
(λ−B − C′)−1 = Rλ(I − C′Rλ)−1,

we conclude that

SQ−1BλS
−1 = (Q−1B + C)λRλ(I − C′Rλ)−1

= Q−1Bλ + CλRλ(I − C′Rλ)−1 + Q−1BλRλC
′Rλ(I − C′Rλ)−1.

Since C, C′, and λRλ are bounded, it follows that CλRλ(I − C′Rλ)−1 is
bounded for λ large enough.

As for Q−1BλRλC
′Rλ(I−C′Rλ)−1, it is bounded as well because BλRλC

′Rλ
(= (λRλ − 1)C′λRλ) is. This concludes the proof. �


By application of Theorem 5.14, we find that the approximate solutions
satisfy

‖uλ(t)‖Hs ≤ Cδ(t).

Estimating the time derivatives

We turn to energy-type estimates on the time derivatives zλ := ∇tuλ. They
form a vector of length (l + 1)(n + 2). In this paragraph only, we use the
following notation: for any matrix or operator, such as A, we write A′ for the
matrix consisting of (l + 1) diagonal blocks equal to A:

A′z = (Az0, . . . , Azl).

In a similar way, Q′ and B′
λ are related to Q and Bλ. Differentiating (5.10),

we obtain

Q′(N + Ã)zλ = t · [B′
λzλ + fuzλ + ∇tf ] + Bλuλ + f(uλ), (5.12)

where Ã is the block matrix

Ã =

⎛
⎝A + m00 m10I . . .

m01I A + m11I . . .
. . . . . . . . .

⎞
⎠ .
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Lemma 5.20. The eigenvalues of Ã consist of the sums λA + λM , where λA
and λM are eigenvalues of A and M respectively.

Proof. Assume that P−1MP is in upper-triangular Jordan form. Let P =
(pij) and

P̃ =

⎛
⎝p00I p10I . . .

p01I p11I . . .
. . . . . . . . .

⎞
⎠ .

Then P̃−1ÃP̃ is block-diagonal with blocks of the form⎛
⎜⎜⎜⎜⎝

A + λM 1
. . . . . .

. . . 1
A + λM

⎞
⎟⎟⎟⎟⎠ .

The lemma follows. �

In particular, Ã is invertible, and we may define uniquely zλ(0), which is
bounded in Hs (set t = 0 in (5.12), and use uλ(0) = 0). Subtracting it from
zλ and calling again the difference zλ for convenience, we obtain a system
of the form (5.12), but with coefficients bounded in Hs−1: indeed, since we
already have ‖uλ(t)‖Hs ≤ Cδ(t), we know that

‖Bλuλ + f(uλ) − f(0)‖Hs ≤ Cδ(t)

as well, and we are therefore assured that the right-hand side of the equation
for zλ is O(t). This will play the role of (A2) in the sequel.

To prove energy estimates on zλ, we check the rest of (A1)–(A4) for (5.12).
Only (A3) requires a separate argument. Let (Ãqr) be the block decomposition
of Ã:

Ãqr = A + mrqI.

Recall that (u, V QAu) ≥ 0 for any u. We estimate from below

(V ′Q′Ãz, z) =
∑
q,r

(zq, V QÃqrzr)

=
∑
q,r

(zq, V QAzq + V Qmrqzr)

≥
∑
q,r

1
2
[mrq + mrq]((V Q)1/2zq, (V Q)1/2zr).

The result follows, since M +MT is positive definite. Applying the procedure
of Sect. 5.2, we find that

‖∇tuλ‖Hs−1 ≤ Cδ(t)

uniformly in λ.
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Existence result

Proof. We now pass to the limit λ → ∞. From the bounds of uλ in C(δ(t) ≤
δ0;Hs) ∩ C1(δ(t) ≤ δ0;Hs−1), we obtain a solution in C(δ(t) ≤ δ0;Hs−1),
by application of Ascoli’s theorem. The a priori estimate in Hs also implies
that the solution is continuous at t = 0, in the Hs topology, and is uniformly
bounded in Hs. �


Let us now turn to systems (5.9). We now have a solution w of (5.8) defined
for small (t0, . . . , tl), such that (x, t, . . . , t(ln t)l) belongs to Hs, is continuous
in t, with values in Hs−1, and which is bounded, and tends to zero as t → 0,
in the Hs topology. Now, we may substitute back t0 = t, t1 = t ln t,. . . into
(5.8), which gives a symmetric-hyperbolic system similar to (5.9) for t �= 0.
For such a system, standard results [116] show that solutions that start in Hs

are continuous in time, with values in Hs, and therefore w(x, t, . . . , t(ln t)l)
is continuous at every t �= 0, with values in Hs. Combining this with the
estimates near t = 0, we conclude that the solution is continuous for all t
with values in Hs. From the definition of w, it follows that v has the same
continuity properties. We have therefore proved Theorem 5.12.

5.4 Optimal regularity for Fuchsian PDEs

The question of optimal regularity for Fuchsian PDEs is somewhat more com-
plicated than its counterpart for the Cauchy problem. We outline two issues:
(i) expressions involving the solution, such as tu(x, t), may be more regular
than u; (ii) the optimal regularity may not be obtained by taking the arbitrary
functions to be smooth. These issues are illustrated on examples; no general
statement seems to be available at this time.

The first issue will be illustrated; by the wave equation

utt −Δu = f(x, t).

If the Cauchy data u0 and u1 are respectively in Hs and Hs−1, and if f is
polynomial in time and Hs−1 in space, the solution u at time t is of class
Hs in the space variables x, and this is best possible. However, if we perform
reduction by letting u = u0(x) + tu1(x) + t2v(x, t), we obtain

(t∂t + 1)(t∂t + 2)v − t2Δv = t2(f −Δu0 − tΔu1).

Since the right-hand side is now of class Hs−3, it appears at face value that
v ∈ Hs−2 for fixed t.

The second issue pertains to the regularity of the arbitrary functions. For
the wave equation, the arbitrary functions are u0 and u1, and for a right-
hand side in Hs−1, we should take them in Hs and Hs−1 respectively to
obtain the optimal regularity of solutions. By contrast, for Fuchsian equations,
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the correct regularity of the arbitrary functions may require going beyond
Sobolev spaces. We analyze in detail the situation for the one-dimensional
model problem

t(ut − ux) = u− u0; u(0) = u0, (5.13)

where u0 ∈ Hs is given. Here, u0 occurs both as an initial condition, and
in the right-hand side. The structure of solutions is given by the following
theorem.

Theorem 5.21. There are infinitely many solutions that are Hs with respect
to x, for every t. Furthermore, if u0 is analytic,

u = u0 +
∑
j≥1

(aj(x) + bj(x) ln t)tj , (5.14)

where a1 is arbitrary, and the other coefficients can be found inductively; in
particular, b1 = u0x := ∂xu0. If u0 is not analytic, the expansion remains
valid as an asymptotic expansion. Solutions are uniquely determined by the
choice of a1.

Before giving the proof, let us state the main point: taking a1 very smooth
does not generate the Hs solutions in the theorem:

Theorem 5.22. For any u0 ∈ Hs, the solutions in Hs are those in which

a1(x) − k

(
∂

∂x

)
u0 ∈ Hs,

where k(iξ) = iξ(γ + ln(iξ)), and γ is Euler’s constant.

We now turn to the proof of these results.

Proof of Theorem 5.21

Let us Fourier transform in x. We obtain

t(ût − iξû) = û− û0,

or
(t−1e−iξtû)t = −t−2e−iξtû0.

The general solution has the form

û(ξ, t) = teiξtα̂(ξ) +
(
t

∫ ∞

t

s−2eiξ(t−s) ds
)

û0(ξ)

for t > 0, where α(ξ) is arbitrary. This can be rewritten

û = (tα(x + t))̂ + g(t)û0(ξ), (5.15)
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where
g(t, ξ) =

∫ ∞

0

t

(t + τ)2
e−iξτ dτ =

∫ ∞

1

σ−2eiξt(1−σ) dσ. (5.16)

From the second form of g, it is apparent that our problem has infinitely many
solutions that are in Hs for each t > 0, if u0 ∈ Hs; more precisely,

‖u(t)‖s ≤ ‖u0‖s + t‖α‖s. (5.17)

This proves the first part of Theorem 5.21. For the second, we let v = (u−u0)/t
so that v, too, solves a Fuchsian equation

t(vt − vx) = u0x, (5.18)

where u0x = ∂xu0. This equation has no solution of class C1 unless u0 is
constant. On the other hand, from the study of the analytic case, if u0 is
analytic, then tv is an analytic function of x, t, and t ln t. Indeed, one finds,
by substitution, that (5.18) has infinitely many formal solutions of the form

∑
j≥1

1
t
(aj + bj ln t)tj .

The coefficients aj and bj are found recursively if u0 and a1 are given. One
obtains In particular, b1 = u0x. The convergence follows from Theorem 4.5.

Uniqueness follows from the above argument. It may also be seen by in-
terpreting the coefficient a1 as an initial value for the Fuchsian system

tλt + μ = tλx + u0x, (5.19)
tμt = tμx.

The following lemma states this more precisely.

Lemma 5.23. If (λ, μ) is a solution of (5.19) with

λ(x, 0) = a1(x) and μ(x, 0) = u0x,

then u = u0 + t(λ + μ ln t) solves (5.13).

The result is proved by direct substitution. �

This completes the proof of Theorem 5.21. �

We now turn to the estimation of the regularity of a1 for solutions in Hs.

Optimal regularity

We show that the solution will not have optimal regularity, namely Hs in
the space variable, if a1 is C∞; one must instead take a ∈ Hs−2 of a very
particular form, as given in Theorem 5.22. To see this, we first evaluate g(t)
more precisely. The Laplace transform of (t + τ)−2 with respect ot τ is, for
t > 0,
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p �→ 1
t
− peptE1(pt),

where E1(z) = −γ − ln z −∑
n≥1(−1)nzn/(n(n!)) is the exponential-integral

function (also equal to
∫∞
z

t−1e−t dt; γ is Euler’s constant, and we are taking
| arg z| < π with the principal determination of the logarithm). Therefore, we
obtain

g(t) = 1 + iξteiξt

⎛
⎝γ + ln(iξt) +

∑
n≥1

(−iξt)n

n(n!)

⎞
⎠ . (5.20)

Since t > 0, we may expand this as

g(t) = 1 + t{iξ ln t + iξ(γ + ln(iξ)) + O(t ln t)}.
This provides an expression for the most general solution in Hs. Let us now
assume u = u0 + t(λ + μ ln t), where (λ, μ) solve (5.19) with initial data
(a1, u0x). From the equation for μ, we obtain

μ(x, t) = u0x(x + t).

Therefore μ̂ = iξû0e
−itξ = iξû0(1 + O(t)) as t → 0 for fixed ξ. We can now

compute a1 for this solution: as t → 0,

û− û0

t
= eiξtα̂(ξ) +

g(t) − 1
t

û0 = iξû0 ln t + α̂ + k(iξ)û0 + o(1),

where k(iξ) = iξ(γ + ln(iξ)). Observe that k is not a classical symbol. Using
the expansion of μ̂, we compute λ̂ and conclude that â1 = α̂ + k(iξ)û0. Since
α must be in Hs for estimate (5.17) to hold, we see that a1 cannot be in Hs.
Rather,

a1 − k(∂/∂x)u0 ∈ Hs,

as claimed in Theorem 5.22. �

The restriction on the arbitrary function occurring in the general solution

is missed by the formal calculation in powers of t and t ln t. This restriction is
of a global nature as in the so-called connection problem, in which one seeks
relations between representations of solutions of ODEs at zero and infinity.
Set ρ = ξt. We obtain

ρ(ûρ − iû) = û− û0(ξ).

All solutions of this equation are bounded near ρ = 0. They depend on one
parameter. Any two solutions differ by a multiple of ρeiρ; thus, at most one
solution can remain bounded for all ρ. More precisely, let us require that

|û| ≤ C|û0|
for all ρ. This singles out the solution

∫ ∞

1

σ−2eiρ(1−σ) dσ u0(ξ).
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If we expand this solution in the form (5.14), there is no reason why the
coefficient a1 should turn out to be zero. In fact, is it easy to see that this
coefficient contains precisely the expression k(∂x)u0 of Theorem 5.22.

5.5 Reduction to a symmetric system

To apply the abstract results of this chapter, it is often necessary to convert
a hyperbolic problem into a symmetric first-order system. We give a typical
example of this reduction.

Consider the solution u of the n-dimensional Liouville equation considered
in Sect. 1.5.6; the notation of this section will be used. We define three vector-
valued functions u, v, and w, the components of which are defined in terms of
u, its derivatives, and ψ. The first component of u is the function u, while the
first component of w coincides with the function w defined by (1.13). Each of
these functions solves a first-order system. Furthermore, v can be computed
from w, and u from w. The system for u is simply the symmetric-hyperbolic
system associated with the Liouville equation. The intuitive idea is this: if one
expands u up to order m to define a renormalized unknown, it is advisable to
expand first-order derivatives of u to order m− 1 if one wants to respect the
natural scaling of derivatives.

System for u

Let
u := (u, u0, ui),

where i runs from 1 to n. The following system implies (10.2) if the ui are,
for T = 0, the components of the spatial gradient of u:

(Q∂T −Ai∂i)u = ϕ(X,T, u) :=

⎛
⎝ u0

eu − (Δψ)u0

0

⎞
⎠ .

Here, the diagonal matrix Q of size (n + 2) × (n + 2) is defined by

Q(x) =

⎛
⎝1

γ
In

⎞
⎠ .

The symmetric matrix Ai has only three nonzero entries, namely

(Ai)2,2 = −2ψi; (Ai)2,i+2 = (Ai)i+2,2 = 1.
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Fuchsian system for v

We subtract from u a few terms from its expansion, and obtain a Fuchsian
equation: Define v by

u = ln(2/T 2) + v(0) + v(1)T + vT 2,
u0 = −(2/T ) + v(1) + v0T,

ui = v
(0)
i + viT,

(5.21)

where v = (v, v0, vi) is a new unknown, and

exp(v(0)) = γ; v(1)γ + Δψ = 0; v
(0)
i = ∂iv

(0).

The system for u now becomes

Q[T∂T + A]v = ϕ̃(X) + TAi∂iv + TF (X,v), (5.22)

where

ϕ̃ =

⎛
⎝ 0
−2R(X)
∂iv

(1)

⎞
⎠ ; F =

⎛
⎝ 0

b0
0

⎞
⎠ ,

R is defined in (10.4), and

A =

⎛
⎝ 2 −1
−2 1

In

⎞
⎠ .

This matrix has eigenvalues 0, 3, and 1, with multiplicities 1, 1, n. Its null
space is generated by (1, 2, 0, . . . , 0)T . The function b0 is given by

b0(X,T,v) = −v0Δψ + γ(2v(1)v + Tv2) + γh(T, v(1) + Tv),

where h(T, z) = z3
∫ 1

0 (1 − σ)2 exp[σTz] dσ. Since we are interested only in
small v, we will truncate the nonlinear part of b0, namely γ[h(T, v(1) + Tv)+
Tv2], so that it is smooth, identically zero for |v| > 2, and given by this
expression for |v| < 1.

Remark 5.24. The principal part of (5.22) is equal to the principal part of the
equation for u multiplied by T .

Fuchsian system for w

Since v is not free from logarithmic terms unless R = 0, we now view it as a
function of the variables X , t0, and t1, where t0 = T ; t1 = T lnT . Introduce
a second renormalized unknown w = (w,w0, wi) by the formulas
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u = ln(2/t20) + v(0) + v(1)t0 + R1t0t1 + w(t0, t1, X)t20,
u0 = −(2/t0) + v(1) + (t0 + 2t1)R1 + w0t0,

ui = v
(0)
i + v

(1)
i t0 + wit0,

(5.23)

where
R1 = −2R

3γ
.

In other words, w is defined by

v = w + R1t1/t0,
v0 = w0 + R1(1 + 2t1/t0),
vi = wi + v

(1)
i .

This definition of w is consistent with (1.13). Equation (5.22) now takes the
form

Q(N + A)w = t0A
i∂iw + t0g0(X, t0, t1,w) + t1g1(X, t0, t1,w), (5.24)

where N = t0∂/∂t0 + (t0 + t1)∂/∂t1,

g0 =

⎛
⎜⎜⎝

0
−(w0 + R1)Δψ + Δv(1) −∑

i 2ψi∂iR1

+ γ[h(v(1) + t0w + t1R1) + (2v(1) + t0w + t1R1)w]
∂iR1

⎞
⎟⎟⎠ ,

and

g1 =

⎛
⎝ 0

γ(2v(1) + t0w + t1R1)R1 − 2R1Δψ − 4
∑
i ψi∂iR1

−2v(1)
i

⎞
⎠ .

Since the kernel of A is one-dimensional, the solutions of (5.24) are determined
entirely by one function, namely the value of the first component of w for
t0 = t1 = 0. We let

w(0) = w(t0 = t1 = 0),

and replace w by w−w(0). This doesn’t affect the form of the equation, but
yields a Fuchsian system with vanishing initial values.

We conclude by showing that the function w does determine a solution of
the Liouville equation for u. Since the equations for w include those deduced
from the relations u0 = ∂Tu and ∂Tui = ∂iu0 (hence ∂T (∂iu − ui) = 0), if w
solves (5.24), w(T, T lnT,X) satisfies

w0 = 2w + T∂Tw,

and
∂T [wiT − T 2∂iw − (T 2 lnT )∂iR1] = 0.
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It follows that
wi = T∂iw + (T lnT )∂iR1.

Thus, we have proved that w determines precisely one solution of (5.24), with
the property that the ui are the components of the gradient of u, so that this
construction does produce solutions of �u = eu. This is noteworthy, since not
all solutions of the equation for u correspond to solutions of (10.2).

Problems

5.1. Can one replace continuity with respect to t in assumption (H3),
Sect. 5.1.1, by Carathéodory-type conditions?

5.2. Prove Theorem 5.7.

5.3. Improve Theorem 5.7 in the following directions:
(a) Under what assumptions can one find a solution such that u(0) is a given
element of the null space of A?
(b) Under what assumptions may one expect solutions in Lp, p > 1?

5.4. Convert a linear Fuchsian PDE with smooth coefficents, in one unknown
u, into a first-order system by introducing as new variables Λku, where Λ =
(1 −Δ)1/2 [25].



6

Solution of Fuchsian Elliptic
Boundary-Value Problems

This chapter is devoted to a special class of elliptic boundary-value problems
with quadratic boundary degeneracy. We briefly review the standard Lp setup
for such problems, and give recent estimates of Schauder type.

Consider a domain Ω in R
n, and the distance function d(x), the properties

of which are recalled in Sect. 12.1. We consider elliptic equations of the form

Au = f,

where A is strictly elliptic in Ω, but degenerates in a quadratic manner as one
approaches the boundary. To be specific, we introduce two classes:

Definition 6.1. An operator A is said to be of type (I) on Ω if it can be
written

A = ∂i(d2aij∂j) + dbi∂i + c,

with (aij) uniformly elliptic and of class Cα, and bi, c bounded.
An operator is said to be of type (II) if it can be written

A = d2aij∂ij + dbi∂i + c,

with (aij) uniformly elliptic and aij, bi, c of class Cα.

Remark 6.2. Types (I) and (II) are invariant under changes of coordinates of
class C2+α. If λ is a scale factor, we may think of derivatives of first order,
identified with frames, as homogeneous of degree −1, and the distance as ho-
mogeneous of degree 1; thus Fuchsian operators are made up of scale-invariant
combinations of d and the operators ∂j . To check that an operator is of type
(I) or (II), we may work indifferently in coordinates x or (T, Y ) defined in
Sect. 12.1. All proofs will be performed in the (T, Y ) coordinates; an operator
is of type (II) if and only if it has the above form with d replaced by T , and the
coefficients aij , bi, c are of class Cα as functions of T and Y ; a similar state-
ment holds for type (I). Problems with scale-invariance with respect to one
variable arise in the study of domains with wedges and corners; see [127, 73].
Many intermediate situations can also be considered.
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The Fuchs indices are defined in the usual way, by taking T = d as first
coordinate, and by writing the equation in the form

P (D)u = T εF (x, u, T∇u, T 2∇2u),

where ∇ stands for all derivatives; the indices are the roots of P . The operator
d2Δ has indices 0 and 1.

Problems with linear degeneracy such as

daij∂iju + bi∂iu = f

are in fact, after multiplication of the equation by d, reduced to the special
case c = 0 of Fuchsian elliptic operators with quadratic degeneracy.

The main new qualitative feature of Fuchsian elliptic PDEs as compared
with standard elliptic theory is that boundary conditions have the form u ∼
ϕ(x)dσ , where σ is a Fuchs index. If σ is negative, and the other index is
positive, requiring ϕ = 0 amounts to looking for bounded solutions. In such
cases, there is typically only one bounded solution, which does not require
the prescription of a function on the boundary. The Legendre equation is the
prototype of such behavior. The Laplace equation corresponds to the operator
d2Δ, which has indices 0 and 1. In the Dirichlet problem, one seeks a solution
such that u ∼ ϕ(x) near the boundary; for the Neumann problem, one would
like u ∼ ϕ(x)d(x) + ψ(x), where ϕ is prescribed and ψ is unknown. Thus,
in elliptic Fuchsian problems, unlike the hyperbolic case, one is allowed to
prescribe only some of the arbitrary functions in the formal expansion of
solutions.

Most of the chapter is devoted to analogues of Schauder estimates for
such PDEs. Schauder-type estimates for Fuchsian elliptic PDEs differ from
other weighted estimates in three respects: (i) scaled Schauder estimates do
not yield the optimal regularity properties for Fuchsian operators, because
they do not take the value of the Fuchs indices into account; (ii) equations
generated by reduction generally have integral indices, so that even solutions
with smooth data have (logarithmic) singularities; (iii) the Laplace operator
is not the correct local model for regularity in the Fuchsian case. We begin
with some classical results, adapted mostly to Lp solutions of equations with
linear degeneracy; for background results, see [69, 150].

6.1 Basic Lp results for equations with degenerate
characteristic form

Historically, linear operators with linear degeneracy were the first ones to be
studied, for two different reasons. First of all, the hypergeometric equation

z(1 − z)uzz + [c− (a + b + 1)z]uz − abu = 0,
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which contains many of the special functions of mathematical physics,1 has
linear degeneracy, and the behavior of solutions near the origin depends on the
value of c, since the Fuchs indices at 0 are 0 and 1−c. Therefore, the loss of el-
lipticity forces one to take into account the lower-order terms. The special case
of Legendre polynomials2 shows that degenerate PDEs lead to expansions in
orthogonal polynomials, generalizing Fourier series. Recall that the Legendre
polynomials are defined as bounded solutions of [(1−x2)P ′

n]′+n(n+1)Pn = 0,
normalized by Pn(1) = 1, for n = 0, 1, . . . . The factor (1 − x2) degenerates
linearly at the boundary. No boundary condition is imposed—apart from the
boundedness condition. A second motivation comes from axisymmetric po-
tential theory, which leads, in three dimensions, to

urr +
1
r
ur + uzz = f(r, z),

or equivalently
r(urr + uzz) + ur = rf(r, z).

Any semilinear problem involving the Laplace operator will reduce to such a
Fuchsian problem if one assumes axial symmetry. Here again, no boundary
condition is required at r = 0 if we are interested in bounded solutions. Some
applications lead to equations mathematically equivalent to an axisymmet-
ric Laplace or Poisson in a fictitious space of higher dimension [184]. These
early studies led to the realization that the lower-order terms are essential in
understanding the solvability and regularity properties of the solutions.

When an elliptic problem degenerates at the boundary, it is possible to
obtain an existence theory by the usual variational approach, but the regu-
larity properties of the solution are delicate, because smooth data do not lead
to smooth solutions, as in the nondegenerate case: regularity depends on the
value of the indices. We briefly recall the some classical existence results in
Lp spaces.

Consider an operator

L = aij(x)∂ik + bk(x)∂k + c(x),

in which summation over repeated indices in different positions is understood.
We assume that (aij) is symmetric and positive definite, that the coefficients
are twice differentiable in Ω, and that the boundary is C2. As will be clear
from the proofs, these regularity assumptions can be weakened, but at the
expense of complication in the statements of results.

1 Around 1900, all the major special functions of use in physics and engineering
had been related to the most general ODE of Fuchsian type with at most five
regular singularities in the complex plane, and the equations deduced from it by
confluence of singularities.

2 Murphy’s formula gives Pn(cos θ) = (−1)nF (n + 1,−n; 1; cos2 1
2
θ) where

F (a, b; c; z) denotes the hypergeometric function with (a, b, c) = (n+ 1,−n, 1).
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Definition 6.3. Let (nk) denote the inward normal to Ω. Let

lk = bk − ∂ja
jk; b = lknk.

Define the Fichera sets:

Σ3 = {x ∈ ∂Ω : aijninj > 0}, (6.1a)
Σ0 = {x ∈ ∂Ω \Σ3 : b = 0}, (6.1b)
Σ1 = {x ∈ ∂Ω \Σ3 : b > 0}, (6.1c)
Σ2 = {x ∈ ∂Ω \Σ3 : b < 0}, (6.1d)

so that ∂Ω = ∪3
j=0Σj.

Remark 6.4. The simplest example for which this theory is relevant is the heat
operator: Lu = uxx − ut, Ω = (−1, 1) × (0, t0), say, considered as a degen-
erate elliptic operator in two variables, x and t. For an operator with linear
degeneracy, b generally does not vanish identically; it has been generalized
more recently as the subprincipal symbol. For an operator with quadratic
degeneracy of type (II), b is identically zero.

Consider the boundary-value problem

Lu = f ; u = 0 on Σ2 ∪Σ3. (6.2)

This problem can be solved by the usual procedure based on Green’s identity:
∫
Ω

(vLu− uL∗v)dx = −
∫
Σ3

(
v
∂u

∂ν
− u

∂v

∂ν

)
dσ −

∫
∂Ω

buv dσ, (6.3)

where ∂u/∂ν = aijni∂ju, and

L∗v = ∂j(aij∂iv) − ∂k(bkv) + cv = aij∂ijv + b∗k∂kv + c∗v,

with
b∗k = 2∂jajk − bk; c∗ = ∂ija

ij − ∂kb
k + c = c− ∂kl

k.

Observe also that

−
∫
Ω

uLu dx =
∫
Ω

[
aij∂iu∂ju +

1
2
(∂kbk − ∂ija

ij − 2c)u2

]
dx +

1
2

∫
∂Ω

u2b dσ.

A variant of the usual argument based on the Lax–Milgram theorem gives the
existence of a solution for any f ∈ L2 provided that

∂kb
k − ∂ija

ij − 2c ≥ c0,

where c0 is a positive constant.
It is possible to obtain Lp a priori bounds under a different set of

hypotheses.



6.2 Schauder regularity for Fuchsian problems 109

Theorem 6.5. Assume u ∈ C2(Ω), u = 0 on Σ2 ∪ Σ3, 1 ≤ p < ∞, and that
w ∈ C2(Ω) satisfies

w ≤ 0 and L∗w + (p − 1)cw > 0 in Ω.

Then

‖u‖Lp(Ω) ≤
minΩ p|w|

minΩ[L∗w + (p − 1)cw]
‖Lu‖Lp(Ω).

The principle of the proof is to apply Green’s formula with u and v replaced
by (u2 + δ)p/2 and w, and to let δ tend to zero. This estimate is the basis of
many existence results, such as the following.

Theorem 6.6. Assume that ∂Ω is defined by the equation F = 0, where
F > 0 in Ω, and LF ≤ 0 at interior points of Σ0 ∪ Σ2. Then, if c < 0
and c∗ < 0 in Ω, the boundary-value problem (6.2) has a solution in Lp for
every f ∈ Lp. It satisfies the above estimate with w = −1:

‖u‖Lp(Ω) ≤ p

minΩ[−c∗+ (1 − p)c]
‖f‖Lp(Ω).

Let us see how these results apply to Fuchsian operators. To take a specific
example, assume that near the boundary,

aij = d2δij ; bk = (1 − α − β)ddk; c = αβ.

This is a Fuchsian operator with indices α and β. We obtain

c∗ = (α + 1)(β + 1) + (1 + α + β)dΔd.

Since lk = −(1 +α+ β)dk, we obtain b = 0, so that ∂Ω = Σ0. The conditions
c < 0 and c∗ < 0 require that the indices have opposite signs, and that
α + 1 and β + 1 also have opposite signs. If α > 0, for instance, this yields
the condition β < −1. Intuitively, if −1 < β < α, we expect that Lu = 0
admits solutions near the boundary that behave like dα and dβ respectively,
and both of these will be in Lp for p sufficiently close to 1. Therefore, it is
to be expected that the homogeneous problem has a nontrivial solution, and
that the equation Lu = f is not solvable for arbitrary f .

We leave to the reader the consideration of the case c = 0, where one of
the indices is zero; in that case, if f/d is in some Lp space, we may apply the
same analysis to the equation d−1Lu = f/d, which now has linear degeneracy.

We now turn to recent regularity results, which are not consequences of
these classical results, and were in fact motivated by difficulties in the appli-
cation of reduction to elliptic problems.

6.2 Schauder regularity for Fuchsian problems

The Hölder and weighted Hölder spaces and their properties are recalled in
Sect. 12.2.1, and the usual Schauder estimates in Sect. 12.3; for further details,
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see [117]. Let us introduce a C2+α domain Ω′ ⊂ Ω on which d is of class C2+α

and does not exceed 1
2 . We let Ωδ = Ω ∩ {x : d(x) ≤ δ}. The basic results for

type (I) operators are as follows:

Theorem 6.7. If Ag = f , where f and g are bounded and A is of type (I) on
Ω′, then d∇g is bounded, and dg and d2∇g belong to Cα(Ω′ ∪ ∂Ω).

Theorem 6.8. If Ag = df , where f and g are bounded, g = O(dα), and A is
of type (I) on Ω′, then g ∈ Cα(Ω′ ∪ ∂Ω) and dg ∈ C1+α(Ω′ ∪ ∂Ω).

These two results are proved in the next subsection. The main result for type
(II) operators is the following:

Theorem 6.9. If Ag = df , where f ∈ Cα(Ω′ ∪ ∂Ω), g = O(dα), and A is of
type (II) on Ω′, then d2g belongs to C2+α(Ω′ ∪ ∂Ω).

Proof. The assumptions ensure that aij∂ij(d2f) is Hölder continuous and that
f is bounded; d2f therefore solves a Dirichlet problem to which the Schauder
estimates apply near ∂Ω. Therefore d2f is of class C2+α up to the boundary.
Since we already know that f ∈ Cα(Ωδ) and df is of class C1+α(Ωδ), we have
indeed f of class C2+α

# (Ωδ′) for δ′ < δ.

Let ρ > 0. Throughout the proofs, t ≤ 1
2 , and we shall use the sets

Q = {(T, Y ) : 0 ≤ T ≤ 2 and |y| ≤ 3ρ},

Q1 =
{

(T, Y ) :
1
4
≤ T ≤ 2 and |y| ≤ 2ρ

}
,

Q2 =
{

(T, Y ) :
1
2
≤ T ≤ 1 and |y| ≤ ρ/2

}
,

Q3 =
{

(T, Y ) : 0 ≤ T ≤ 1
2

and |y| ≤ ρ/2
}

.

We may assume, by scaling coordinates, that Q ⊂ Ω′. It suffices to prove the
announced regularity on Q3.

6.2.1 First “type (I)” result

We prove Theorem 6.7. Let Af = g, with A, f , g satisfying the assumptions
of the theorem over Q, and let y0 be such that |y0| ≤ ρ. For 0 < ε ≤ 1 and
(T, Y ) ∈ Q1, let

fε(T, Y ) = f(εT, y0 + εY ),

and similarly for g and other functions. We have fε = (Ag)ε = Aεfε, where

Aε = ∂i(T 2aijε ∂j) + Tbiε∂i + cε

is also of type (I), with coefficient norms independent of ε and y0, and is
uniformly elliptic in Q1. Interior estimates give
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‖gε‖C1+α(Q2) ≤ M1 := C1(‖fε‖L∞(Q1) + ‖gε‖L∞(Q1)). (6.4)

The assumptions of the theorem imply that M1 is independent of ε and y0.
We therefore obtain

|ε∇g(εT, y0 + εY )| ≤ M1, (6.5)
ε|∇g(εT, y0 + εY ) −∇g(εT ′, y0)| ≤ M1(|T − T ′| + |Y |)α, (6.6)

if 1
2 ≤ T, T ′ ≤ 1 and |Y | ≤ ρ/2. It follows in particular, taking Y = 0,

ε = t ≤ 1, T = 1, and recalling that |y0| ≤ ρ, that

|t∇g(t, y)| ≤ M1 if |y| ≤ ρ, t ≤ 1. (6.7)

This proves the first statement of the theorem.
Taking ε = 2t ≤ 1, T = 1

2 , and letting y = y0 + εY , t′ = εT ′, we have

2t|∇g(t, y) −∇g(t′, y0)| ≤ M1(|t − t′| + |y − y0|)α(2t)−α

for |y − y0| ≤ ρt and t ≤ t′ ≤ 2t ≤ 1.
Let us prove that

|t2∇g(t, y) − t′2∇g(t′, y0)| ≤ M2(|t− t′| + |y − y0|)α (6.8)

for |y|, |y0| ≤ ρ and 0 ≤ t ≤ t′ ≤ 1
2 , which will prove

t2∇g ∈ Cα(Q3).

It suffices to prove this estimate in the two cases: (i) t = t′ and (ii) y = y0; the
result then follows from the triangle inequality. We distinguish three cases.

1. If t = t′, we need only consider the case |y − y0| ≥ ρt. We then obtain

t2|∇g(t, y) −∇g(t, y0)| ≤ 2M1t ≤ 2M1|y − y0|/ρ.
2. If y = y0 and t ≤ t′ ≤ 2t ≤ 1, we have t + t′ ≤ 2t′, hence

|t2∇g(t, y0) − t′2∇g(t′, y0)|
≤ t2|∇g(t, y0) −∇g(t′, y0)| + |t− t′|(t + t′)|∇g(t′, y0)|
≤ M12−1−αt1−α|t − t′|α + 2M1|t − t′|
≤ M2|t− t′|α.

3. If y = y0, and 2t ≤ t′ ≤ 1
2 , we have t + t′ ≤ 3(t′ − t), and

|t2∇g(t, y0) − t′2∇g(t′, y0)| ≤ M1(t + t′) ≤ 3M1|t− t′|.
This proves estimate (6.8). On the other hand, since g and T∇g are bounded
over Q3,

Tg ∈ Lip(Q3) ⊂ Cα(Q3).

This completes the proof of Theorem 6.7. �
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6.2.2 Second “type (I)” result

We prove Theorem 6.8. The argument is similar to the previous proof, except
that M1 is now replaced by M3ε

α, with M3 independent of ε and y0. It follows
that

|t∇g(t, y)| ≤ M3t
α if |y| ≤ ρ and t ≤ 1. (6.9)

Taking ε = 2t ≤ 1, T = 1
2 , letting y = y0 + εY , t′ = εT ′ and noting that

εα(|T − T ′| + |Y |)α = (|t − t′| + |y − y0|)α, we obtain

2t|∇g(t, y) −∇g(t′, y0)| ≤ M3(|t− t′| + |y − y0|)α

for |y − y0| ≤ ρt and t ≤ t′ ≤ 2t ≤ 1. Let us prove that

|t∇g(t, y) − t′∇g(t′, y0)| ≤ M4(|t− t′| + |y − y0|)α (6.10)

for |y|, |y0| ≤ ρ and 0 ≤ t ≤ t′ ≤ 1
2 , which will prove

T∇g ∈ Cα(Q3).

We again distinguish three cases:

1. If t = t′, |y − y0| ≥ ρt,

t|∇g(t, y) −∇g(t, y0)| ≤ 2M3t
α ≤ 2M3(|y − y0|/ρ)α.

2. If y = y0 and t ≤ t′ ≤ 2t ≤ 1, we have |t − t′| ≤ t ≤ t′; hence

|t∇g(t, y0) − t′∇g(t′, y0)| ≤ 1
2
M3|t− t′|α + |t − t′||∇g(t′, y0)|

≤ M3|t − t′|α
(

1
2

+ t′1−αt′α−1

)
≤ 2M3|t − t′|α.

3. If y = y0, and 2t ≤ t′ ≤ 1
2 , we have t ≤ t′ ≤ 3(t′ − t) and

|t∇g(t, y0) − t′∇g(t′, y0)| ≤ M3(tα + t′α) ≤ 2M3(3|t− t′|)α.
Estimate (6.10) therefore holds.

The same type of argument shows that

g ∈ Cα(Q3).

In fact, we have, with ε = 2t again, ‖gε‖Cα(Q2) ≤ M5ε
α, where M5 depends

on the r.h.s. and the uniform bound assumed on f . This implies

|g(t, y) − g(t′, y0)| ≤ M5(|t− t′| + |y − y0|)α

if t ≤ t′ ≤ 2t ≤ 1 and |y − y0| ≤ ρt. The assumptions of the theorem yield in
particular

|g(t, y)| ≤ M5t
α,
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for t ≤ 1
2 and |y| ≤ ρ.

If ρt ≤ |y − y0| ≤ ρ, and t ≤ 1
2 , we have

|g(t, y) − g(t, y0)| ≤ 2M5t
α ≤ 2M5

( |y − y0|
ρ

)α
.

If 2t ≤ t′ ≤ 1
2 and y = y0,

|g(t, y0) − g(t′, y0)| ≤ M5(tα + t′α) ≤ 2M5(3|t− t′|)α.

If t ≤ t′ ≤ 2t ≤ 1
2 , we already have

|g(t, y0) − g(t′, y0)| ≤ M5|t− t′|α.

The Hölder continuity of g follows. Combining these pieces of information, we
conclude that

g ∈ C1+α
# (Q3),

QED. �


6.3 Solution of a model Fuchsian operator

Consider the operator

L := d2Δ + (4 − n)d∇d · ∇ + (2 − 2n),

where d denotes the distance to the boundary of a C2+α domain. Choose
a coordinate system in which T = d is the first variable; for properties of
this coordinate system, see Chap. 12. The goal of this section is the following
result.

Theorem 6.10. If δ is sufficiently small, there is a w0 ∈ C2+α
# (Ωδ) such that

Lw0 + 2Δd = 0 (6.11)

in Ωδ. Furthermore, on ∂Ω,
w0 = −H, (6.12)

where H = −(Δd)/(n − 1) is the mean curvature of the boundary.

Theorem 6.10 is proved in three steps: first, one decomposes L into a sum L0+
L1 in a coordinate system adapted to the boundary, where L0 is the analogue
of L in a half-space; next, one solves Lf = k+O(dα) in this coordinate system
for any function k of class Cα, such as −2Δd, by inverting a model operator
closely related to L0; finally, we patch together the results to obtain a function
w0 such that Lw0 = g.
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Decomposition of L

We use the notation of Chap. 12. The operator L splits as follows:

L = L0 + L1,

where
L0w = (D + 2)(D + 1 − n)w + T 2Δ′w

and
L1w = (4 − n)∇̃d · ∇′(Tw) + 2T ∇̃d · ∇′(Dw) + T (Dw)Δd,

with D = T∂T . We now solve approximately the equation Lf = k by solving
exactly a model problem, related to the operator L0.

Solution of Lf = k + O(dα)

Let Cα
per denote the space of functions k(Y, T ) ∈ Cα(0 ≤ T ≤ θ) such that

k(Yj + 2θ, T ) = k(Yj , T ) for 1 ≤ j ≤ n− 1 . We prove the following theorem.

Theorem 6.11. Let θ > 0, and k(Y, T ) be of class Cα
per. There is a function

f such that

1. L0f = k + O(dα),
2. f is of class C2+α

# (0 ≤ T ≤ θ),
3. f(Y, 0) = k(Y, 0)/(2 − 2n), and
4. L1f = O(dα).

Proof. Let

L′
0 = (D + 2)(D − 1) + T 2Δ′ = L0 + (n− 2)(D + 2).

We first solve the equation L′
0f0 = k.

Lemma 6.12. There is a bounded linear operator

G : Cα
per −→ C2+α

# (0 ≤ T ≤ θ)

such that f0 := G[k] satisfies

1. L′
0f0 = k,

2. f0 is of class C2+α
# (0 ≤ T ≤ θ),

3. f0(Y, 0) + k(Y, 0)/2 = 0, Df0(Y, 0) = 0, and
4. L1f0 = O(dα).

Proof. First, construct k̃ such that (D − 1)k̃ = −k, and k̃ and Dk̃ are both
Cα up to T = 0. One may take

k̃ =
∫ ∞

1

F1[k](Y, Tσ)
dσ

σ2
,
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where F1 is an extension operator, so that F1[k] = k for T ≤ θ. One checks
that k̃ = k for T = 0.

Next, solve (∂TT + Δ′)h + k̃ = 0 with periodic boundary conditions, of
period 2θ, in each of the Yj variables, and h(Y, 0) = hT (Y, θ) = 0; this yields

h is of class C2+α(0 ≤ T ≤ θ)

by the Schauder estimates. In particular, hT is continuous up to T = 0, and
Dh = 0 for T = 0 and T = θ. Since h = 0 for T = 0, we also have Δ′h = 0
for T = 0. The equation for h therefore gives

hTT = −k̃ = −k for T = 0.

In addition,

(∂TT + Δ′)Dh = D(∂TT + Δ′)h + 2hTT = k − k̃ + 2hTT ,

which is Cα. Since, on the other hand, Dh is of class C1 and Dh = 0 for
T = 0 and T = θ, we conclude, using again the Schauder estimates, that

Dh is of class C2+α(0 ≤ T ≤ θ).

We now define f0 by

f0 := T−2(D − 1)h = ∂T

(
h

T

)
=
∫ 1

0

σhTT (Y, Tσ) dσ. (6.13)

Since f0 is itself uniquely determined by h, itself defined in terms of k, we
define a map G by

G[k] = f0.

A direct computation yields L′
0f0 = k:

L′
0f0 = (D + 2)(D − 1)T−2(D − 1)h + (D − 1)∂2

Y h

= T−2D(D − 3)(D − 1)h + (D − 1)
{
−T−2D(D − 1)h− k̃

}

= T−2D(D − 1)(D − 3)h− T−2(D − 3)D(D − 1)h − (D − 1)k̃
= k.

Let us now consider the regularity of f0 up to ∂Ω, and the values of f0

and its derivatives on ∂Ω. Consider g0 := T 2f0. Since g0 = (D − 1)h belongs
to C2+α(0 ≤ T ≤ θ) and vanishes for T = 0, we have g0 =

∫ 1

0
g0T (Y, Tσ)Tdσ.

It follows that

Tf0(Y, T ) =
∫ 1

0

g0T (Y, Tσ)dσ ∈ C1+α(0 ≤ T ≤ θ).

Since, on the other hand, G[k] =
∫ 1

0 σhTT (Y, Tσ) dσ, we find that f0 ∈ Cα(0 ≤
T ≤ θ) and
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f0(Y, 0) =
1
2
hTT (Y, 0) = −1

2
k(Y, 0).

We therefore have
f0 is of class C2+α

# (0 ≤ T ≤ θ).

Since
(D + 2)f0 = T−2D(D − 1)h = hTT ,

Df0(Y, 0) = hTT (Y, 0) − 2f0(Y, 0) = 0. By differentiation with respect to the
Y variables, we obtain that ∇̃d ·∇′(Tf0) is of class Cα and vanishes for T = 0.
The same is true of T (Df0)Δd. Similarly,

2T ∇̃d · ∇′Df0 = 2∇̃d · ∇′[∂T (T 2f0) − 2Tf0]

is of class Cα, and vanishes for T = 0 because this is already the case for
TDf0. It follows that L1f0 is a Cα function that vanishes for T = 0; it is
therefore O(dα); as desired.

We are now ready to complete the proof of Theorem 6.11. Let a be a
constant and f = G[ak]. We have L′

0f = ak and for T = 0, f = − 1
2ak. Since

L1f ∈ Cα, and L1f and Df both vanish for T = 0, it follows that for T = 0,

Lf − k = (L′
0 − (n− 2)(D + 2) + L1)f − k = [a + (n − 2)a− 1]k.

Taking a = 1/(n− 1), we find that f has the announced properties. �


Solution of Lw0 = g

Let us now consider a function g of class Cα(Ωδ). Recall that there is a positive
r0 < δ such that any ball of radius r0 centered at a point of the boundary
is contained in a domain in which we have a system of coordinates of the
type (Y, T ). Let us cover (a neighborhood of) ∂Ω by a finite number of balls
(Vλ)λ∈Λ of radius r1 < r0 and centers on ∂Ω, and consider the balls (Uλ)λ∈Λ
of radius r0 with the same centers. We may assume that every Uλ is associated
with a coordinate system (Yλ, Tλ) of the type considered in Sect. 12.1; taking
r1 smaller if necessary, we may also assume that V λ ⊂ Qλ ⊂ Uλ, where Qλ

has the form

Qλ := {(Yλ,1, . . . , Yλ,n−1, Tλ) : 0 ≤ Yλ,j ≤ θ for every j, and 0 < Tλ < θ}.

Consider a smooth partition of unity (ϕλ) and smooth functions (Φλ), such
that

1.
∑

λ∈Λ ϕλ = 1 near ∂Ω;
2. suppϕλ ⊂ Vλ;
3. suppΦλ ⊂ Uλ ∩ {T < θ};
4. Φλ = 1 on Vλ.
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In particular, Φλϕλ = ϕλ. The function gϕλ is of class Cα(Qλ); it may be
extended by successive reflections to an element of Cα

per, with period 2θ in the
Yλ variables; this extension will be denoted by the same symbol for simplicity.
Let us apply Theorem 6.11, and consider, for every λ, the function wλ :=
G[gϕλ/(n− 1)]. We have

Lwλ = gϕλ + Rλ,

in Uλ∩{T < θ}, where Rλ is Hölder continuous for T ≤ θ, and vanishes on ∂Ω;
as a consequence, Rλ = O(dα). The function Φλwλ is compactly supported
in Uλ, and may be extended, by zero, to all of Ω; it is of class C2+α

# (Ω). We
may therefore consider

w1 :=
∑
λ∈Λ

Φλwλ,

which is supported near ∂Ω. Now, near ∂Ω,
∑
λ

L(Φλwλ) =
∑
λ

ΦλL(wλ) + 2d2∇Φλ · ∇wλ + d2wλΔΦλ

+ (4 − n)wλd∇d · ∇Φλ

=
∑
λ

[gΦλϕλ + R′
λ] = g + f,

where f =
∑

λR′
λ has the same properties as Rλ. It therefore suffices to solve

Lw2 = f when f is a Hölder continuous function vanishing on the boundary.

Lemma 6.13. For any f ∈ Cα(Ω), there is, for δ small enough, an element
w2 ∈ C2+α

# (Ωδ) such that

Lw2 = f and w2 = O(dα) near ∂Ω.

Proof. Consider the solution wε of the Dirichlet problem Lwε = f on a domain
of the form {ε < d(x) < δ}, with zero boundary data. As before, δ is taken
small enough to ensure that d ∈ C2+α(Ωδ). Schauder theory gives wε ∈
C2+α({ε ≤ d(x) ≤ δ}). By assumption, |f | ≤ adα for some constant a. Let
A > (α + 2)(n − 1 − α). Since

−L(dα) = dα[(α + 2)(n − 1 − α) − αdΔd],

Ad(x)α is a supersolution if δ is small, and the maximum principle gives
us a uniform bound on wε/d

α. By interior regularity, we obtain that for a
sequence εn → 0, the wεn converge in C2, in every compact set away from
the boundary, to a solution w2 of Lw2 = f with w2 = O(dα). Since the right-
hand side f is also O(dα), we obtain, by the “type (I)” Theorem 6.8, that
w2 is of class C1+α

# (Ωδ). Theorem 6.9 now ensures that w2 is in fact of class
C2+α

# (Ωδ), QED. �
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It now suffices to take g = −2Δd and let

w0 = w1 − w2.

By construction, Lw0 + 2Δd = 0 near the boundary, and w0 is of class
C2+α

# (Ωδ) if δ is small. In addition, we know from Theorem 6.11 that on
∂Ω, w1 = (2Δd)/(2n− 2), which is equal to −H on ∂Ω. Lemma 6.13 gives us
w2 = O(dα). We conclude that w0 = −H on the boundary.

This completes the proof of Theorem 6.10. �


Problems

6.1. State and prove regularity results corresponding to type (I) operators,
assuming that A also contains terms of the form ∂i(b′iu) in Au, with b′i of
class Cα.

6.2. Let Ω be a bounded domain of class C2+α. For σ > 0, convert the problem
Δ(ud−σ) = f ∈ Cα into an equation of type (II) near the boundary. Same
question for div(d−σ∇u) = f .



Part III

Applications



7

Applications in Astronomy

Stellar modeling leads to a system of equations exhibiting a singularity at the
center of the star, which is an obstacle to direct integration of the equations
of the model. We illustrate the use of reduction to overcome this difficulty in
two typical cases: the polytropic and the point-source model.

7.1 Notions on stellar modeling

The information we have on stars is exclusively derived from light received
from them. We thus obtain their composition, and indirect information about
mass, distance, or relative velocities. The inference of such information relies
on stellar modeling. Stars have been classified into a relatively small number
of categories, such as white dwarfs or red giants, which have been arranged
into evolutionary sequences. These sequences have also been inferred from
the study of stellar models, in which stars are considered approximately in
equilibrium for long times, until a change of composition, or some other event,
makes the star evolve from one stage of a sequence to the next. The great
majority of current work is concerned with spherically symmetric stars, a
case in which many issues are still unresolved.

The modeling process consists in relating assumptions on stellar composi-
tion, and on the mechanisms of generation of radiant energy, to the possible
values of mass, size, temperature, and luminosity of the star. The mathe-
matical difficulty comes from the fact that, as we shall see, the equations are
singular at the center of the star, which makes numerical methods break down
at the center. It is not possible to determine the solution by integrating from
the outside in, because there are too few boundary conditions at the surface.
A possibility consists in giving arbitrary values to the missing data on the sur-
face, and adjusting them by trial and error, but again, the singularity at the
center causes the computation to break down close to the center. Reduction,
by giving the correct behavior at the center, and by relating the coefficients
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of the asymptotics at the center to the behavior at small but positive distance
from the center, helps to push the computation through.

We describe a general class of models of gaseous stars in Newtonian me-
chanics, and explain the upshot of the reduction process in sample cases. The
star, of mass Ms, is assumed to lie in the ball of radius R about the origin.
We take R < ∞ for simplicity. Let Sr denote the sphere of radius r ≤ R. The
unknowns are (i) the mass M(r) contained within Sr; (ii) the pressure P (r),
density ρ(r), and temperature T (r) on Sr; (iii) the luminosity L(r), repre-
senting the net outward flow of energy per second through Sr. The density is
related to M by

dM

dr
= 4πr2ρ. (7.1)

Boundary conditions are (i) at the surface, r = R, M = Ms (total mass),
P = 0, T = 0, L = Ls (total luminosity of the star); (ii) at the center, r = 0,
M = 0, L = 0, and P and T have two unknown values Pc and Tc. Note that
Ms and Ls are not known a priori either.

It is clear that M is an increasing function of r; one may therefore view
either (M,P, T, L) as functions of r, or (r, P, T, L) as functions of M .

The condition of hydrostatic equilibrium expresses the equation ρg = ∇P ,
where g = −g(r)r/r is the acceleration of gravity, which points inward,
with magnitude g(r). Since div g = −4πGρ (Poisson’s equation), where G
is constant, we find, after integration by parts on the ball of radius r, that
4πr2g(r) = 4πGρ(r). This expresses the fact that the gravitational field on
Sr is the same as if all of the mass within Sr were concentrated at the center.
We therefore have

dP

dr
= −GM(r)ρ(r)

r2
. (7.2)

The pressure is the sum of gas and radiation pressure:

P = Pgas + Prad.

One takes
Prad =

1
4
aT 4,

where a = 7.56 ·10−15 cgs. It is negligible for the Sun, but may be appreciable
in other stars. The gas pressure is given, in the case of a perfect gas, by

Pgas =
RT

V
= nkT =

ρ

μ
RT,

where one mole of molecules has a mass of μ grams and occupies a volume
V . R = 8.32 · 107 cgs = k/mH , where mH = 1.66 · 10−24 g. Composition
determines μ by an averaging process. Thus, assume that one gram of the star
contains X grams of hydrogen, Y of helium, and Z of other elements, with
X + Y + Z = 1. Assuming total ionization, each hydrogen atom contributes
two particles (one proton and one electron), and each helium atom contributes
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three (one nucleus and two electrons). Let NA be Avogadro’s number and
neglect Z. A mole of gas contains XNA hydrogen atoms, and 1

4Y NA helium
atoms, because the helium nucleus is (about) four times heavier than the
hydrogen nucleus. Therefore, the total number of particles is (2X + 3

4Y )NA.
It follows that μ−1 = (2X + 3

4Y ) = (3
4 + 5

4X), taking the relation X + Y = 1
into account.

Energy balance is expressed in two stages. First, let L(r) denote the net
flow of radiation across the surface Sr. The difference between L(r + dr) and
L(r) corresponds to the energy balance emitted in the layer bounded by Sr
and Sr+dr. Letting ε(r) denote the total rate of energy outflow per second
and per gram in this layer, we have dL = εdM , or

dL

dr
= 4πr2ερ. (7.3)

A possible choice is ε ∝ ρT ν.
Finally, the temperature may change as a result of the absorption of radi-

ant energy by the layers of the star; this is generally written

dT

dm
= −GMρT

r2P
∇∗, (7.4)

where ∇∗ equals d lnT/d lnP in convective regions (and is therefore deter-
mined by the equation of state).1 If radiation is responsible for energy trans-
port, ∇∗ is given by

3
16πacG

κLP

MT 4
,

where the opacity κ may be given by expressions of the form κ0ρ
αT−β, with

α and β positive. A possible choice is T ∝ P 2/5 for convection, and κ =
κ0ρ

2−αT−7/2 with α = 0 or 1
4 , and κ0 = 2.4 · 1023(1 + X)3/4.

The problem is to integrate the set (7.1–4) of four equations in four un-
knowns for (M,P, T, L). Four special cases may be mentioned, of which we
study two: (i) polytropic case: ρ is proportional to a power of T , or equiv-
alently, P is proportional to a power of ρ; (ii) point-source model: ε = 0, κ
constant; (iii) isothermal case: P = K0ρ + K1 with K0 and K1 constant, and
T is constant; (iv) radiative envelopes: ε = 0 and r > r0.

7.2 Polytropic model

Write ρ = λT n, so that, since P is proportional to ρT , we find P = KT n+1.
Substituting into equation (7.2) and solving for M(r), we find that M(r) is

1 This quantity is often denoted by ∇ in the astrophysics literature; we write it ∇∗,
to distinguish it from the gradient.
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proportional to r2dT/dr. Equation (7.1) now takes the form of the Lane–
Emden–Fowler equation

d2T

dr2
+

2
r

dT

dr
+ CT n = 0,

see Problem 7.1.

7.3 Point-source model

We assume the source of radiant energy of the star is concentrated at its
center, so that L = Ls is constant, and that κ is constant. According to [40,
pp. 354–355], this is appropriate if the source of radiant energy is limited to a
region of radius less than 17% of the radius of the star. The equations reduce
to (7.1), (7.2), and (7.4); the latter takes the form

dPrad

dr
= − κLs

4πcr2
ρ,

with Prad = 1
3aT

4. From this equation and (7.2), we obtain

M(r) =
κLs
4πcG

(
dP

dPrad
+ 1

)
.

Differentiating once more with respect to Prad, we obtain

κLs
4πcG

d2P

dP 2
rad

= 4πr2ρ
dr

dPrad
= −16π2c

κLs
r4.

Similarly, using the relations P = (kρ/μmH)T and the definition of Prad, we
obtain

d

dPrad
(1/r) = − 1

r2

dr

dPrad
=

4πc
κLs

k

μmH

1
P

(3Prad/a)1/4.

Define new unknowns ξ, z, and t by r = Aξ, P = Πz, Prad = Πradt; choosing
the constants A, Π , and Πrad appropriately, we obtain the equations

d2z

dt2
= −ξ4;

d

dt
(1/ξ) = z−1t1/4.

Setting x = 1/ξ, we are led to the following mathematical problem. Consider
the system

dx/dt = z−1t1/4, d2z/dt2 = −x−4, (7.5)

where z(t) and x(t) represent respectively dimensionless pressure and inverse
distance to the center of a star, as a function of radiation pressure t, which is
proportional to the fourth power of temperature T ; see [40]. Thus, solutions
in which x becomes infinite as t → b represent the behavior at the center of
the star.
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The problem is to investigate solutions defined for 0 ≤ a < t < b ≤ ∞, for
given a and b. We prove the stability of a family of solutions in which x has
logarithmic blowup as t ↑ b < ∞, thus justifying the computations sketched in
[40]: locally, all solutions are contained in this family, parameterized by b and
two other parameters c and d that determine the leading asymptotics. Our
results also give rigorous bounds on the error made if one keeps only the first
few terms. As a result, the formal asymptotics may be used as exact solutions;
they provide quantitative information near singularities—a place where nu-
merical computations become difficult. In Chandrasekhar’s interpretation of
this regime, “this asymptotic behavior corresponds to the case of the density
falling off exponentially as [r = 1/x(t)]→ 0, while the temperature very slowly
attains its maximum; the central regions will be practically isothermal.” In-
deed, b−t varies like the T 4

b −T 4, where Tb is the central temperature. We may
add, as a result of our analysis, that even though the difference between T 4

and T 4
b , where Tb is the central temperature, decays exponentially as r → 0,

this exponential is multiplied by a coefficient (namely, the exponential of the
parameter d) that may take any value. Our stability results make it possible in
principle to compute it in some cases, since d is given by an implicit function
theorem. It would be interesting to implement such a method numerically.

Let T = b− t. The discussion in [40] suggests that one look for solutions in
which z′ has a negative limit at T = 0, while x behaves logarithmically. Our
results are as follows [91].

Theorem 7.1. For any b, c, d with b and c positive:

• There is a unique solution such that

x = b1/4c−1| lnT | + d + O(| ln T |−3), (7.6)

z = cT + O(T 2| lnT |−3). (7.7)

• These solutions are stable: if b− t0 is small, the solution with initial data
prescribed at t0 close to (x(t0), z(t0), z′(t0)) has the same asymptotics as
above, with slightly different values of b, c, and d.

Remark 7.2. For a more complete study, one should also investigate other
possible singular behaviors; for instance, one may seek x and z equivalent
to powers of (t − b)1/3. A similar theorem could be stated and proved for
them. The argument leads to a Fuchsian system without logarithmic terms.
However, these solutions are positive for t > b rather than t < b and are
therefore not considered here.

Proof. For the existence statement, we define renormalized unknowns X(T )
and Z(T ) by

x = b1/4c−1| lnT | + d + X(T ), (7.8)

z = cT + T 2Z(T ). (7.9)
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Let D = T d/dT . We obtain

DX = Tf(T, Z), (7.10)

(D + 1)(D + 2)Z = | lnT |−4g(X, 1/ lnT ), (7.11)

where f and g are smooth near the origin. It follows that (X,Z,DZ) solves
a Fuchsian system to which Theorem 5.3 applies, with λ = (b, c, d), M = 1,
α = 3, and a = 4. Existence follows. The bounds in the theorem follow from
the expression of x and z in terms of X and Z. It is easy to see from the
equation for X that X = O(T ). Theorem 5.5 ensures that the solution is
smooth in b, c, and d.

To prove stability (step H of the algorithm of Chapter 1), one must prove
that these three parameters are nonredundant. This is achieved by considering
the map

(b, c, d) �→ (x(t0), z(t0), z′(t0)). (7.12)

We now prove that this map can be locally inverted using the inverse function
theorem. This will complete the proof. From now on, (b, c, d) will be assumed
to lie in a small neighborhood of some reference value (b0, c0, d0) with b0
and c0 positive, T = b − t small. Now, (X,Z,DZ) solves a Fuchsian system
with right-hand side depending smoothly on (b, c, d), and the linearized system
satisfies the assumptions of Theorem 5.3; the partial derivatives of the solution
with respect to these parameters are computed by solving the linearization,
and are therefore O(| lnT |−3) for T small, uniformly in (b, c, d). Furthermore,
D2Z also satisfies a similar bound, using equation (7.11).

We may now differentiate the equations

x(t; b, c, d) = b1/4c−1| ln(b − t)| + d + X(b− t; b, c, d), (7.13)

z(t; b, c, d) = c(b − t) + (b − t)2Z(b− t; b, c, d), (7.14)
z′(t; b, c, d) = −c− (b − t)[(D + 2)Z](b− t; b, c, d). (7.15)

The Jacobian determinant of (x, z, z′) with respect to (b, c, d) now becomes,
using the information we have on X , Z, and their derivatives,∣∣∣∣∣∣

b1/4(cT )−1 + O(| ln T |)
c + O(T )

O(| ln T |−3)

−b1/4c−2| lnT |+ O(1)
T + O(T 2)
−1 + O(T )

1 + o(1)
O(T 2)
O(T )

∣∣∣∣∣∣ = −c + o(1)

as T tends to zero; the estimates on remainders (o(1) etc.) are uniform in the
parameters in the range under consideration. This shows that the Jacobian of
the map (7.12) is nonzero for t0 close to b, and completes the proof.

Problems

7.1. Apply reduction to the search of radial solutions of −Δu + f(u) = 0 for
r > 0, small, in N space dimensions. Study in particular the following cases:
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1. u = a + O(r) as r → 0, f smooth.
2. u ∼ brν as r → 0, f(u) = uq. Show in particular that there are two

types of singular solutions; those of the first solve −Δu + f(u) = cδ, the
others are more singular; the latter are generally called “very singular
solutions.”Are these solutions stable?
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Applications in General Relativity

This chapter presents the first two applications of reduction in relativity. At
the present time, reduction appears to be the only systematic procedure for
finding solutions of Einstein’s equations that at the same time (i) contains
arbitrary functions as opposed to constants; (ii) enables explicit description
of singular behavior, in principle to all orders; (iii) is not a “group-theoretic
generation technique”: it does not use in any essential way the algebraic struc-
ture of the symmetry group. Both applications deal with cosmological models,
that is, models of the space-time at large scale; they were chosen because they
are the first and simplest illustration of the impact of reduction techniques
on general relativity; other applications to more complicated settings may be
found in the literature. For background information on general relativity, see
Chap. 6 of [104], the notation of which is followed here.

We focus on the mathematical issues addressed by reduction methods in
applications to general relativity. In particular, reduction techniques give a
mathematically rigorous explanation for “asymptotically velocity-dominated1

behavior,” in which time derivatives become more important than space
derivatives near the cosmological singularity. The following is by no means
a complete review of cosmological models current today among physicists,
nor a suggestion that this particular class of cosmological models is better or
worse than others.

8.1 The big-bang singularity and AVD behavior

The universe at large scale appears to be isotropic and homogeneous. The
standard Friedmann–Lemâıtre–Roberston–Walker (FLRW) model uses a
global time function with respect to which the spatial metric expands at
a constant rate (Hubble effect), leading in particular to a contribution to
the redshift of distant objects. The “big bang” is obtained by extrapolating

1 Some authors speak of “asymptotically velocity-term dominated” solutions.
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this behavior to the distant past. However, since the universe is not exactly
isotropic and homogeneous, it is necessary to embed the FLRW solution into
a family of nearly homogeneous and isotropic solutions of Einstein’s equa-
tions. This would establish the stability of the big bang. It was suggested in
the 1960s [13] that stable singularities of Einstein’s equations do not behave
like the FLRW solution in the distant past, but rather like one of the Kasner
solutions of the vacuum equations:

−dt2 +
3∑
j=1

t2pj (dxj)2,

where
∑

j pj =
∑
j p

2
j = 1.2 The pj are called Kasner exponents. In view

of difficulties in this program, the alternative view that one should look for
a succession of “epochs” during each of which the metric should be close
to a different Kasner solution was also suggested (see [83, 181, 13, 182]).3

Homogeneous solutions of this type may be constructed by ODE methods. The
question whether singularities could be destroyed by perturbation remained
unanswered.

The situation changed with the Hawking–Penrose singularity theorems
[78], which assert that some kind of singular behavior (geodesic incomplete-
ness) must occur in cosmological solutions under a sign condition on the Ricci
tensor. However, the singularity theorems, by their very generality, give no
analytic information on what actually happens at this singularity.

The next step was taken in 1972 [54] with the suggestion that solutions
should be “asymptotically velocity-term dominated” (AVD): one still assumes
that a cosmic time coordinate t exists and requires that the metric tensor
gab(x, t) evolve in such a way that an observer with given x0 moving toward
the singularity sees the dynamics of gab(x0, t) asymptotically approach that of
a Kasner space-time, with possibly a different Kasner limit for each different
x0 (see [54, 13, 89, 122]).

AVD behavior in a family of inhomogeneous solutions was first studied on
the case of the so-called polarized Gowdy space-times; see [49]. In this case,
the field equations reduce to the linear Euler–Poisson–Darboux equation. For
this reason, the techniques developed in proving that result have not been
readily extended to more general families. Instead, most of the recent evi-
dence for AVD and oscillatory behavior in cosmological space-times has been
based on numerical work: Berger and Moncrief [18] provide strong numerical
2 In this line of thought, it is widely held that there is an initial singularity, near

which the right-hand side of Einstein’s field equations become negligible compared
to the terms on the left-hand side: the latter are therefore expected to balance
each other rather than the r.h.s. This is expressed by saying that “matter does
not matter.”

3 In fact, the history of the universe accessible to observation seems to cover a
relatively small number of those epochs, so that such oscillatory behavior seems
difficult to check against observed data.
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evidence for AVD behavior in general Gowdy space-times, but find that the
Kasner exponents should satisfy some inequalities in generic solutions (the so-
lutions should be “low-velocity”). A special feature of Einstein’s equations is
the presence of “constraint” equations that are propagated as a consequence
of the other field equations; the situation may be compared with the equa-
tion divB = 0 in Maxwell’s theory, which does not contain time derivatives.
We meet a similar difficulty in Sect. 9.4. It is not always easy to be sure,
in numerical computations, that the constraint equations do hold. Now, the
computations lead to “spiky” behavior in some of the components, and it was
not clear whether one should interpret these spikes as indicative of chaotic or
AVD behavior.

The first mathematical proof of AVD behavior for solutions without closed-
form solutions was one of the first successes of reduction techniques [122, 119]
by providing solutions with explicit asymptotics that can take over precisely
when numerical computation fails. In particular, one can identify the location
of the spikes, after discounting those related to a bad choice of coordinates,
with the critical points of the function X0(x); see Sect. 8.2.3. We now present
these results.

8.2 Gowdy space-times

Gowdy spacetimes [70] are Lorentzian manifolds with spacelike slices home-
omorphic to the three-torus, on which a two-dimensional abelian isometry
group acts without fixed points. Gowdy T

3 space-times [70] have been exten-
sively studied over the years [89, 48, 47, 18, 122]. It is convenient to take as
time coordinate the area t of the orbits of this two-dimensional group; the
space-time corresponds to the region t > 0. The metric then takes the form

ds2 = eλ/2t−1/2(−dt2 + dx2) + t[e−Z(dy + X dz)2 + eZdz2],

where λ, X , and Z are functions of t and x only, and are periodic of period 2π
with respect to x. A related metric occurs in the framework of axial symmetry,
where a radial variable r plays the role of t; our results apply to this situation
with straightforward modifications. The system is equivalent to the vanishing
of the Ricci tensor of this metric.

8.2.1 The field equations

The mathematical problem is the analysis of the behavior, as t → 0+, of
the following system in two unknowns X and Z, which depend on two real
variables t > 0 and x:

D2X − t2Xxx = 2(DX DZ − t2XxZx), (8.1)
D2Z − t2Zxx = −e−2Z((DX)2 − t2X2

x), (8.2)
λx = 2(ZxDZ + e−2ZXxDX), (8.3)
Dλ = (DZ)2 + t2Z2

x + e−2Z((DX)2 + t2X2
x), (8.4)
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where subscripts denote derivatives, and D = t∂t. The last two equations arise
respectively from the momentum and Hamiltonian constraints. It suffices to
solve the first two equations, and we therefore focus on them from now on.
One should also ensure that the integral of λx from 0 to 2π vanishes.

The equations for X and Z are often interpreted as expressing that (X,Z)
generates a “harmonic-like” map from 1+1 Minkowski space with values in
hyperbolic space with the metric

dZ2 + e−2ZdX2.

The usual Cartesian coordinates on the Poincaré model of hyperbolic space
are X and Y = eZ , so that the metric coincides with the familiar expression
(dX2 + dY 2)/Y 2. It is occasionally useful to use polar coordinates (w, φ) on
the hyperbolic space, so that the metric on the target space is

dw2 + sinh2 w dφ2.

The equations for w and φ then take the form

D2w − t2∂xxw =
1
2

sinh 2w[(Dw)2 − t2w2
x]; (8.5)

D2φ− t2∂xxφ = −2 cothw[DwDφ − t2wxφx]. (8.6)

For fixed t, the solution represents a loop in hyperbolic space. For extensive
references on Gowdy space-times, see [47, 49, 18, 74].

8.2.2 Exact solutions

If X = Z = 0, we recover a metric equivalent to the Kasner solution with
exponents (2

3 ,
2
3 ,

−1
3 ). Other Kasner solutions are recovered for X = 0 and

Z = k ln t; the corresponding Kasner exponents are (k2 − 1)/(k2 + 3), 2(1 −
k)/(k2 + 3), and 2(1 + k)/(k2 + 3).

If X vanishes identically, the equation for Z reduces to a linear Euler–
Poisson–Darboux equation, which can be solved explicitly. This provides a
family of solutions involving two arbitrary functions that satisfy

Z ∼ k ln t + O(1),

where k now depends on x and can be arbitrary. Such spaces are called
“polarized” Gowdy space-times.

Both sets of equations (8.1–8.4) and (8.5–8.6) can be solved exactly if we
seek solutions independent of x. In terms of the (X,Z) variables for example,
these solutions have leading behavior of the form

Z ∼ k ln t + O(1), X = O(1),
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where k is a positive constant and represent solutions in which the loop de-
generates to a point that follows a geodesic and tends to a point at infinity in
hyperbolic space.

Numerical computations suggest more complicated behavior in the full
nonlinear system for X and Z [18]. Indeed, if one monitors the “velocity”
v(x, t) =

√
(DZ)2 + exp(−2Z)(DX)2, which should tend to |k(x)|, one finds

that it is not possible to find solutions such that v > 1 on any interval as t → 0.
Even if one starts out with v > 1 and solves toward t = 0, the parameter v
dwindles to values less than 1, except for some sharp spikes located near places
where Xx = 0, which eventually disappear at any fixed resolution. They may
persist longer at higher resolutions. Solutions such that v < 1 are said to be
“low-velocity,” and others are called “high-velocity”; see [74]. Solutions with k
positive and negative are qualitatively quite different, even though they would
have the same value for v. We show below that solutions with negative k may
be obtained from those with positive k by a suitable transformation.

The problem can be summarized as follows: If the geodesic loop approxi-
mation is valid, v approaches |k|. We therefore need a mechanism that forces
|k| < 1, but if v must be smaller than 1, how do we account for the polarized
solutions? Also, should we restrict ourselves to k > 0, given that numerical
computations do not give information on the sign of k? The Gowdy system
is not Fuchsian, despite the form of its left-hand side, because the right-hand
side is not zero for t = 0. We therefore need to perform a reduction.

8.2.3 Results

The reduction of a PDE to Fuchsian form explains why solutions should be-
come AVD, i.e., how the spatial derivative terms can become less important
than the temporal derivatives near singularities, even though the solution is
genuinely inhomogeneous. The results below also account for the various types
of behavior observed on numerical and special solutions by exhibiting a solu-
tion with the maximum number of “degrees of freedom,” and which, under
specialization, reproduces the main features listed above.

Leading-order analysis depends on the value of k; to obtain Kasner-like
behavior, it is natural to take Z ∼ k(x) ln t, X ∼ X0(x). However, it is
necessary, in order to obtain a reduction, to include one more term in the
expansion of Z and X : Z ≈ k(x) ln t + ϕ(x) and X ≈ X0(x) + t2k(x)ψ(x). We
have four arbitrary functions in these asymptotics, which is reasonable for a
set of two equations of second order. We call such asymptotics “generic” for
this reason. The singularity data are k, X0, ϕ, and ψ.

The second task is the definition of the renormalized unknowns u(x, t) and
v(x, t). Consider first the case 0 < k < 1, and define u and v by the relations

Z(x, t) = k(x) ln t + ϕ(x) + tεu(x, t), (8.7)
X(x, t) = X0(x) + t2k(x)(ψ(x) + v(x, t)), (8.8)
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where ε is a small positive constant to be chosen later. We prove in the next
section that u and v solve a Fuchsian system. The equations will involve
variable powers of t. Thus, we achieved the desired reduction; it turns out that
we directly obtain the second reduced equation in this manner. If 0 < k < 1,
the periodicity condition

∮
λxdx = 0 is equivalent to

∫ 2π

0

k(ϕx + 2X0xψe−2ϕ)dx = 0, (8.9)

which we assume from now on. If k > 1, we will require in addition that
X0x ≡ 0, for reasons that will be clear after we derive the reduced system. In
both cases, we find λ = k2 ln t + O(1) as t → 0.

The results, Theorems 8.1 and 8.2, are summarized as follows:

• If k lies strictly between 0 and 1, we obtain a “generic” solution involving
four arbitrary functions of x, namely k, X0, ϕ, and ψ.

• If k > 0 and X0 is independent of x, we obtain a solution involving only
three functions of x and one constant. It includes both the x-independent
solutions and the polarized solutions; this explains why these cases do not
lead to a restriction on k.

High velocity is allowed when X0 is constant; this is consistent with the nu-
merical results that show spikes when Xx = 0.

If k is negative, one can proceed in a similar manner, except that one
should start with

Z = k(x) ln t + ϕ(x) + tεu(x, t), (8.10)
X = X0(x) + tεv(x, t), (8.11)

where k, ϕ, and X0 are arbitrary functions. In fact, one can generate solutions
with negative k from solutions with positive k. Indeed, if (X,Z) is any solution
of the Gowdy equations, so is (X̃, Z̃), where

X̃ =
X

X2 + Y 2
, Z̃ = ln

Y

X2 + Y 2
,

with Y = eZ as before. This corresponds to an inversion in the Poincaré
half-plane.

Our existence results may be applied in two different ways to the problem.
One is to assume the arbitrary functions to be analytic and 2π-periodic, and
to produce solutions that are periodic in x. One can also use the results to
produce solutions that are defined only near some value of x. This is useful
when the solution is not conveniently represented in the (X,Z) coordinates,
in which one of the points at infinity in hyperbolic space plays a distinguished
role. In such cases, one can patch local solutions obtained from several local
charts in hyperbolic space.
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8.2.4 Reduced system

In this section, we first reduce the Gowdy equations to a second-order system
for u and v, which is then converted to a first-order Fuchsian system. The
equations now become

(D + ε)2u = t2−ε[kxx ln t + ϕxx + tεuxx]

− exp(−2ϕ− 2tεu)
{
t2k−ε((D + 2k)(v + ψ))2

− t2−2k−ε[X0x + t2k(vx + ψx + 2kx(v + ψ) ln t)]2
}
, (8.12)

D(D + 2k)v = t2−2kX0xx + 2tε(D + ε)u(D + 2k)(v + ψ)

+ t2[(v + ψ)xx + 4kx(vx + ψx) ln t

+ (2kxx ln t + 4k2
x(ln t)2)(v + ψ)]

− 2t2−2k[X0x + t2k(vx + ψx + kx(v + ψ) ln t)]
× [kx ln t + ϕx + tεux]. (8.13)

This second-order system will now be reduced to a first-order system. To
this end, let us introduce the new variables

u = (u0, u1, u2, v0, v1, v2) = (u,Du, tux, v,Dv, tvx).

We then obtain

Du0 = u1;
Du1 = − 2εu1 − ε2u0 + t2−ε(kxx ln t + ϕxx) + t∂xu2

− exp(−2ϕ− 2tεu0)
{
t2k−ε(v1 + 2kv0 + 2kψ)2 − t2−2k−εX2

0x

− 2t1−εX0x(v2 + tψx + kx(v0 + ψ)t ln t)
− t2k−ε(v2 + tψx + 2kx(v0 + ψ)t ln t)2

}
;

Du2 = t∂x(u0 + u1);
Dv0 = v1;
Dv1 = −2kv1 + t2−2kX0xx + t∂x(v2 + tψx) + 4kx(v2 + tψx)t ln t

+ (v0 + ψ)[2kxxt2 ln t + 4(kxt ln t)2]
+ 2tε(v1 + 2kv0 + 2kψ)(u1 + εu0)
− 2X0xt

2−2k(kx ln t + ϕx + tε∂xu0)
− 2t(∂x(v0 + ψ) + 2kx(v0 + ψ) ln t)(kxt ln t + tϕx + tεu2);

Dv2 = t∂x(v0 + v1).

This system therefore has the form

(D + A)u = g(t, x,u,ux), (8.14)

where the right-hand side g involves various powers of t, possibly multiplied
by logarithms. We choose ε so that all of these terms tend to zero as t goes
to zero. The low-velocity case is precisely the one in which it is possible to
achieve this without making any assumptions on the singularity data, namely
k, X0, ϕ, and ψ. The high- and low-velocity cases are now distinguished by
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the absence or presence of the terms involving t2−2k (and t2−2k−ε). As is clear
from the above equations, these terms disappear precisely if X0 is a constant
(i.e., X0x = 0). The matrix A has eigenvalues ε, 0, and 2k, and there is a
constant C such that |σA| ≤ C for any σ ∈ (0, 1) if ε > 0.

We obtain solutions of (8.14) that satisfy u = 0 for t = 0. Let us check
that these solutions generate solutions u0 and v0 of the original Gowdy system.
Since the second and fifth equations of the system satisfied by u are obtained
directly from the second-order system, it suffices to check that u1 = Du0,
v1 = Dv0, u2 = tu0x, and v2 = tv0x. The first two statements are identical
with the first and fourth equations respectively. As for the last two, we note
that the first and third equations imply

D(u2 − t∂xu0) = t∂x(u0 + u1 −Du0 − u0) = 0.

Since u2 − t∂xu0 tends to zero as t → 0, it must be identically zero for all
time, as desired. The same argument applies to v. The computations for the
case k < 0 are entirely analogous, and are therefore omitted. We now study
the low- and high-velocity cases separately.

8.2.5 Low-velocity case

Assume that k lies between zero and one:

Theorem 8.1. Let k(x), X0(x), φ(x), and ψ(x) be real analytic, and assume
0 < k(x) < 1 for 0 ≤ x ≤ 2π. Then there exists a unique solution of the form
(8.7–8.8), where u and v tend to zero as t → 0.

Proof. By inspection, the vector u satisfies a system of the form (8.14), where
g can be written tαf , provided that we take α and ε to be small enough.
Letting t = sm, we obtain a new system of the same form, but with α replaced
by mα. By taking α large enough, we may therefore assume that we have a
system to which Theorem 4.3 applies. The result follows. �


8.2.6 High-velocity case

We now assume that k is positive, and may take values greater than one. If k
is less than one, we recover the solutions obtained above, with X0x = 0:

Theorem 8.2. Let k(x), φ(x), and ψ(x) be real analytic, and assume X0x = 0
and k(x) > 0 for 0 ≤ x ≤ 2π. Then there exists a unique solution of the form
(8.7–8.8), where u and v tend to zero as t → 0.

Proof. Since X0x is now zero, we find that u satisfies, if ε > 0, a Fuchsian
system of the form (8.14), where g can be written tαf , provided again that
we take α and ε to be small enough. Letting as before t = sm, we obtain a
new system of the same form, but with α replaced by mα. By taking m large
enough, we may therefore assume that we have a system to which Theorem 4.3
applies. The result follows. �
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8.3 Space-times with twist

We now turn to a second example, in which the constraint equations do
not decouple from the evolution equations, resulting in a considerably more
complicated PDE system than what obtains in the case of Gowdy space-
times [48, 17, 159]. These spaces admit an abelian isometry group with
spacelike generators, in which, unlike the Gowdy case, the Killing vectors
have a nonvanishing twist. The difficulty is overcome by abandoning the
separation of constraint and evolution equations. Combining some of the
constraints with some of the “evolution” equations, one can form a sys-
tem that determines the metric. One then proves that the remaining con-
straints hold everywhere if they hold asymptotically at the singularity. This
latter condition can be expressed explicitly in terms of the “singularity
data.”

The Gowdy subfamily is characterized by the requirement that the Killing
fields X and Y that generate the isometry group have vanishing twist con-
stants κX := εabcdXaYb∇cXd and κY := εabcdXaYb∇cYd, where εabcd is the
Levi-Civita tensor. If one chooses the orbital area as time variable (“Gowdy
time”) [70], the constraint equations decouple from the evolution equations
in the Gowdy case. If, however, either κX or κY is nonzero, then no such
decoupling occurs.

8.3.1 Field equations

The general form of the metric and the field equations for the T
2-symmetric

space-times is presented in [17], along with a proof that the Gowdy time
always exists globally for these space-times. All metric components depend on
two coordinates: the Gowdy time t and spatial coordinate θ ∈ S1 with ∂/∂x
and ∂/∂y generating the T

2 isometry. By choosing X and Y to be suitable
linear combinations of the generators, we may always assume without loss of
generality that κX = 0. We then drop the subscript from κY . We now focus
on the subclass of polarized space-times, in which the metric takes the form

ds2 = e2(ν−u)(−αdt2 + dθ2) (8.15)
+λe2u(dx + G1dθ + M1dt)2 + λe−2ut2(dy + G2dθ + M2dt)2,

where λ is a positive constant and the functions u, ν, α, G1, M1, G2, M2

depend on t and θ. The Gowdy case is recovered if κ = 0, α = 1, and G1 =
G2 = M1 = M2 = 0. Writing D = t∂t and m = λκ2, the vacuum field
equations take the form
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D2u− t2αuθθ =
1
2α

DαDu +
t2

2
αθuθ, (8.16a)

Dα = −α2

t2
me2ν , (8.16b)

Dν = (Du)2 + t2αu2
θ +

α

4t2
me2ν , (8.16c)

∂θν = 2uθDu− αθ
2α

, (8.16d)

G1,t = M1,θ, (8.16e)

G2,t = M2,θ +
κα1/2

t3
e2ν , (8.16f)

κt = 0, (8.16g)
κθ = 0. (8.16h)

Equations (8.16) constitute an initial-value problem for the polarized space-
times, in which the equations (8.16a–d) decouple from the other equations.
They form an independent system for {u, α, ν}. Once these three functions
are known, the other equations can be solved easily. Equations (8.16b–d) in
particular—three of the four equations that constitute the heart of the Cauchy
problem for these space-times—actually derive from the constraint equations
of Einstein’s theory. In contrast to the Gowdy case, the wave equation (8.16a)
does not decouple from the constraints, since it contains the function α. We
therefore take (8.16a–d) as our basic equations, treating (8.16a–c) as evolution
equations, and (8.16d) as the only effective constraint. Also, since equation
(8.16e) gives G1,t = M1,θ, G1dθ + M1dt is locally an exact differential dϕ;
replacing x by x + ϕ, we may assume locally that G1 = M1 = 0. Similarly,
one can set M2 = 0 by redefining y. Since these reductions are only local
and may be incompatible with global requirements, we do not consider them
further, even though they do make the geometric “degrees of freedom” more
clear.

The local well-posedness of the initial-value problem away from the singu-
larity at t = 0 is not quite straightforward, for we must prove that equation
(8.16d) propagates. This is not an immediate consequence of standard re-
sults because we are not using any of the standard setups for the initial-value
problem. It nevertheless does hold; see Problem 8.2 for the analytic case, and
Problem 8.3 for the nonanalytic Cauchy problem.

As far as the number of singularity data is concerned, observe that the
initial data for (8.16a–c) consist of four functions {u, ut, α, ν}; they are con-
strained by one relation, (8.16d). Similarly, we will obtain a family of singular
solutions of (8.16a–c) depending on four arbitrary functions occurring in its
singular expansion, and will show that if these singularity data are constrained
by one relation, the constraint (8.16d) holds for all time.
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8.3.2 Reduced system and its solution

We follow the usual pattern of reduction, except that the first reduction is
sufficient to conclude; we therefore go directly from Step D to Step G:

Step A: t is the expansion variable.
Step B: Leading-order asymptotics.
Since we expect Kasner-like behavior at the singularity, and since u and ν

appear in the metric exponentially, we choose logarithmic leading terms for u
and ν:

u ≈ k(θ) ln t + u0(θ) + . . . , (8.17a)
ν ≈ (1 + σ(θ)) ln t + ν0(θ) + . . . , (8.17b)
α ≈ α0(θ) + . . . . (8.17c)

For equation (8.16b) to hold at leading order, it is sufficient that σ > 0. For
(8.16c) to hold at leading order, one needs Dν and (Du)2 to balance each
other, which requires that

k2 = 1 + σ, (8.18)

which we assume from now on. The function α0 should be positive, to ensure
that the metric has the correct signature. There are four free functions in
these leading-term expansions, namely (k, u0, α0, ν0); they are the singularity
data for this system. They are 2π-periodic; furthermore, α0 and σ = k2 − 1
are positive. It is natural that there should be four singularity data, given
that equations (8.16a–c) require four Cauchy data. Constraint (8.16d) will be
taken into account in Step G below.

These asymptotics may be compared with those of the solutions obtained
in the Gowdy case. If kG denotes the parameter called k in the Gowdy case, the
correspondence is ±kG = 2k − 1. The solutions we obtain here, with k2 > 1,
are similar to the “high-velocity” Gowdy solutions, for which kG > 1. The
asymptotics (8.17a–c) are not compatible with equations (8.16) if 0 < k < 1,
unless m = 0, which is the Gowdy case. Indeed, (8.16b) implies that α is of
order t2σ, which is singular if σ = k2 − 1 is negative. This makes the term
DαDu/(2α) in (8.16a) more singular than all the other terms in this equation,
so that (8.16a) cannot hold. There are two ways to circumvent this: (1) take
k = 0, so that Du vanishes to leading order, giving a consistent balance, at the
expense of losing the freedom to vary k; (2) add terms to the field equations
that would compensate the most singular term in (8.16a)—which is possible
by going over to the nonpolarized field equations.

Step C. Renormalized unknown and reduction.
We now introduce new unknowns that will provide an exact form for the

remainders indicated with “. . . ” in (8.17a–c). Because of the e2ν term, it is not
possible to assume that the remainder terms are of order t. We do expect them
to be of order tε if ε is small compared to the minimum of σ. We therefore
define the renormalized unknowns (v, μ, β) by
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u(θ, t) = k(θ) ln t + u0(θ) + tεv(θ, t), (8.19a)
ν(θ, t) = k2(θ) ln t + ν0(θ) + tεμ(θ, t), (8.19b)
α(θ, t) = α0 + tεβ(θ, t). (8.19c)

We now show that the renormalized field variables solve a Fuchsian prob-
lem. To achieve this, let us first introduce first-order derivatives of v as new
unknowns:

v = (v1, v2, v3, v4, v5) := (v,Dv, tεvθ, β, μ).

Let us also introduce the abbreviation E = m exp(2ν0 +2tεμ). It is helpful to
remove the t-derivatives of α in the right-hand side of (8.16a) by using

Dα

α
= −αt2σ(θ)E, (8.20)

which follows from (8.16b) and (8.19c). We then obtain the following evolution
equations for v:

Dv1 = v2, (8.21a)
Dv2 + 2εv2 + ε2v1 = t2−ε(α0 + tεβ)(kθθ ln t + u0,θθ + v3,θ)

−1
2
Eαt2σ−ε(k + tε(v2 + εv1))

+
1
2
t2−ε(α0 + tεβ)(kθ ln t + u0,θ + v3), (8.21b)

Dv3 = tε∂θ(εv1 + v2), (8.21c)
(D + ε)v4 = − t2σ−ε(α0 + tεβ)2E, (8.21d)

(D + ε)v5 = 2k(v2 + εv1) + tε(v2 + εv1)2 +
1
4
Et2σ−ε(α0 + tεβ)

+αt2−ε(kθ ln t + u0,θ + v3)2. (8.21e)

This system has the general form

(D + A)v = tεf(t, x,v, ∂θv),

where

A =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0 0
ε2 2ε 0 0 0
0 0 0 0 0
0 0 0 ε 0

−2kε −2k 0 0 ε

⎞
⎟⎟⎟⎟⎠ ,

and f is a five-component object containing all the terms in the system that
are not already included in the right-hand side.

Step D: Choice of ε.
By taking ε small (less than the smaller of 1 and any possible value of

σ), we can ensure that f is continuous in t and analytic in all the remaining
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variables. Since the eigenvalues of A are ε and 0, of multiplicities four and one
respectively, the boundedness condition of Theorem 4.3 holds. Explicitly, we
have σA = PσA0P−1, where

A0 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 ε 0 0 1
0 0 ε 0 0
0 0 0 ε 2k
0 0 0 0 ε

⎞
⎟⎟⎟⎟⎠ and P =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 −ε 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

so that

σA0 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 σε 0 0 σε lnσ
0 0 σε 0 0
0 0 0 σε 2kσε lnσ
0 0 0 0 σε

⎞
⎟⎟⎟⎟⎠ .

Since σA is bounded, we may skip Steps E and F.
Step G: Asymptotics determine a unique solution.
The main result is the following Theorem:

Theorem 8.3. For any choice of the singularity data k(θ), u0(θ), ν0(θ), and
α0(θ), subject to condition (8.22), the T

2-symmetric vacuum Einstein equa-
tions have a solution of the form (8.19), where β, v, and ν are bounded near
t = 0. It is unique once the twist constant κ has been fixed, except for the free-
dom in the functions G1, G2, M1, and M2. Each of these solutions generates
space-times with AVD asymptotics.

Thus, we find a family of singular T
2-symmetric space-times with precise

asymptotics at the singularity of AVD type, depending on as many singularity
data as there are Cauchy data for solutions away from the singularity. Fuchsian
techniques therefore apply even if the constraints do not decouple from the
“evolution” equations as in the Gowdy case.

We conclude from Theorem 4.3 that there is a unique solution of the Fuch-
sian system (8.21) vanishing as t tends to zero, analytic in θ and continuous
in time. If we construct u, ν, and α from (8.19a–c) with v = v1, μ = v5, and
β = v4, then (u, ν, α) is a solution of equations (8.16a–c). Indeed, (8.21a–c)
imply that

D(v3 − tεv1,θ) = 0,

so that any solution that tends to zero with t also satisfies v2 = tv1,t and
v3 = tεv1,θ.

8.3.3 Propagation of constraints

We now wish to show that by imposing a constraint on the singularity data
(k, u0, α0, ν0), we can guarantee that the solution (u, ν, α) of (8.16a–c) will
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satisfy the constraint (8.16d) as well, and solve Einstein’s vacuum equations.
We achieve this using (14.3) (see Problem 8.3) which in turn is derived using
only (8.16a–c).

First of all, since f is bounded, we know that (D + A)v is actually O(tε),
so that α and Dα are of order one and tε respectively. In particular, Dα/α =
tαt/α = O(tε). This means, using (14.3), that

∂tN

N
=

αt
2α

= O(tε−1),

which is integrable up to t = 0. (One could also have estimated Dα/α directly
from (8.20).) Letting z(t, θ) be the integral of this function from 0 to t, we
find that

N(t, θ) ∝ exp z(t, θ).

Thus, if we can choose the data so that N → 0 as t → 0 for fixed θ, we will
know that N is in fact identically zero, and therefore that the constraint is
satisfied. Now

N = νθ − 2uθDu +
αθ
2α

= ν0,θ − 2ku0,θ +
α0θ

2α0
+ o(1),

where o(1) tends to zero with t. We conclude that the constraint is satisfied
if and only if the singularity data satisfy

ν0,θ − 2ku0,θ +
α0θ

2α0
= 0. (8.22)

We now know that once the functions (k, u0, α0, ν0) have been specified,
and ε has been chosen small enough, the metric is uniquely determined. This
completes the proof. All the considerations in this section are local in θ, and
therefore allow in principle for other spatial topologies.

Problems

8.1. Solve the Gowdy equations for nonanalytic data using the methods of
Chap. 5. Apply the argument of Section 10.2 to prove their stability.

8.2. Solve the initial-value problem for (8.16a–d) away from the singularity.

8.3. Obtain solutions to (8.16a–d) with nonanalytic initial data, by intro-
ducing an appropriate Fuchsian hyperbolic system. This problem contains a
difficulty that is not found in the previous one, namely that the constraint
equations are not decoupled from the “evolution” equations. The equations
need to be split in a way that does not correspond to the one suggested by the
standard approach to the nonanalytic Cauchy problem in general relativity
(for the latter, see [104]).

8.4. Apply the analysis of the Gowdy problem to Einstein’s equations with
axial symmetry.
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Applications in Differential Geometry

We solve two problems in conformal geometry: the convergence of the ambient
metric construction [112] and the regularity of the hyperbolic radius [113,
114]. We first show that the ambient metric g generally involves arbitrary
functions over and above the coefficients of the initial metric h, and show
how nevertheless to associate to g and any given conformal factor exp(2σ)
a definite ambient metric corresponding to the initial metric exp(2σ)h under
conformal changes of the initial metric. We then prove that the hyperbolic
radius of a C2+α domain is of class C2+α, and outline several applications;
see also Problem 9.1 and Chap. 11.

9.1 Fefferman–Graham metrics

As in the previous chapter, we construct Ricci-flat metrics with singular be-
havior, but with a different structure, and a different interpretation. Most
results are taken from [112]; Theorem 9.14 is new.

In 1985, Fefferman and Graham [60] considered the question of locally
embedding a real-analytic Riemannian manifold (M,h) of dimension n into a
Lorentzian, Ricci-flat, (n+ 2)-dimensional manifold (G̃, g̃) admitting a global
homothety. This is a generalization of the case of the n-dimensional sphere
realized as a section of the light cone in (n+2)-dimensional Minkowski space;
isometries in Minkowski space then induce conformal self-maps of the sphere.
After various choices of local coordinates, they were led to the following PDE
problem: Let (xi) denote local coordinates on M , where indices i, j, etc. run
from 1 to n, and use the Einstein summation convention. The problem is to
find a tensor-valued solution g(ρ) = gij(x, ρ)dxi⊗dxj , defined for ρ small and
positive, to the system
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ρ∂ρ

(
ρ∂ρ − n

2

)
gij +

1
2
gkl(ρ∂ρgkl)(ρ∂ρ − 1)gij − gkl(ρ∂ρgik)(ρ∂ρgjl)

+ρRij = 0, (9.1)
gik[∇kAij −∇jAik] = 0, (9.2)

gik[∂ρAik − gjlAjkAil] = 0, (9.3)
gij(x, 0) = hij , (9.4)

where Rij is the Ricci curvature of gij(x, ρ), ∇ denotes the Riemannian con-
nection on M associated to gij for fixed ρ, hij(x)dxi ⊗ dxj = h, and

Aij :=
1
2
∂ρgij(x, ρ). (9.5)

The desired Lorentz metric is then

g̃ = t2gijdx
i ⊗ dxj + 2ρ dt⊗ dt + 2t dt⊗ dρ. (9.6)

One refers to such a metric as an embedding metric associated to h. Indeed,
if we restrict g̃ to the set {t = 1, ρ = 0}, we recover h.

They found solutions if n is odd. If n is even, they conjectured that there
are, in general, formal solutions involving logarithms of ρ, and raised the
question of the convergence of such series.

We solve this problem by determining the degree of nonuniqueness of the
series, and by proving its convergence in all cases. Theorem 9.14 shows that
manifolds G̃ generated by different, conformally related metrics on M are
locally diffeomorphic; in this sense, the space G̃ is a conformally invariant
object associated with M , thus realizing the initial plan of Fefferman et al.
More precisely [112], we have the following result:

Theorem 9.1. Let n ≥ 1.

1. Equation (9.1) admits formal solutions involving logarithms and square
roots of ρ.

2. The series converge: solutions are holomorphic functions of r and r ln r,
with r2 = ρ, when r is small.

3. The series contain n(n + 1) arbitrary coefficients, namely
(a) the n(n + 1)/2 components of the metric tensor of M ;
(b) the (n2 + n − 2)/2 independent components γij of the trace-free part

of the coefficient of ρn/2; and
(c) the trace τ of the coefficient of ρn,
where the trace is taken with respect to h.

4. Equations (9.2–9.3) reduce the arbitrariness in the solution: they deter-
mine τ and ∇i

hγij , where ∇h is the covariant derivative on M determined
by h.

No effort has been made to reduce the number of arbitrary functions by further
special choices of coordinates. The statements admit of some simplification in
small dimensions; see Sect. 9.5. These results have the following consequences.
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1. Given h, there are n(n + 1)/2 coefficients that cannot be determined by
local means alone, subject to n + 1 local conditions. By contrast, the
coefficient of the first logarithmic term can be determined from h alone
by local computations. This echoes classical results on the asymptotics of
the Bergman kernel and of the solutions of the complex Monge–Ampère
equation [26, 59, 72].

2. Despite the presence of logarithms, the metric admits of local uniformiza-
tion by the introduction of variables of the form r(ln r)k.

Remark 9.2. The observation that (9.2–9.3) reduce the arbitrariness in the
solution, and rule out logarithms in some cases, can be found already in [60,
pp. 112–113].

Remark 9.3. The question solved here goes back further, in particular to the
work of Schouten and Haantjes [163], who investigated formal solutions in
integer powers when the determinant of h is normalized to unity. Logarithms,
or convergence issues, were not considered by them.

We now describe the strategy carried out in the following sections. We write g
for gijdx

i⊗dxj , and more generally use boldface letters for symmetric tensors
on M , and italic letters for their local coordinate components. The leading-
order behavior is g ∼ h. The expansion variable, which plays the role of T in
the general theory, is r =

√
ρ. We define the first renormalized unknown p by

g = h(x) + r2p(x, r),

and derive the first reduced Fuchsian system for p. We then seek an integer �
such that there is a formal solution p ∈ A�; we work with � = 1. As a result,
one obtains formal solutions in which g involves terms rp(ln r)q with q ≤ p−2.
The arbitrary functions are identified at this stage.

To obtain the second reduced equation, we truncate the expansion after
the exponent where the last arbitrary function appears: we write

g = q(x, r) + r2
∑

0≤k≤2n−1

uk(x, r, r ln r)r2n−1(ln r)k,

where the uk form a new set of unknowns. Substituting into the “spatial”
components R̃ij (1 ≤ i, j ≤ n) of the Ricci tensor of g̃, we show that the uk
and suitable combinations of their first-order derivatives solve a generalized
Fuchsian system, with two “time” variables, namely r and r ln r. As a result,
there is a unique local solution that is holomorphic in r and r ln r.

It remains to show that the other components of Ric[g̃] vanish as well. This
is achieved by showing that they satisfy, thanks to the contracted Bianchi iden-
tities, a linear Fuchsian system that admits only the trivial solution precisely
when the coefficients of ρn/2 and ρn in the metric satisfy the constraints in
the theorem. The conclusions of the theorem follow.

We conclude with an analysis of the identification of solutions correspond-
ing to conformally equivalent manifolds M . For background information on
Riemannian geometry, see [104].
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Setup

We collect some information on g̃. Local coordinates on G̃ are denoted by
(x0, . . . , xn+1), where x0 = t and xn+1 = ρ = r2. It is convenient to write
m = n + 1. The variable r already occurs naturally in [60] in relation to the
associated generalized Poincaré metric (see also [137] for generalized Poincaré
metrics in a different setup). We use the operator D = r∂r = 2ρ∂ρ. Recall
that indices i, j, etc. run from 1 to n. Indices a, b, etc. can also take the values
0 and m. Greek indices take only the values 0 and m. The usual conventions
of Riemannian geometry, including the summation convention on repeated
indices, are used throughout. Thus, the metric coefficients g̃ab read

g̃ij = t2gij ; g̃iα = 0;
g̃mm = 0; g̃00 = 2ρ;
g̃0m = t.

Similarly,

g̃ij = t−2gij ; g̃iα = 0;

g̃mm = −2ρ/t2; g̃00 = 0;

g̃0m = 1/t.

The special form of the metric ensures that

1. the ρ coordinate lines are geodesics;
2. G̃ is Lorentzian and the hypersurface ρ = 0 is null;
3. G̃ admits a global homothety in the t direction.1

One can interpret the hypersurface ρ = 0 in G̃ as the bundle of metrics
proportional to hij ; a section corresponds to a particular relation t2 = ϕ(x) >
0, thus to a conformal factor.

We let
tr(u) := hklukl

denote the trace with respect to h of any tensor u.
Next, the Christoffel coefficients Γ̃ abc of g̃ab are related to the coefficients

Γ ijk of gij via

Γ̃ ijk = Γ ijk;

Γ̃ 0
ij = −1

2
t∂ρgij(x, ρ); Γ̃mij = (ρ∂ρ − 1)gij ;

Γ̃ i0j =
1
t
δij ; Γ̃ imj =

1
2
gik∂ρgjk;

Γ̃αβj = Γ̃ jαβ = 0; Γ̃ 0
αβ = Γ̃mαα = 0; Γ̃m0m = 1/t.

1 A homothety is a vector field X such that LX g̃ = λg̃ for some constant λ, where
LX denotes the Lie derivative with respect to X.
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Furthermore,

Γ̃ a0a = (n + 1)/t; Γ̃ aia = Γ̃ kik = Γ kik; Γ̃ ama =
1
2
gik∂ρgik.

Let us write R̃ab for the components of the Ricci tensor of Ric[g̃], and
Rij(x, ρ) for the Ricci tensor associated with gij(x, ρ) considered as a metric
on M , for fixed ρ. Thus, Rij reduces to the Ricci curvature of M for ρ = 0. The
expressions (9.1), (9.2), and (9.3) represent R̃ij , R̃mj , and −R̃mm respectively.
They are in particular independent of t. On the other hand, the components
R̃a0 vanish identically.

Our task is therefore to solve the system

R̃ij = 0, (9.7)

R̃mj = R̃mm = 0, (9.8)
gij(x, 0) = hij(x), (9.9)

which is identical to (9.1–9.4). The solutions corresponding to different coor-
dinate patches of M can be patched together after checking, as usual, their
compatibility at the intersections; for (9.7), this is an easy consequence of the
fact that the solutions will be uniquely determined by certain tensors on M ,
which play the role of “singularity data.” We therefore limit ourselves in the
rest of this chapter to a single coordinate patch, covering a small neighborhood
of {xi = 0}.

9.2 First Fuchsian reduction and construction
of formal solutions

We seek an integer l such that the equations R̃ij = 0 have formal solutions in
power series in r(ln r)k, k = 0, 1, . . . , l. We find that l = 1 suffices. This will
be an easy consequence of a reduction to a Fuchsian system, (9.14) below,
from which the formal solution can be found inductively.

Remark 9.4. It is not convenient to work with variables of the form rp ln r,
because it makes keeping track of the degree of homogeneity of the terms
in the series more cumbersome. If desired, one could, after the solution has
been obtained, see whether it can be rearranged as a series in r and rp ln r for
some p.

Equation (9.7) reads

E[g] := D(D − n)g +
1
2
α(D − 2)g − g−1(Dg, Dg) + 4r2Ric[g] = 0, (9.10)

where
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α := g−1Dg = gklDgkl, (9.11)

g−1(Dg, Dg) := gklDgikDgjl. (9.12)

If n = 1, it is shown in Section 9.5 that the solution is entirely free from
logarithms. The structure of formal solutions to (9.10) for n ≥ 2 is given by
the following result.

Theorem 9.5. Assume n ≥ 2. Equation (9.10) has formal solutions

g = h + r2p, (9.13)

where p ∈ A1. The formal expansion is completely determined as soon as

• the trace-free part of the coefficient of rn and
• the trace of the coefficient of r2n

are prescribed.

Proof. Let us write the inverse of g,

g−1 = h−1 + r2P,

where P can be computed from p. We then obtain

1
2
α(D − 2)g =

1
2
[
(h−1 + r2P)D(r2p)

]
(−2h + r2Dp)

= −h tr(D(r2p)) + r4ϕ1[p, Dp],

g−1(Dg, Dg) = r4ϕ2[p, Dp],

Ric(g) = Ric[h] + r2ϕ3[p, ∂p, ∂2p],

where ∂ stands for partial derivatives with respect to the coordinates xi. It
follows that

E[g]/r2 = L(D + 2)p + 4Ric[h] + r2Φ1[p, Dp, ∂p, ∂2p], (9.14)

where

L(D)u = D(D − n)u − h tr(Du) (9.15)

= D(D − n)
(
u − 1

n
h tr(u)

)
+

1
n
hD(D − 2n) tr(u)

(recall that the trace is being taken with respect to h). Equating the right-
hand side of (9.14) to zero gives the first Fuchsian equation obtained by reduc-
tion of (9.1); equation (9.1) was not Fuchsian because its nonlinear part was
not divisible by r. As a consequence of (9.14), we shall derive formal solutions
to all orders. Theorem 2.2 yields the following:

Lemma 9.6. If L(D)u = rμf , where μ > 0, f is a nonzero polynomial in ln r,
and u = rμũ(ln r), then
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1. if μ �= n, 2n, then deg ũ = deg f , where deg denotes the degree in ln r;
2. if μ = n, deg ũ ≤ deg f + 1, with equality if the traceless part of f is

nonzero; the traceless part of ũ remains arbitrary;
3. if μ = 2n, deg ũ ≤ deg f + 1, with equality if the trace of f is nonzero; the

trace of ũ remains arbitrary.

Proof. Using the decomposition (9.15), it suffices to consider the equations
D(D − k)ũ = rμf with k = n or 2n. One then applies Theorem 2.2.

�

Coming back to the proof of Theorem 9.5, let us seek g in the form

g = h +
∑
p≥2

(p)
g rp.

We wish to show that the degree of
(p)
g with respect to ln r does not exceed

p− 2. We find that
(2)
g is determined by

L(D + 2)
(2)
g + 4Ric(h) = 0.

If n ≥ 3, L(2) is invertible and
(2)
g is uniquely determined, without logarithms.

If n = 2, the Ricci tensor is diagonal, and
(2)
g still does not involve logarithms.

Now, equation (9.14) shows that p − (2)
g satisfies an equation to which Theo-

rem 2.14 and Remark 2.15 apply, with a = 2 and b = 0. Therefore, p can be
found in Al provided that 2l ≥ 1, which is the maximum order of a positive
zero of x(x − n) or x(x − 2n). �


Remark 9.7. Logarithms may first occur in
(p)
g for p = n (in fact, only if n

is even, since otherwise
(p)
g = 0 for p odd and less than n, and therefore

L(D)
(n)
g rn = 0). If

(p)
g is free from logarithms for p ≤ 2n, the series contains

no logarithms at all.

Remark 9.8. One obtains, if n ≥ 3,

(2)
g =

2
n− 2

[
Ric(h) − R

2(n− 1)
h
]
.

9.3 Second Fuchsian reduction and convergence
of formal solutions

We now have a formal solution (9.13) in h+r2A1. Let h+r2q be a truncation
of this solution such that E[h + r2q] has no term of total degree (in r) less
than 2n + 1. Since
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E[h + r2q] = r2Φ2[p, Dp, ∂p, ∂2p],

this remainder contains a factor r2. Let us define a new set of unknowns
u := (uk(r0, r1)) such that

p = q +
2n−1∑
k=0

r2n−1(ln r)kuk(r, r ln r). (9.16)

We expect that there is a unique set of expressions uk(r, r ln r) such that p
satisfies (9.14), since all the arbitrary functions in the metric have already
been incorporated into q. To achieve this goal, we use the following strategy:

• First view uk as functions of r0 and r1, viewed as independent variables.
This will change D into N , and makes all coefficients analytic in (r0, r1).

• Next, substitute (9.16) into the equation and use Lemmas 2.11 and 6.13
to handle nonlinear and linear terms respectively. This produces a new
generalized Fuchsian system in which the indices all have positive real
parts. This achieves the second reduction.

• To conclude, one casts this system into a first-order system in which a
Fuchs index zero may appear. This system falls within the scope of Theo-
rem 4.5, and has precisely one holomorphic local solution vanishing at the
origin. It yields the desired uk.

We now implement this program. Substituting into (9.14) and applying Lem-
mas 2.11 and 6.13, we obtain a system of the form

L(N + A + 2n + 1)u = r2
0f0, (9.17)

where f0 depends only on r0, r1, u, its first and second x-derivatives, and Nu.
Writing the uk as a sum of a trace-free part and a part proportional to h, we
obtain a decomposition u = u1 + u2. System (9.17) then decouples into

N ′(N ′ − n)u1 = r2
0f01, (9.18)

N ′(N ′ − 2n)u2 = r2
0f02, (9.19)

where N ′ is short for N +A+2n+1, and N is given by (2.9). We now reduce
this system to a first-order Fuchsian system for the unknown

v = (vK)1≤K≤2n+4 := (u1, Nu1, (r0∂iu1)1≤i≤n,u2, Nu2, (r0∂iu2)1≤i≤n).

Indeed,

Nv1 = v2;

Nv2 = −(3n + 2 + 2A)v2 − (A + 2n + 1)(A + n + 1)v1 + r2
0f01;

Nvi+2 = r0∂i(v1 + v2);
Nvn+3 = vn+4;

Nvn+4 = −(2n + 2 + 2A)vn+4 − (A + 2n + 1)(A + 1)vn+3 + r2
0f01;

Nvn+i+4 = r0∂i(vn+3 + vn+4).
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Now, since f0 depends linearly on second-order spatial derivatives of u, the
nonlinear terms in the right-hand sides of the above equations are expressible
in the form r0Φ3(u, Du, r0∂u, ∂r0∂u). Therefore the above system for the
components of v has the form

(N + B)v = r0Φ4(x, r0, r1,v, ∂v). (9.20)

By Theorem 4.5 this system has a unique holomorphic solution, defined for x,
r0, r1 small, and which vanishes for r0 = r1 = 0 if (i) the eigenvalues of B all
have nonnegative real parts, (ii) Φ4 is holomorphic in all its arguments near
0, and (iii) it depends linearly on ∂v. The truncation of the formal solution
has precisely been performed at a sufficiently high level for condition (i) to
hold, and the others follow from the construction of the system. Therefore the
above system has a unique holomorphic solution v.

It remains to check that this solution does provide a solution to the original
problem. We must therefore check that v2 = Nv1, v2+i = r0∂iv1, vn+4 =
Nvn+3 and vn+i+4 = r0∂ivn+3, given that these relations hold for r0 = r1 = 0.
The first and the third of these relations are contained in the system for v.
One then computes from the system that

N(v2+i − r0∂iv1) = 0.

It follows that v2+i − r0∂iv1 vanishes identically since it does at the origin. A
similar argument applies to vn+i+4. We have therefore proved that the formal
solutions do converge, QED. �


9.4 Propagation of constraint equations

We have now proved that all components of the Ricci tensor of g̃, except
possibly R̃mj and R̃mm, vanish. However, since they can be expressed in terms
of gij and ∂ρgij , we do know that they belong to A1, and that they do not
depend on t. Since R̃a0 and R̃ij are zero, the scalar curvature reduces to
R̃ = g̃mmR̃mm.

9.4.1 Solution of Bianchi identities

The contracted Bianchi identities ∇̃cR̃ac − 1
2∂aR̃ = 0, for a = j and a = m

respectively, yield, taking into account the relations in Sect. 9.1,

(D + 2 − n)R̃mj − 2r2gikAikR̃mj − r2∂jR̃mm = 0; (9.21)

(D + 4 − 2n)R̃mm + 4r2gikAikR̃mm − 2gij[∂jR̃mi − Γ kijR̃mk] = 0. (9.22)

This is a linear system for the quantities R̃mj and R̃mm. The contracted
Bianchi identity for a = 0 sets no further restriction on g̃.
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Remark 9.9. System (9.21–9.22) is not Fuchsian, because the ∂j term in (9.22)
does not have a factor of r. However, r−1R̃mj and R̃mm do solve a Fuchsian
system with indices n− 3 and 2n− 4.

It suffices to establish that these quantities vanish to all orders in r to ensure
that g̃ is Ricci-flat. Since p ∈ A1, the right-hand sides of (9.21) and (9.22) have
the form

∑
0≤q≤p ajpq(x)rp(ln r)q and

∑
0≤q≤p bpq(x)rp(ln r)q . We therefore

obtain a sequence of conditions: ajpq = bpq = 0.
Let us assume n ≥ 3. Letting r = 0 in the system shows that R̃mj and

R̃mm have no constant term. If we have established that they have no term
containing a power of r less than p, (9.21) implies that R̃mj contains no power
less than p+2, provided that p+2 �= n−2. If p+2 = n−2, this is true only if
the coefficient of rn−2 in R̃mj vanishes, for rn−2 is annihilated by D + 2 − n.

Fortunately, this coefficient involves the traceless part γij of
(n)
g , which is still

arbitrary. More precisely, it follows from (9.2) that the coefficient of rn−2 in
R̃mj is proportional to

∇i
hγij − ϕj , (9.23)

where ϕj is determined by the
(p)
g with p < n. We show in Section 9.4.2 that

this quantity can always be made to vanish by a suitable choice of γij .
Similarly, if we know that R̃jm vanishes to order p + 2 inclusive, equation

(9.22) establishes that R̃mm vanishes to the same order, provided that p+2 �=
2n − 4. If p + 2 = 2n − 4, this is true only if the coefficient of r2n−4 in R̃mm

vanishes. Now, this coefficient involves the trace τ of
(2n)
g , which again, is still

arbitrary. More precisely, it follows from (9.3) that the coefficient of r2n−4 in
R̃mm is proportional to

τ − ψ, (9.24)

where ψ is determined by the
(p)
g with p < 2n. We therefore first determine

γij so as to make the expression (9.23) zero. We then choose τ equal to ψ.
This ends the proof of Theorem 9.1 if n ≥ 3.

If n = 2, it suffices to show that the Ricci tensor vanishes to least order,
provided again that (9.24) holds. One can then conclude, using the above
argument, that it is zero to all orders, hence vanishes since it is given by a
convergent expansion. Now this vanishing leads to a system for the trace-free

part of
(2)
g , which is treated in the same way as (9.23). It is in fact somewhat

simpler here, see Section 9.5. �

Remark 9.10. Using Remark 9.8, one may check directly that R̃jm = 0 for
ρ = 0 in case n ≥ 3: this relation expresses the identity Ch

hj = 0 for the
Cotton tensor.

Remark 9.11. As was pointed out in [60], in case n is odd and no fractional
powers are allowed, equation (9.3) precludes logarithms in the solution. In-
deed, the first logarithmic term in Aij would be proportional to ρn−1 ln ρ, and
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would contribute to its trace alone. This would generate a logarithmic term
in (9.3) that cannot be compensated by any other term in the equation.

9.4.2 Determination of γij

That γij can be found follows from the following lemma.

Lemma 9.12. For any given covector ϕj on M , one can find locally γij sym-
metric and trace-free such that ∇i

hγij = ϕj.

Proof. In this proof only, we write ∇ for ∇h. It is natural to seek a solution
in the form

γij = ∇iXj + ∇jXi − 2
n

(∇kXk)hij .

This ensures that γij is symmetric and trace-free. Substituting, one finds that
Xj solves an elliptic system, which therefore certainly has a local analytic
solution, by applying the Cauchy–Kovalevskaya theorem with respect to the
initial surface {x1 = 0}. This completes the proof. �


9.5 Special cases

We now deal with the cases n = 1 or 2, so that G̃ has dimension 3 or 4.

9.5.1 Case n = 1

If n = 1, R̃jm vanishes identically, so that the solution of the Fuchsian system
does give a Ricci-flat metric on G̃. In fact, one can solve the problem explicitly,
and show in particular that logarithmic terms never appear. Since there are
no nonzero traceless tensors in one dimension, we expect no fractional powers
of ρ to appear.

Theorem 9.13. In one space dimension, the solutions of (9.1) read

t2(h0(x) + ρh1(x))2dx⊗ dx + 2ρdt⊗ dt + 2tdt⊗ dρ, (9.25)

with h0 and h1 arbitrary. Furthermore, G̃ is flat if h1 = 0.

Proof. The solution is determined by a single function u(x, r), which repre-
sents the only component of gij . Equation (9.1) reduces to

D(D − 1)u +
Du

2u
(D − 2)u− (Du)2

u
= 0.

Letting u = v2, we obtain

2vD(D − 2)v = 0.

The form of u follows. One then checks directly that (9.2) and (9.3) hold iden-
tically if h1 = 0. Now, G̃ is a three-dimensional Ricci-flat manifold. Therefore,
its curvature tensor vanishes as well. �
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9.5.2 Case n = 2

The case n = 2 has already been treated as part of the general argument, but
some expressions become simpler: Using the relation Rij = 1

2Rgij , one finds
that

(2)
g = Ric(h) + γ,

where γ is trace-free, symmetric, and satisfies

∇i
hγij =

1
2
∂jScal(h),

where Scal(h) denotes the scalar curvature of h. Now we may assume, without
loss of generality, that h is conformally flat: hij = exp2σ(x, y)δij . One then
obtains, since γ is trace-free,

δik∂kγij =
1
2
e2σ∂jScal(h).

Since γ has only two independent components, namely u = γ11 = −γ22 and
v = γ12, we end up with

ux + vy = a(x, y); vx − uy = b(x, y),

where a and b are known. We obtain solutions with b = 0 by requiring (u, v) to
be a gradient, and solutions with a = 0 by requiring (v,−u) to be a gradient.
Adding the two gives us a particular solution. The general solution is obtained
by adding to it a solution of the Cauchy–Riemann equations.

The remaining arbitrary coefficient, namely the trace
(4)
τ of

(4)
g , may be

computed from (9.3).

9.6 Conformal changes of metric

We prove that given any embedding metric (9.6), g̃ reducing to h on M ,
and given any analytic conformal factor exp 2σ0(x) on M , then G̃ is locally
diffeomorphic to an embedding space associated to exp 2σh.

Theorem 9.14. Given any germ of analytic function σ0(y), one can find,
near ρ = 0, a germ of diffeomorphisms

Φ : (yi, s, τ) �→ (xi, ρ, t)

and coefficients kij(y, s) such that

Φ∗(g̃) = τ2kijdy
i ⊗ dyj + 2ρ dτ ⊗ dτ + 2τ dτ ⊗ ds,

where kij(y, 0) = hij(y)e2σ0(y) and αi(y, 0) = 0.
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Remark 9.15. The geometric picture is this: Consider the unit 2-sphere viewed
as the intersection of the light cone in Minkowski 4-space with a hyper-
plane of equation {x0 = 1}. If one cuts the light cone by the set defined
by {x0 = expσ}, one obtains a topological sphere, which is clearly confor-
mally equivalent to the 2-sphere; the theorem explains how to make sure that
the form (9.6) of the metric may be preserved by such a process.

Proof. We work in a single coordinate system y = (yi) and seek the desired
transformation in the form

t = τeσ(y,s); ρ = se−2σ(y,s); x = y − α(y, s),

where α stands for (αi); we require αi(y, 0) = 0 and σ(y, 0) = σ0(y). We let
qij(y, s) = gij(y−α(y, s), se−2σ). To emphasize that qij is a nonlinear function
of α and σ, we write qij = qij [α, σ]. We will determine σ and the αi by solving
a PDE of Cauchy–Kovalevskaya type.

First, noting that 2ρ dτ ⊗ dτ + 2τ dτ ⊗ ds = 2dτ ⊗ d(τs), we compute

2dt ⊗ d(tρ) − 2dτ ⊗ d(τs) = 2(dτ + τdσ) ⊗ (d(τs) − τsdσ) − 2dτ ⊗ d(τs)

=2[τdσ ⊗ {d(τs) − sdτ} − τ2sdσ ⊗ dσ]

=2τ2(ds − sdσ) ⊗ dσ.

Next, since dxj = dyj − dαj ,

t2gijdx
i ⊗ dxj = τ2e2σqijdy

i ⊗ dyj − 2qijdyi ⊗ dαj + qijdα
i ⊗ dαj .

Taking into account the relations dαj = αjkdy
k + αjsds, dσ = σkdy

k + σsds,
where the subscripts k and s represent ∂/∂yk and ∂/∂s respectively, we find
that

Φ∗(g̃) − [τ2qijdy
i ⊗ dyj + 2s dτ ⊗ dτ + 2τ dτ ⊗ ds]

is equal to

[qije2σ∂sα
i∂sα

j + 2σs(1 − sσs)]τ2ds ⊗ ds (9.26)

+2τ2[(qijα
j
k − qik)αise

2σ + σk(1 − 2sσs)]ds ⊗ dyk + τ2q̃ij [α]dyi ⊗ dyj ,

where

q̃ij [α, σ]dyi ⊗ dyj = e2σ{qijd′αid′αj − qij(dyi ⊗ d′αj + d′αi ⊗ dyj)}
−2sd′σ ⊗ d′σ,

and d′ denotes the differential with respect to the y variables alone. Since
αi = 0 for s = 0, the same is true of d′αi, so that q̃ij = 0 for s = 0. We
therefore let

kij = qij [α, σ]e2σ + q̃ij [α, σ].

To complete the proof, it suffices to choose α and σ such that the terms in
ds ⊗ ds and in ds⊗ dyk in equation (9.26) vanish. This leads to the system
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2σs(1 − sσs) = −qij [α, σ]e2σ∂sα
i∂sα

j , (9.27)

(qij [α, σ]αjk − qik)αis = −σk(1 − 2sσs)e−2σ, (9.28)
σ(y, 0) = σ0(y), (9.29)
αi(y, 0) = 0, (9.30)

which is the desired system of Cauchy–Kovalevskaya type, where s is the
evolution variable; it should be reduced to a system in which derivatives enter
linearly (Problem 4.1); of course, the nonlinearity is not smooth in s because
gij involves logarithmic terms in its expansion.

9.7 Loewner–Nirenberg metrics

We prove the boundary regularity of the hyperbolic radius in higher dimen-
sions by performing a reduction of the Loewner–Nirenberg equation and by
developing a boundary regularity theory for the reduced equation. For the
corresponding result in two dimensions, see Problem 9.1.

9.7.1 Main result

Let Ω ⊂ R
n, n ≥ 3, be a bounded domain of class C2+α, where 0 < α < 1.

Consider the Loewner–Nirenberg equation

−Δu + n(n − 2)u
n+2
n−2 = 0. (9.31)

This equation admits [137] a maximal solution uΩ, positive and smooth inside
Ω; it is the limit of the increasing sequence (um)m≥1 of solutions of (9.31) that
are equal to m on the boundary. The hyperbolic radius of Ω is the function

vΩ := u
−2/(n−2)
Ω ;

it vanishes on ∂Ω. Let d(x) denote the distance of x to ∂Ω. It is of class C2+α

near ∂Ω. The main result is the following:

Theorem 9.16. If Ω is of class C2+α, then vΩ ∈ C2+α(Ω), and

vΩ(x) = 2d(x) − d(x)2[H(x) + o(1)]

as d(x) → 0, where H(x) is the mean curvature at the point of ∂Ω closest to
x.

This result is optimal, since H is of class Cα on the boundary. It follows from
Theorem 9.16 that vΩ is a classical solution of

vΩΔvΩ =
n

2
(|∇vΩ |2 − 4),

even though uΩ cannot be interpreted as a weak solution of (9.31), insofar as
u

n+2
n−2 ∼ (2d)−1−n/2 �∈ L1(Ω).
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Remark 9.17. The number n plays a double role: it determines the space di-
mension as well as the nonlinearity. It is the latter that is essential here.
Consider for instance the problem

−Δu + 24u2 = 0 (9.32)

in three dimensions. It should be handled by the methods of this section with
n = 6. Since this problem has an interpretation in terms of super-diffusions,
it would be interesting to know whether our results, at least in this special
case, admit of a probabilistic interpretation.

9.7.2 Motivation

The main reasons for studying uΩ are as follows:

• uΩ dominates all classical solutions, and therefore provides a uniform in-
terior bound, independent of boundary data (see [100, 153, 137]).

• The metric
v−2
Ω (dx2

1 + · · · + dx2
n)

is complete, and has constant negative scalar curvature; it generalizes the
Poincaré metric on the unit disk and provides an intrinsic geometry on Ω.
Furthermore, (9.31) admits a partial conformal invariance property. This
was the motivation of Loewner and Nirenberg [137].

• The minima of vΩ, known as hyperbolic centers, are close to the points of
concentration arising in several variational problems; see [8].

• The numerical computation of vΩ proceeds by computing the solution of
the Dirichlet problem for (9.31) on a set of the form {d(x) > h}, where h
is small, and the Dirichlet data are given by the boundary asymptotics of
uΩ.

Earlier results on the boundary behavior of uΩ, summarized below, yield

vΩ = 2d + O(d2) and |∇vΩ| → 2 (9.33)

as d(x) → 0. Motivated by this, Bandle and Flucher conjectured Theorem 9.16
([8, p. 204]).

9.7.3 Earlier results

Loewner and Nirenberg showed the existence of uΩ and proved that

• if Ω ⊂ Ω′, then any classical solution in Ω′ restricts to a classical solution
in Ω, so that

uΩ′ ≤ uΩ; (9.34)

• u ∼ (2d)1−
n
2 as d → 0.
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It follows from [128, 131] that u = (2d)1−n/2(1 + O(d)) as d → 0.
It follows from [7, pp. 95–96] and [9] that

|∇uΩ|(2d)n/2 → (n− 2).

From this information, equation (9.33) follows.
Thus, earlier results give the leading-order behavior of u. For the purposes

of reduction, it is preferable to consider the leading behavior of vΩ: vΩ ∼ 2d.
We introduce the renormalized unknown

w := (vΩ − 2d)/d2.

It follows from Chap. 3 that the equation for w has Fuchsian structure: the
coefficient of the derivatives of order k is divisible by dk for k = 0, 1, and 2,
and the nonlinear terms all contain a factor of d. Explicitly,

2vn/2

n− 2

{
−ΔuΩ + n(n− 2)u(n+2)/(n−2)

Ω

}
= Lw + 2Δd−Mw(w), (9.35)

where
L := d2Δ + (4 − n)d∇d · ∇ + (2 − 2n),

and Mw is a linear operator with w-dependent coefficients, defined by

Mw(f) :=
nd2

2(2 + dw)
[2f∇d · ∇w + d∇w · ∇f ] − 2dfΔd.

The issue is no longer to find a solution of this equation—the solution is
already known to exist—but to analyze its boundary regularity. The proof
consists in a careful bootstrap argument in which better and better infor-
mation on w results in better and better properties of the degenerate linear
operator L − Mw. A key step is the inversion of the analogue of L in the
half-space, which plays the role of the Laplacian in the usual Schauder theory.

Equation (9.35) needs only to be studied in a neighborhood of the bound-
ary. Let us therefore introduce C2+α thin domains Ωδ = {0 < d < δ} such
that d ∈ C2+α(Ωδ), and ∂Ωδ = ∂Ω ∪ Γ consists of two hypersurfaces of class
C2+α. Recall that

‖u‖Ck+α
# (Ωδ) :=

k∑
j=0

‖dju‖Cj+α(Ωδ).

The proof rests on three intermediate steps, corresponding to three theorems:

Theorem 9.18. w and d2∇w are bounded near ∂Ω.

Theorem 9.18 ensures that L − Mw is of type (I). Theorem 6.7 then implies
that d∇w is bounded near the boundary; going back to the definition of Mw,
we obtain Mw(w) = O(d); this yields the next theorem:
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Theorem 9.19. d∇w and Mw(w)/d are bounded near ∂Ω.

At this stage, we have Lw + 2Δw = O(d). In order to use Theorem 6.7, we
need to subtract from w a function w0 such that Lw0+2Δ = 0 with controlled
boundary behavior, and w − w0 = O(d); the construction of the function w0

has already been given in Theorem 6.10. The third step is to bound w − w0:

Theorem 9.20. Near the boundary,

w̃ := w − w0 = O(d).

Postponing the proofs of Theorems 9.18 and 9.20, let us now complete the
proof of Theorem 9.16. At this stage, we know that

Lw̃ = O(d) and w̃ = O(d)

near ∂Ω. Theorem 6.8 yields that w̃ is in C1+α
# (Ωδ), for δ small enough. It

follows that Mw(w) ∈ Cα(Ωδ). We now appeal to Theorem 6.9 to conclude
that d2w is of class C2+α near the boundary. Since w̃ = O(d), w is equal to
−H on ∂Ω. This completes the proof of Theorem 9.16.

It remains to prove Theorems 9.18 and 9.20. Theorem 9.18 is proved by a
first comparison argument combined with regularity estimates. Theorem 9.20
is proved by a second comparison argument. We write henceforth u and v for
uΩ and vΩ respectively.

First comparison argument

Since ∂Ω is C2+α, it satisfies a uniform interior and exterior sphere condition,
and there is a positive r0 such that any P ∈ Ω such that d(P ) ≤ r0 admits
a unique nearest point Q on the boundary, such that there are two points C
and C′ on the line determined by P and Q with

Br0(C) ⊂ Ω ⊂ R
n \Br0(C

′),

these two balls being tangent to ∂Ω at Q. We now define two functions ui
and ue. Let

ui(M) =
(
r0 − CM2

r0

)1−n/2
and ue(M) =

(
C′M2

r0
− r0

)1−n/2
.

Then ui and ue are solutions of equation (9.31) in Br0(C) and R \ Br0(C′)
respectively. If we replace r0 by r0 − ε in the definition of ue, we obtain
a classical solution of (9.31) in Ω, which is therefore dominated by uΩ. It
follows that

ue ≤ uΩ in Ω.
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The monotonicity property (9.34) yields

uΩ ≤ ui in Br0(C).

In particular, the inequality

ue(M) ≤ uΩ(M) ≤ ui(M)

holds if M lies on the semiopen segment [P,Q). Since Q is then also the point
of the boundary closest to M , we have QM = d(M), CM = r0 − d, and
C′M = r0 + d, it follows that

(
2d +

d2

r0

)1−n/2
≤ uΩ(M) ≤

(
2d− d2

r0

)1−n/2
.

Since uΩ = (2d + d2w)1−n/2, it follows that

|w| ≤ 1
r0

if d ≤ r0.

Next, consider P ∈ Ω such that d(P ) = 2σ, with 3σ < r0. For x in the closed
unit ball B1, let

Pσ := P + σx; uσ(x) := σ(n−2)/2u(Pσ).

Then uσ is a classical solution of (9.31) in B1. Since d �→ 2d± 1
r0

d2 is increasing
for d < r0, and d(Pσ) varies between σ and 3σ if x varies in B1, we have

(
6 +

9σ
r0

)1−n/2
≤ uσ(M) ≤

(
2 − σ

r0

)1−n/2
.

This provides a uniform bound for uσ on B1. Applying interior regularity
estimates as in [102, 9], we find that ∇uσ is uniformly bounded for x = 0.
Recalling that σ = 1

2d(P ), we find that

d
n
2 −1u and d

n
2 ∇u are bounded near ∂Ω.

It follows that u−n/(n−2) = O(dn/2), and since d2w = −2d + u−2/(n−2), we
have

d2∇w = −2(1 + dw)∇d − 2
n− 2

u−n/(n−2)∇u;

hence d2∇w is bounded near ∂Ω. This completes the proof of Theorem 9.18.

Second comparison argument

At this stage, we have the following information, where Ωδ = {x : 0 < d(x) <
δ}, for δ small enough:
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1. w and d∇w are bounded near ∂Ω;
2. w = w0 + w̃, where Lw̃ = Mw(w) = O(d), and
3. w0 is of class C2+α

# (Ωδ) for δ small enough.

We wish to estimate w̃. Write |Mw(w)| ≤ cd, where c is constant.
For any constant A > 0, define

wA := w0 + Ad.

Since L(d) = 3(2 − n)d + d2Δd, we have

L(wA − w) = L(Ad − w̃) ≤ Ad[3(2 − n) + dΔd] + cd.

Choose δ such that, say, 2(2 − n) − dΔd ≤ 0 for d ≤ δ. Then, choose A so
large that (i) w0 +Aδ ≥ w for d = δ, and (ii) (2− n)A + c ≤ 0. We then have

L(wA − w) ≤ 0 in Ωδ and wA − w ≥ 0 for d = δ.

Next, choose δ and a constant B such that nB + (2 + Bd)Δd ≥ 0 on Ωδ. We
have, by direct computation,

L(d−2 + Bd−1) = −(nB + 2Δd)d−1 −BΔd ≤ 0

on Ωδ. Therefore, for any ε > 0, zε := ε[d−2+Bd−1]+wA−w satisfies Lzε ≤ 0,
and the maximum principle ensures that zε has no negative minimum in Ωδ.
Now, zε tends to +∞ as d → 0. Therefore, zε is bounded below by the least
value of its negative part restricted to d = δ. In other words, for d ≤ δ, we
have, since wA − w ≥ 0 for d = δ,

wA − w + ε[d−2 + Bd−1] ≥ εmin(δ−2 + Bδ−1, 0).

Letting ε → 0, we obtain wA − w ≥ 0 in Ωδ. Similarly, for suitable δ and A,
w−w−A ≥ 0 in Ωδ. We now know that w lies between w0 + Ad and w0 −Ad
near ∂Ω; hence |w − w0| = O(d). This completes the proof of Theorem 9.20.

Problems

9.1. Let uΩ be the maximal solution of Liouville’s equation (1.15), and vΩ :=
exp(−uΩ), on a domain of class C2+α. (a) Show that vΩ is of class C2+α up
to the boundary of Ω [113, 115].

(b) Show that

vΩ(x) = 2d(x) − d(x)2[H(x) + o(1)]

as d(x) → 0, where H(x) is the mean curvature of ∂Ω at the point of ∂Ω
closest to x. In addition, vΩ is a classical solution of
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vΩΔvΩ = |∇vΩ|2 − 4. (9.36)

Remark: In two dimensions, the hyperbolic radius is defined by vΩ =
exp(−uΩ), where uΩ solves the Liouville equation (1.15) and vΩ = exp(−uΩ).
For background information on the two-dimensional case, see [8, 26]; if Ω is
simply connected, the hyperbolic radius coincides with the conformal or map-
ping radius, and with the harmonic radius.

9.2. Show that the system

uT = v, (9.37a)
TvT = λv + cT + F (x, T, u, v), (9.37b)

has a unique solution (u(T, x), v(T, x)) that vanishes for T = 0, and is analytic
for small (x, T ), provided that (i) c and λ are real; (ii) λ is not an integer;
(iii) F is analytic, and contains only monomials of the form xaT bucvd with
a + b + c + d ≥ 2 and b + c + d ≥ 1 in its Taylor expansion at the origin.

The system may be viewed as a PDE in which s plays the role of space
variable, but in which no x-derivatives occur. This result is the basis of the
construction of infinitely many incongruent minimal embeddings of S

3 into
S

4, see [87] and [57, p. 98].
Are the restrictions on λ and F essential?
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Applications to Nonlinear Waves

This chapter is devoted to applications to hyperbolic equations. Applications
to soliton equations, which are often classified under nonlinear wave equations,
are also included.

After a general introduction to the issue of blowup, stressing the emer-
gence of the notions of blowup pattern and blowup stability [110], we prove
the most detailed result to date on the correspondence between singularity
data and Cauchy data [106]. We then present the applications of reduction to
laser collapse [34, 35], the weak detonation problem, and the WTC problem
in soliton theory [120, 124, 109]. We conclude with two simple examples: the
explicit solution of the Liouville equation [136, 109], which, with the WTC
problem, gave the initial impetus to the development of reduction techniques,
and Nirenberg’s example, which is perhaps the simplest case of blowup in
higher dimensions for which a complete analysis in elementary terms is pos-
sible. The results on the detonation problem are new.

10.1 From blowup time to blowup pattern

Around the 1950s, it was widely held that for wavelike equations, say of second
order, and for most practical purposes, (i) wave propagation generalizing the
propagation of sound corresponds to a discontinuity of the second derivatives
across a moving wave front; (ii) for nonlinear equations, there may also exist
shock waves, which correspond to discontinuities of first-order derivatives; (iii)
in both cases, the propagation of singularities should be intimately related to
the geometry of the solutions of an appropriate eikonal equation determined
by the leading part of the equation. The intuitive argument is that if u is
singular in some sense, surely its derivatives must be “even more singular.”

The mid-fifties saw the emergence of a different class of phenomena:
Keller [101] gave the first systematic study of singular solutions for equa-
tions �u = f(u), and their elliptic counterparts (see also Osserman [153]).
These works showed that there are singularities near which the linear part
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does not dominate. Rather, as we approach the singularity, �u and f(u) both
become singular, while their difference remains zero: the linear and the non-
linear terms balance each other. This new phenomenon generally came to be
called blowup; of course, whether the solution or one of its derivatives becomes
unbounded depends on the problem.

At the time, it was not possible to go any further, because the basic exis-
tence theory for nonlinear wave equations, although initiated by Schauder in
the 1930s, had not been sufficiently developed. The period 1960–1980, in rough
numbers, saw the emergence of systematic study of the spaces in which nonlin-
ear wave equations could be solved; strong impetus was received, as always, by
the desire to understand nonanalytic solutions of Einstein’s equations, which,
in a very precise sense, contain all of the nonlinear wave equations of classical
mathematical physics (for this point, see [104], Chap. 6). Two types of results
were developed: (i) local existence–uniqueness results for sufficiently smooth
data, (ii) local existence results for rough data, (iii) global existence results
for small data or equations of restricted form. The results of type (ii) were
strongly stimulated by the discovery of Lp estimates for the wave equation
(Strichartz).1

The upshot is that in many simple cases, one can find the smallest s such
that the Cauchy problem for �u = f(u) is well-posed in Hs × Hs−1 in the
whole space. Keller’s solutions do not remain in this space.

Since John’s discovery of the anomalously large time of existence in prob-
lems motivated by nonlinear elasticity [96], much effort has been developed to
understand the behavior of solutions of nonlinear wave equations near blowup
[93, 94, 96, 86, 172, 134, 104]. These efforts are based on a small-amplitude
limit in which one implicitly assumes that the characteristic cone for the wave
equation should play the major role; reduction shows that the blowup set is
noncharacteristic for the wave operator, but is characteristic for the reduced
Fuchsian PDE. Other authors have tried to construct augmented systems in
which an eikonal-type equation is added to the problem; this leads to prob-
lems with double characteristics that, unlike Fuchsian PDEs, are ill-posed for
nonanalytic data in general.

In a different direction, since the wave equation admits a comparison prin-
ciple in limited cases, especially in one space dimension, it is tempting to
apply free-boundary techniques to the study of the regularity of the blowup
surface [37, 38]. One can obtain C1 regularity for special classes of data in
this manner but apparently not the higher regularity results we obtain via the
use of the Nash–Moser inverse function theorem. The upshot of these studies
is that

1 It would be interesting to extend these results to Fuchsian equations. We merely
note that the EPD equation in two dimensions, which is solved by spherical means,
admits a smoothing effect with half a derivative, which is a very special case of
theorems on regularity of averages for transport equations.



10.1 From blowup time to blowup pattern 165

• the asymptotics of the first time of blowup in the limit when the data are
small may be computed in some cases;

• there is a blowup set, but its higher regularity, suggested by free-boundary
techniques, remains out of reach;

• it is not possible to continue the solutions as weak solutions in Sobolev
spaces.

Reduction addresses these issues as follows: it is possible to continue the
regular part of the solution; in addition, two expressions become smoother
and smoother as s becomes very large: (i) the equation of the blowup surface
{t = ψ(x)} and (ii) the renormalized unknown v = (u− u0)/(t − ψ)m, where
u0 is determined, usually in closed form, by ψ. The so-called blowup time,
i.e., the time of appearance of the first singularity, is then given explicitly by

t∗ = min
x

ψ(x).

Since the data are not small, these results cannot be recovered from a per-
turbative analysis of small-data solutions. All considerations are local, and
therefore apply to “finite-energy” data, such as data with compact support,
as well as data that may not be small at infinity.

10.1.1 Blowup patterns, blowup mechanism

The determination of the blowup time cannot be made the main goal of the
study of blowup for two reasons.

First, the blowup time is not a Lorentz invariant. As a result, if t = ψ(x)
is the equation of the singular set for a solution of an equation of the form
�u = f(u), in one space dimension to fix ideas, an observer at x = 0 will
believe that the singularity originates at the space-time points (x, t), where
x is any minimum of ψ, and propagates from there, while an observer along
x = vt will describe the singularity locus in the form

t′ + vx′
√

1 − v2
= ψ

(
x′ + vt′√

1 − v2

)
,

which, when solved for t′, gives a new representation t′ = ψ̃(x′) of the same
blowup set. It is easy to see that the minima of ψ̃ do not correspond to the
points (x, t) in space-time found by an observer at rest; see Problem 10.7. In
other words, the event “first singularity” does not have the same meaning for
the two observers.

Second, due to finite speed of propagation, singularities usually do not
appear simultaneously at all points in space. The locus of singular points at
any given time therefore defines a specific evolving pattern that forms spon-
taneously. This pattern is a collective result of the evolution of the solution
as a whole, for one singularity is not necessarily causally related to nearby
singularities in space-time. Such patterns are similar to, but distinct from,
wave propagation, in which a definite physical quantity is being tracked as it
propagates gradually and causally.
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10.1.2 Stability of blowup

If a singularity pattern is to be significant, it is necessary that it should be
stable under perturbations of the initial data, as well as the equation—for most
equations are models in which various effects have been neglected. It should
therefore be possible to embed a singular solution in a family of solutions with
the maximum number of free functions or parameters. The parameters should
be directly related to the asymptotics of the solution at its singularity. If we
can establish this stability property, we will have established in particular an
explicit description of singularities for all solutions in this class.

In this sense, blowup is a singularity but not an instability: for stable
blowup patterns, a small change in the Cauchy data corresponds to a small
change in these parameters: the “singularity data.”

The definition of the stability of a singular solution is comparable with the
case of orbital stability of solitary waves in translation-invariant problems: a
solitary wave u is (orbitally) stable if any perturbation of the initial condition
for a solitary wave generates a solution that remains close to the orbit of u
under translations. Thus, in the case of the Korteweg–de Vries (KdV) equa-
tion, an initial condition close to a one-soliton leads to a solution that is not
close in the sup-norm to the unperturbed soliton, but does remain close to the
set of all translates of this soliton (see Strauss [172, 173], Bona, Souganidis,
and Strauss [20] for the KdV case, and their references; further results for
KdV-like equations are also found in [156]). Similarly, a singular solution will
be stable if a small perturbation leads to a singular solution with the same
type of singularity, but possibly with a different, slightly displaced, perturbed
singularity locus.

The problem can now be decomposed into two separate issues:

1. Find a reference blowup pattern.
2. Prove its stability under general perturbations.

If we establish stability, we conclude that the blowup mechanism is the
same as in the reference solution: We will know that the blowup corresponds
to a regime in which the equation is close to a linear Fuchsian equation, for
which the singular set is characteristic, even though it may not be character-
istic for the problem one started from. We will also be able to determine, from
the explicit form of the expansion, which combinations of the solution and its
derivatives remain finite at blowup, which may be useful in numerical compu-
tation, since the explicit expansion takes over precisely in those places where
numerical computation becomes inaccurate.2 If not, we conclude that the ref-
erence solution is not representative of the general solution. For a possible
scenario leading to lack of stability, see Sect. 3.5.2.

Reduction therefore establishes a very detailed asymptotic representation
of the solution at the outset. One first class of examples is given by those
cases in which the singularity corresponds to a balance between top-order
2 There are still few general-purpose numerical schemes for Fuchsian PDEs.
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derivatives and nonlinear terms. The most general statement that covers all
our examples is the following: if a singularity pattern is stable, it should
be possible to characterize solutions by their asymptotics at the singularity,
provided that they are pushed to sufficiently high order.

10.2 Semilinear wave equations

We prove, following [106], that solutions of �u = eu with blowup surface close
to a hyperplane are stable, via an inverse function theorem establishing a cor-
respondence between the Cauchy data and a pair of “singularity data” that
completely describe the blowup. This result provides the prototype for appli-
cations of reduction to nonlinear waves, and shows that the blowup mechanism
predicted by reduction is generic: perturbation of Cauchy data corresponds
to perturbation of the singularity data, in particular, of the blowup surface.
It also shows that the more regular the data, the more regular the blowup
surface.

The goal of this section is the following result:

Theorem 10.1. Any solution of �u = eu with Cauchy data on t = 1 close
to (ln 2,−2) in Hs(Rn) ×Hs−1(Rn), where s is a large enough integer, must
blow up on a spacelike hypersurface defined by an equation t = ψ(x) with ψ ∈
Hs−146−9[n/2](Rn). Furthermore, the solution has an asymptotic expansion
ln(2/T 2) +

∑
j,k ujk(x)T j+k (lnT )k, where T = t − ψ(x), valid up to order

s − 151 − 10[n/2]. Logarithmic terms are absent if and only if the blowup
surface has vanishing scalar curvature. The blowup time is the infimum of the
function ψ.

The upshot of the theorem is a complete description of blowup, with an ex-
pansion that enables one to compute which functions of the solution and its
derivatives blow up or not. Even for infinitely smooth data, there is no method
other than the present one to prove that the blowup surface is better than C1,
even in low dimensions. Solutions are positive near blowup. It is easy to local-
ize the result in space, because of finite speed of propagation for hyperbolic
problems, which remains true for nonlinear equations [104].

The proof is indirect: one first constructs solutions with prescribed blowup
surface, then maps the arbitrary functions in this solution to Cauchy data,
and finally shows that this map is invertible. Only at the end of the argument
will one know that solutions generated by the Cauchy data do correspond to
a regular blowup surface.

10.2.1 What is known?

General references on blowup include [172, 104, 96, 86, 176, 187], which also
give information on the complementary issue of global existence.
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F. John [93] proved that all solutions of �u = u2 with compactly supported
data in three space dimensions must become singular in finite time. There are
related results for other power nonlinearities and other dimensions that can
be found in [172]. Yet, the solution 6/(t + 1)2 is free of singularities for all
positive time. Several other results for power nonlinearities can be found in
[172].

Caffarelli and Friedman [37, 38] showed that under appropriate restrictions
on the data, in 1, 2, or 3 space dimensions, there exists a C1 spacelike blowup
surface on which the solution becomes infinite. Thus, u is finite if and only
if t < ψ(x). For the solutions considered in this section, we prove that the
blowup surface is more regular if the data are.

Several authors (see [86, 94, 96, 172] and their references) focused on the
estimation of the blowup time, which is the time of the first singularity. It is
equal to the infimum of the function defining the blowup surface:

T∗ = inf
x

ψ(x).

Two lines of thought led to precise estimates of the asymptotics of T∗ in
the limit of small data. On the one hand, John [95, 96] (with refinements
by Hörmander) proved that for a class of quasilinear equations, the blowup
time could be computed asymptotically in the limit of small data, in three
dimensions; it becomes infinite when the equation satisfies the null condition.
On the other hand [133], for the semilinear equation, �u = u2, if data are
proportional to ε, then T∗ ≈ ε−2; furthermore, one can define a rescaling of
the solution that converges as ε → 0. In such a limit, of course, the singular
set is rejected at future infinity. As explained, for instance, in [86], these
methods generalize the argument leading to the universality of the equation
ut + uux = 0 as a model for shock wave formation. Some results on the
classification of possible singularities are due to Caflisch et al.; see [39].

Our objective is to understand more precisely the behavior of solutions
with a nonempty blowup set. Reduction shows that blowup is regulated by
a degenerate hyperbolic model, which is not the leading part of the equa-
tion, and for which the blowup surface is characteristic, although it is not
characteristic for the wave operator.

10.2.2 Outline of the argument

Let us consider singular solutions of

�u = eu (10.1)

in n space dimensions that blow up for t = ψ(x). The notation and basic
reductions have been written out in Sect. 1.5.6 and are not repeated.

We first label the solution in two ways: first by a pair of Cauchy data
on t = 1, second by a pair of “singularity data” (w(0), ψ). To define the
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function w(0) entering in the singularity data, we introduce coordinates (X,T )
by T = t − ψ(x), X i = xi, and define w(X,T ); we then let w(0) = w(X, 0).

It is often convenient to use the same letter to denote a function in the
(x, t) or the (X,T ) coordinates. Whenever this may lead to confusion, we
distinguish them by using tildes in the (x, t) coordinates: u(X,T ) = ũ(x, t).
The same convention applies to other functions. Now u and w can be thought
of as the first components of suitable first-order systems for vector-valued
unknowns u and w respectively. The system for u is the usual symmetric-
hyperbolic system associated with �u = eu in the coordinates (X,T ). The
system for w is a Fuchsian symmetric system; see Sect. 5.5. This means that
given the singularity data (w(0), ψ), we construct a singular solution, and then
read off its Cauchy data (u0, u1). Note that w is, as a function of (X,T, T lnT ),
as smooth as the data permit, even on the blowup surface.

We wish now to invert this process, constructing singularity data from
Cauchy data. It will follow that blowup takes place precisely on t = ψ(x),
and, using the Taylor expansion of w, the existence of the first few terms of
an asymptotic expansion of the solution near the blowup surface will follow.

We achieve this for data close to the reference solution u(x, t) = ln(2/t2),
Thus, Cauchy data on t = 1 are close to (ln 2,−2), and the singularity data are
close to (0, 0). Other nearly constant data can be handled in a similar fashion.
This setup suggests the use of an implicit function theorem. We use the Nash–
Moser theorem, in a form recalled in Chap. 13. The main point is the proof
of the invertibility of the linearization of the map K from singularity data to
Cauchy data. The inverse of this linearization is computed by comparing two
expansions of a solution to the linearization of (10.1).

10.2.3 Basic definitions

We define here the function w and the map K. We also introduce notation for
the linearizations of the various maps used in the proof. We consistently use
capital letters for the arguments of differentials: U and W solve the linearized
u and w equations, while (W (0), Ψ) represents a generic tangent vector to the
space of singularity data, and (U0, U1) are linearized Cauchy data. Throughout
this section, ψ ∈ Hr(Rn), and ‖ψ‖∞ < 1

4 . All Sobolev indices will be rounded
off to their integer part, for simplicity, and will be assumed large enough. Re-
call that ũ(x, t) = u(x, t−ψ(x)). However, the tilde may be omitted whenever
the meaning is clear from the context.

If ũ(x, t) solves
�ũ = eũ, (10.2)

and if T = t − ψ(x), X i = xi, we have

γuTT −Δu + 2ψi∂iuT + (Δψ)uT = eu, (10.3)

where γ = 1 − |∇ψ|2. Note that ∂t = ∂T and ∇x = ∇X − (∇ψ)∂T . We now
let R denote the scalar curvature of the hypersurface t = ψ(x) (see the proof
of Lemma 1.6):
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R = [ψilψil − (Δψ)2]/γ + 2
{
(ψρψiρ)(ψσψiσ) − ψρψσψρσΔψ

}
/γ2. (10.4)

The renormalized unknown w is given by (1.13) We also define

g = G(ψ,w) := u− ln(2/t2). (10.5)

Recall from Chap. 1 that w solves the Fuchsian equation (1.14). The singu-
larity data are ψ(X) and w(0)(X) := w(X, 0). Solving (1.14) and substituting
into (1.13), we see that they determine u uniquely. The situation is summa-
rized in Fig. 10.1.

Definition of mappings S, Z, E, and K

It will be understood that the operators of this section are defined only in a
neighborhood of the origin in their respective spaces; recall that ‖ψ‖L∞ < 1

4 .
The operator S gives the regular part of the solution u on 1

4 ≤ T ≤ 2. It
is obtained by composition of the operator mapping (w(0), ψ) to the solution
of (1.14) with initial condition w(0) for T = 0, with the operator G defined by
(10.5), which involves of the reference solution ln(2/t2):

S : Hr−3 ×Hr → Hr−6−n/2((1/4, 2)× R
n),

(w(0), ψ) �→ G(ψ,w).

Let

Z : (ψ, g) �→ g̃.
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Solution u

Singularity data (ψ, coefficient of T 2) Cauchy data

Fuchsian IVP Cauchy Pb.

IFT

Fig. 10.1. Solution u may be determined by Cauchy data or singularity data, by
solving the Cauchy problem, or the Fuchsian initial-value problem (IVP). The two
data are related by an inverse function theorem (IFT)
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This operator performs the conversion of the function g from the coordinates
(X,T ) to the coordinates (x, t). To define E, we compose Z ◦ S with the
evaluation of the Cauchy data of ũ on t = 1:

E : Hs((1/2, 3/2)× R
n) → Hs−1/2(Rn) ×Hs−3/2(Rn), (10.6)

g̃ �→ (g̃(., 1), g̃t(., 1)) = (ũ(., 1) − ln 2, ũt(., 1) + 2).

By construction, K(w(0), ψ) + (ln 2,−2) represents Cauchy data on t = 1, for
a solution close to the reference solution ln(2/t2). Finally, we let

K = E ◦ Z ◦ S : Hr−3 ×Hr → Hr−9−n/2 ×Hr−10−n/2. (10.7)

Thus, we define operator K by K(w(0), ψ) = (u0, u1). The goal is to invert
K. The regularity of these operators is studied next.

Properties of S

To study S, we begin by recasting (10.3) in the form of a Fuchsian system, for
which we set up an initial-value problem. We use the reduction to a system
developed in Sect. 5.5. The first component of the unknown in this Fuchsian
system is the unknown w in (1.14). We find in this way solutions ũ of �ũ = eũ

that are continuous in T with values in some Sobolev space. We summarize
the results in the following theorem:

Theorem 10.2. There are symmetric matrices Q and Aj, and a constant
matrix A as well as a function f , such that if t = (t0, t1) and w solves

Q(N + A)w = t0A
j∂jw + t · f(t,X,w), (10.8)

with w = 0 for t0 = t1 = 0, then the first component w of w generates, via
(1.13), a singular solution u of �u = eu that blows up for T = 0. Furthermore,
if ψ ∈ Hr(Rn), Q and Aj belong to Hr−1

loc , while f maps Hr−1 to Hr−4

smoothly if r > n/2 + 4, and is smooth in t.

We now solve the equation for w. Denote by (u, v) both the Euclidean
scalar product on R

n+2 and the associated L2 scalar product. We must check
that Q, A, Aj , and f satisfy the assumptions of Theorem 5.12. Here, we may
take V = diag (2γ, 1, In) to satisfy (A3). The other assumptions are readily
checked if s > n/2. The following existence theorem is a simple consequence
of Theorem 5.12. The statement on the domain of existence is proved in the
following section.

Theorem 10.3. Assume that the coefficients and nonlinearity satisfy the as-
sumptions (A1)–(A3). For s > n/2 + 1, (10.8) has exactly one solution
(X,T ) �→ w(T, T lnT,X), continuous in T , with values in Hs, which van-
ishes for T = 0. The solution is defined for |T | ≤ 2 if ψ and w(0) are small
enough.
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In particular, w is defined for |t− 1| ≤ 1
2 at least, since ‖ψ‖L∞ < 1

4 .
Three issues need to be settled about S: Between which spaces does it act

in such a way that u is defined up to t = 1? Does it produce functions of high
Sobolev regularity in both space and time variables? Is it a C2 mapping on
these spaces?

For the first question, we note that the nonlinearities g1 and g2 satisfy, if
s ≤ r − 4,

|gi|s ≤ C|ψ|r(1 + |w|s + |w0|s) + C|t| |w|s.
It follows that the time of existence in T can be made arbitrarily large if ψ and
w(0) are small enough, by the energy estimates of Chap. 5. Let us therefore
assume that the solutions are all defined for |T | < 2 throughout the rest of
the proof.

For the second question, we must consider the smoothness of the time
derivatives of the solution. The Fuchsian system for w(t0, t1) can be viewed
as a system for w(T, T lnT ), by replacing N by T∂T and t0 and t1 in terms of
T ; it therefore contains information on (T∂T )w, By applying T∂T repeatedly,
we see that for any k such that s − k > n/2, the derivative (T∂T )kw belongs
to Hs−k. This ensures that for 1

4 < |T | < 2, and therefore, for 1
2 ≤ t ≤ 3

2 , w

belongs to Hs−n/2−1 in space and time.
For the third question, we need to study the first two derivatives of w

with respect to w(0) and ψ. Since the mapping G defined by (10.5) is mani-
festly smooth, the real question is about the smoothness of w. We bound its
differentials up to third order, thereby ensuring that it is twice continuously
differentiable. Two observations are helpful here: First, if an operator P be-
tween Banach spaces is such that for any u and h the function P (u+εh) is C1

as a function of ε, and its derivative is uniformly bounded by C‖h‖ uniformly
in u, it follows that P is continuous and Fréchet differentiable at u. This ar-
gument can be transposed immediately to obtain a criterion for P to be C1,
C2,. . . . We are therefore led to the consideration of S(w(0) + εW (0), ψ + εΨ).
The second observation is that we may take ε as an additional space variable
in our Fuchsian equations, and consider instead the function

ϕ(ε)S(w(0) + εW (0), ψ + εΨ),

where ϕ is a smooth cutoff function equal to 1 near ε = 0. It is immediate
that the corresponding Fuchsian system has a solution w of class Hr−n/2−5

in (X,T, ε). In particular, if r > n+ 7, say, it will be a function of class C1 in
ε, and we may differentiate the equation with respect to ε. We have therefore
proved that the Gâteaux differential of S may be computed by formal differ-
entiation of the equation. Now, the linearization of the Fuchsian system for w
is another Fuchsian system, with coefficients of the same degree of regularity.
Since it is a linear system, the solution exists up to T = 2. Similarly, the sec-
ond variation is computed by linearizing again. Since w(ε)−w(ε = 0) can be
expressed using Taylor’s formula, we obtain a bound on the first differential
of S. We then repeat the argument for the second and third differentials. The
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final result is that if the solution is in Hq, the differential of S is defined with
values in Hq−1, and so on, because each linearization of the equation leads to
a Fuchsian equation in which the time derivative of the previously computed
differentials occur, leading to a loss of one derivative for each linearization. If
we allow for a loss of 3 derivatives, we see that we can achieve S of class C2.
To summarize:

Theorem 10.4. w ∈ Hs−4 for fixed T , but w ∈ Hr−6−n/2 (( 1
4 , 2

)× R
n
)
. It

is also of class C2 with values in Hr−9−n/2 (( 1
4 , 2

)× R
n
)
.

Smoothness of Z and definition of K

The operator K is obtained from the solution u given by S by (i) changing
variables from (X,T ) to (x, t) and (ii) restricting ũ and ũt to t = 0. We
study the domain and smoothness of the first operation, namely Z. We let
s = r − 9 − n/2, which we assume to be greater than n/2.

Theorem 10.5. Z maps Hr(Rn) ×Hs(Rn × (1
4 , 2)) to Hs(Rn × (−1

2 ,
1
2 )). It

is of class C2 with values in Hs−2(Rn × (−1
2 ,

1
2 )).

Proof. We estimate the space-time regularity of ũ(x, t) = u(x, t − ψ(x)). The
idea is, as usual, to differentiate and estimate the products of derivatives
of ψ using the Gagliardo–Nirenberg inequalities. Since there is an asymmetry
between the x and t variables here, we provide the details in a form convenient
for the rest of the argument. We first note that for any function f ,

∫ ∫
1/2≤t≤3/2

|f(x, t − ψ(x))|2 dx dt ≤
∫ ∫

1/4≤T≤2

|f(X,T )|2 dX dT,

since ‖ψ‖∞ ≤ 1
4 . We therefore obtain

‖∂kt u(x, t− ψ(x))‖L2(1/2<t<3/2) ≤ ‖ũ(X,T )‖Hs(1/4<T<2)

for k ≤ s. It therefore suffices to estimate pure x derivatives of ũ, and then
apply the above argument to estimate mixed space-time derivatives. Now, for
any integer s, a generic derivative in x of order s has the form

∇s
x[u(x, t − ψ(x))] =

∑
ca,b,k1,...,kj (∇a

X∇b
Tu)(x, t − ψ(x))∇k1ψ · · · ∇kjψ,

where k1 + · · ·+ kj = b = s− a (this statement may be checked by induction
on s). The Gagliardo–Nirenberg inequality gives quite generally, for functions
of n + 1 variables,

‖∇jψ‖L2s/j ≤ C‖ψ‖j/sHs ‖ψ‖(s−j)/s
L∞ ,

provided that s > (n + 1)/2. There are now two cases. Either j ≥ 1 and the
Gagliardo–Nirenberg inequality gives that
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∫
|∇s

x[u(x, t − ψ(x))]|2 dx ≤ C|ψ|s(1 + ‖ψ‖s−1
∞ ),

uniformly in t, so that the integral of this quantity over time is a fortiori
bounded, or otherwise j = 0, and we are dealing with the pure x derivative
∇su, which is estimated in the same way as the time derivatives, since ∇x =
∇X .

To complete the construction of K, it suffices to compose Z ◦ S with E,
which is linear. Since u(x, t−ψ(x)) is of class Hs, we compute u(x, 1−ψ(x)) ∈
Hs−1/2 and, for t = 1,

∂t[u(x, t − ψ(x))] = uT (x, 1 − ψ(x)) ∈ Hs−3/2,

by the trace theorem. �

The twice continuous differentiability of K follows again from the consider-

ation of Gâteaux derivatives up to order 3. We find therefore that K is defined
near the origin and is C2 with values in Hr−9−n/2−1/2×Hr−10−n/2−1/2. This
completes the construction of the evaluation at t = 1.

10.2.4 Linearization of K and characterization of K′

Since K is the composition of three C2 maps, it is itself C2. We must now
characterize solutions of the linearization of K in order to be able to identify
its inverse in the following section. We first characterize the linearization in
two different ways:

Theorem 10.6. Let K ′(w(0), ψ)[W (0), Ψ ] = (U0, U1) and consider U = (Z ◦
S)′(w(0), ψ)[W (0), Ψ ]. Then U can be computed in two different ways:

1. Compute the solution of the linearization of (1.14), linearized with respect
to ψ and w, and substitute into the linearization of (1.13);

2. Let u be the solution S(w(0), ψ); then U solves

�Ũ = eũŨ

with data (U0, U1).

As usual, Ũ(x, t) = U(X,T ) and ũ(x, t) = u(X,T ).

Proof. Since S is the composition of the solution operator associated with the
Fuchsian equation (1.14) with the operator G, its differential is simply the
composition of the differentials of these two operators. We have already seen
that since all differentials can be computed as Gâteaux derivatives, we are
allowed to compute them in the natural way, by linearizing all the equations
used to compute u. This proves (1).

For statement (2), we note that the functions ln(2/t2)+(Z ◦S)(w(0), ψ), as
w(0) and ψ vary, all solve the same equation, namely �u = eu. The differential
can again be evaluated as a Gâteaux derivative. Since the reference solution
ln(2/t2) is independent of (w(0), ψ), the second statement follows. �
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We now compute an expansion of U in powers of T and T lnT by each of the
two methods. By comparing the results, we will be able to define the inverse
of K ′ and to estimate its regularity.

10.2.5 First expansion of U

The linearization S′ of S is obtained by linearizing the Fuchsian equation for
w. We write this linearization as

S′(w(0), ψ) : (W (0), Ψ) �→ (W,WT ) �→ (U,UT ), (10.9)

using capitals for solutions of linearized equations. Similarly, it follows from
the definition of Z that

Z ′(ψ, u) : (Ψ,U) �→ Ũ − ũtΨ, (10.10)

since uT (x, t − ψ(x)) = ũt(x, t). Finally, E is linear.
Now, the successive derivatives of w with respect to t0 and t1 exist up

to order three if we assume, say, r − 11 − n/2 > 0. In fact, if we let w =
t0w′ + t1w′′, one can, as in Sect. 5.5, define a Fuchsian system for (w′,w′′)
that implies the original system for w. These systems contain derivatives of
w. By iterating the process, we establish the existence of an expansion of the
solution in powers of T and T lnT , at least as long as the nonlinearities in
these derived Fuchsian systems continue to act on a Sobolev space of order
greater than n/2 + 1:

w = w(0) + w(1)T + w(1,1)T lnT + · · · + w(j,k)T j(lnT )k + · · · ,

with k ≤ j. The same considerations apply to the linearization of (1.14), or
rather the associated Fuchsian system, and its solution W , corresponding to
the initial value W (0), giving

W = W (0) + W (1)T + W (1,1)T lnT + · · · + W (j,k)T j(lnT )k + · · · .

Since each term in these series entails a loss of one derivative, these expansions
remain valid up to order j as long as r − 4 − j > n/2. The coefficients w(j,k)

are known, since they are the coefficients of the expansion of the reference
solution; they are computed by substitution of the expansion into (1.14). We
give the result for w(1) and w(1,1), for later use:

w(1,1) = −γ−1
∑
i

∂i(R1∂iψ);

4γw(1) = 4
∑
i

(ψi∂i − ∂iψi)w(0) +
∑
i

(3ψi∂i + 4∂iψi)R1 + Δv(1) +
1
3
γ[v(1)]3.
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Computation of U

We now compute U by linearization of (1.13). This is accomplished in two
steps: first, we linearize w, which produces

U = V (0) + V (1)T + R′
1T

2 lnT + T 2(W (0) + W (1)T + W (1,1)T lnT )
+ O(T 2(lnT )2),

where V (0), V (1), and R′
1 are the linearizations of v(0), v(1), and R1 respec-

tively, with respect to ψ. We are interested in

Ũ = (Z ◦ S)′(w(0), ψ)[W (0), Ψ ].

By (10.10), the linearization of Z ◦ S is computed by replacing T by t− ψ in
the above expression for U , and by adding

−Ψ

(
− 2

T
+ v(1) + R1T (1 + 2 lnT ) + 2Tw + T 2wT

)

to the result. Therefore, we obtain an expression for Ũ of the form

Ũ =
U (−1)

T
+ U (0) + U (1,1)T lnT + U (1)T

+ U (2,1)T 2 lnT + U (2)T 2 + · · · , (10.11)

where the higher-order terms have at least a factor of T 3 (possibly multiplied
by powers of lnT ). The first few coefficients are

U (−1) = 2Ψ, (10.12)
U (0) = V (0) − Ψv(1),

U (1,1) = −2ΨR1,

U (1) = V (1) − Ψ(R1 + 2w(0)),
U (2,1) = R′

1 − 3Ψw(1,1),

U (2) = W (0) − Ψ(3w(1) + w(1,1)). (10.13)

Observe that Ψ and W (0) can be recovered from U (−1) and U (2) if w and ψ
are known. Note also the absence of a pure lnT term.

Inversion of K′

To compute the inverse of K ′, we consider a reference solution u = S(w(0), ψ)
such that (u0, u1) = K(w(0), ψ), and a pair (U0, U1). We then find a pair
(W (0), Ψ) such that K ′(w(0), ψ)[W (0), Ψ ] = (U0, U1). We assume that these
data are in Hσ ×Hσ−1, where σ = r − 10 − n/2.

From the characterization of K ′, we know that we must first define U by
solving �Ũ = eũŨ with data (U0, U1), and study the behavior of the function
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U = Ũ(X,T + ψ(X)) as T → 0. We first show that the linearization of (10.2)
is itself again a Fuchsian equation. We next show that a solution of a linear
Fuchsian equation cannot have a singularity worse than a power of T . We
then prove iteratively that the solution of the linearized equation has in fact
an expansion in powers of T and T lnT to all orders. Finally, by comparing
this expansion with (10.12) and (10.13), we identify the desired values of W (0)

and Ψ .
We provide below the expansion of eu in terms of T ; its existence is a

consequence of the representation (1.13), combined with the properties of w:

eu =
2γ
T 2

{v(1)T + R1T
2 lnT + T 2w} (10.14)

=
2γ
T 2

{
1 + v(1)T + R1T

2 lnT + T 2

(
w +

1
2
[v(1)]2

)
+ O(T 3 lnT )

}
.

Note that there is no T lnT term in the braces. The equation �U = exp(u)U
therefore reads, in the (X,T ) variables,

T 2(γUTT −ΔU + 2ψi∂iuT + (Δψ)UT ) = γ(2 + a1T + a21T
2 lnT + · · · )U.

The equation for U is now converted into Fuchsian form by letting

U = (U,U0, Ui) := (U, T∂TU, T∇xU).

We obtain

Q(T∂T + B)U = TAi∂iU + T

⎛
⎝ 0

[ exp(Tv(1) + T 2w) − 1]U/T − U0Δψ
0

⎞
⎠ ,

where

B =

⎛
⎝ 0 −1
−2 −1

0n

⎞
⎠ .

We now show that a solution of a linear Fuchsian equation cannot have a
singularity worse than a power of T and that the solution of the linearized
equation has an expansion in powers of T and T lnT to all orders. Finally, we
identify from the terms of this expansion the desired values of W (0) and Ψ .

Let us therefore start with a general Fuchsian system, and show that its
solutions have only power singularities in T . We then apply the argument to
U . This generalizes results of Tahara [174] for the linear C∞ case. In our case,
we need in addition to track the number of derivatives involved carefully. Let
w solve

Q(T∂T + A)w = T (Bw + f(w))

for T > 0, where B =
∑

j Aj∂j , f is linear (or sublinear), and is only as-
sumed to be continuous in T (it might therefore involve terms in T lnT ). The



178 10 Applications to Nonlinear Waves

dependence of f on space and time coordinates is suppressed. We find by
multiplication that if e(T ) = (w, V Qw)(T ), then

T∂T e + αe ≥ −CT (1 + e),

where α can always be taken to be positive. It follows that

(Tαe)T ≥ −CTα(1 + e) ≥ −C(1 + Tαe),

so that we get, by integration, say from T to 1,

1 + e(T )Tα ≤ const.

Therefore, ‖w‖L2 cannot grow faster than a power of T . In fact, from Chap. 5,
(1 − Δ)σ/2 solves again an equation of the same form as w, and therefore,
Tα‖w‖Hσ remains bounded.

Existence of an expansion for U

We now apply these general facts to the Fuchsian equation for U . We find that
we may take α = 1; indeed, α is determined as the smallest value that makes
the inequality (V QBw,w) ≤ α(V Qw,w) hold. We now prove the existence
of an expansion of U in powers of T and T lnT , to be identified with the
expansion (10.11). Since (T∂T + 1)(T∂T − 2)U = g(t) implies

U =
c−1

T
+ c2T

2 +
∫ T T 3 − s3

3s3T
g(s) ds,

with c1 and c2 independent of T , we see that whenever g(s) = O(sa), where a
is not an integer, there is a particular solution that is O(T a) as well. Indeed,
for a < 0, we take the lower limit of integration to be 1. For a > 0, we split
the integrand into two parts, one of order sa−3, and the other of order sa; we
then choose different constants of integration for these two terms. It follows
that there is a function U0 in Hσ−2 such that the linearization U satisfies

U =
U (−1)(X)

T
+ O(1).

We may now insert U = U (−1)T−1 + V in the left hand side of the equation
for U . Integrating again produces the next term, so that

U = U (−1)T−1 + U (0) + O(T lnT ).

The T−1 term obtained at this step must clearly be the same as that obtained
before. In addition, we find that U (0) ∈ Hσ−1. The process can be iterated.
Quite generally, since the second derivative terms are multiplied by T 2, we find
that terms at level j have two derivatives fewer than those at level j − 2. The
existence of a logarithmic series for U follows; the source of the logarithmic
terms is to be found already in the logarithms in the expansion of eu.
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Definition of K′−1

We have found two different ways of computing the expansion of U in powers
of T and T lnT . Comparing with (10.12) and (10.13), we obtain

Ψ = U (−1)/2

and
W (0) = U (2) + Ψ(3w(1) + w(1,1)).

Note that Ψ ∈ Hσ−2, and U (2) ∈ Hσ−8. The above procedure gave us a left
inverse of K ′. In fact, this operator is also a right inverse, as we proceed
to show. Let us apply our inverse to a given pair (U0, U1). We obtain a pair
(W (0), Ψ). We want to show that K ′(w(0), ψ)[W (0), Ψ ] coincides with (U0, U1).
The given pair (U0, U1) generates a solution U of the linearized equation, and
it would suffice to show that this U coincides with the solution U ′ generated
by (W (0), Ψ). However, both generate solutions of the same Fuchsian equa-
tion and have the same expansion up to order two at least, because these
coefficients are completely determined by the value of (W (0), Ψ). But the co-
efficients of the expansion of U are determined recursively after order T 2, and
therefore U and U ′ coincide to all orders. We then note that we may, by the
process already used to derive the system for w from that satisfied by u, write
U = U−1/T + · · · + (U (2) + Y )T 2, where Y is the first component of a gen-
eralized Fuchsian system. Similarly, U ′ is associated with a function Y ′ that
solves the same equation. Since this system has, by Theorem 5.12, only one
solution that vanishes for t0 = t1 = 0, we conclude that U ′ = U , as desired.

Application of the Nash–Moser theorem, end of proof

We wish to use the Nash–Moser theorem with smoothing to invert the map-
ping K. We use the form given in Sect. 13.1. With the notation of that section,
we take Xr = Hr−3 ×Hr and

Y r = Hr−10−[n/2] ×Hr−11−[n/2].

For simplicity, all Sobolev spaces will be taken to have integer order; F (w(0), ψ)
:= K(w(0), ψ) − (u0 − ln 2, u1 + 2), and a = 6 + [n/2]. We also assume
r > 11 + [n/2]. We want to apply the Nash–Moser theorem with s = r.
We have seen that

K ∈ C2(Xr;Y r).

The solution w generated by a pair (w(0), ψ) in Xr belongs to Hr−4 for fixed
T , and we have seen that the coefficients w(1) and w(1,1) of the expansion of
w are in Hr−6 at least. On the other hand, the inverse of K ′ sends Hσ ×
Hσ−1 to (W (0), Ψ) as given in equations (10.12–13) it therefore takes values
in Hr−18−[n/2] × Hr−10−[n/2]. We conclude that L(u) exists and is bounded
from Y r to Xr−a, where
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a = 15 + [n/2].

Since we want b > 8a, we take b = 8a + 1 = 121 + 8[n/2] to fix ideas.
To guarantee (F2), we need F to map Xr+a+b to Y r+a+b; this imposes a
regularity condition on u0 and u1, namely

(u0 − ln 2, u1 + 2) ∈ Hr+146+9[n/2] ×Hr+145+9[n/2].

To ensure that all Sobolev indices appearing in the calculations are greater
than n/2, we require r > 11 + [n/2]. In terms of the Cauchy data, it means
that they are taken in Hs ×Hs−1 with

s > 167 + 10[n/2].

The Nash–Moser theorem ensures that if Cauchy data have this regularity and
are close to (ln 2,−2), the corresponding solution must blow up on a spacelike
hypersurface of class Hr with r = s − 146 − 9[n/2]. �


This proves the announced result.

10.2.6 Conclusions

We have therefore proved that any solution with data close to those of ln(2/t2)
must blow up on a spacelike hypersurface near which it has logarithmic behav-
ior. It is described by the first few terms of the formal expansion, truncated to
allow for the limited regularity of the solution. From the knowledge of ψ, one
can read off the blowup time, which may not be attained at any finite x, as the
case of a bell-shaped ψ shows; see also Problem 10.3. Also, because the Fuch-
sian equation (1.14), or the associated Fuchsian system, can be solved in a
full neighborhood of T = 0, the singular solutions are at once defined on both
sides of the blowup surface. One therefore reaches the conclusion that singular
solutions have a meaningful continuation after blowup. The present approach
applies whenever we are given a reference solution (other than ln(2/t2)), and
consider data close to those of this solution. Indeed, our argument for the
invertibility of the linearization of K did not use in any essential way the
properties of this reference solution. This means that the set of data leading
to blowup is open. One may perhaps allow for more general blowup surfaces,
which do not become flat at infinity, by working in uniformly local Sobolev
spaces.

10.2.7 Practical issues: self-similar and renormalized asymptotics

We conclude this set of results on the nonlinear wave equation with exponen-
tial nonlinearity with two observations on the practical use of expansions near
blowup.
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First, they may be used to obtain self-similar asymptotics. Assume, to fix
ideas, that ψ(x) = α|x|2 near its minimum. Then

u = ln
2

(α|x|2 − t)2
+ h(x, t),

where h is bounded, and the blowup time t∗ is zero. Let x = y
√|t|. For t < 0,

we have
u = ln

2
t2

+ ln
1

1 + α|y|2 + h(y
√−t, t).

We therefore see that the introduction of self-similar variables y = x/
√|t|

suggests that u behaves like ln(2/t2) rather than ln(2/T 2) near the blowup
time. This conclusion is correct in a region where both statements are equiv-
alent, namely |x| ≤ M

√|t| and t < 0. Therefore, self-similar asymptotics are
recovered, but they are valid on a domain that is strictly smaller than the
domain of validity of expansions given by reduction.

Second, we may eliminate singular terms between the expansion of u and
that of its derivatives. This produces quantities that remain finite at blowup.
Thus, as T → 0,

eu

utt
→ 1 − |∇ψ|2 and

∇u√
2utt

→ ∇ψ,

where ∇ denotes spatial gradient. This provides a direct estimation of ∇ψ. If
ψ vanishes at infinity, one knows ψ in principle, once its gradient is known.
It would be interesting to implement this numerically. Other relations may
be obtained by differentiation and elimination, but they rapidly become cum-
bersome. The above method is not limited in scope to the particular example
treated here because the exact form of the reference solution is not used.

10.3 Nonlinear optics and lasers

Nonlinear self-focusing of optical beams may lead to the formation of singu-
larities, resulting in damage in the medium in which the beam propagates.
Until the 1980s, this phenomenon was modeled by the nonlinear Schrödinger
(NLS) equation

iuz + uxx + uyy + u|u|2 = 0,

where constants have been scaled away for clarity, and u is a complex-valued
function of (x, y, z). The equation was viewed as an evolution equation in
which z plays the role of evolution variable. The cubic nonlinearity reflects
the Kerr effect, according to which the index of refraction of the medium may
depend on the field; u represents an envelope of a wave train, in a retarded
frame traveling at group velocity. This singular behavior “is not only un-
physical but it also prevents examination of the beam’s behavior beyond the
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self-focus” [61]. In addition, once the (rather difficult) question of the blowup
rate for NLS had been clarified, it was realized that this NLS regime “describes
a very far asymptotic behavior which is not reached even with field amplifica-
tion of several million.” In fact, NLS was derived neglecting time dispersion,
and assuming beam paraxiality. Beam paraxiality seems to arrest singular-
ity formation [61], and time dispersion could allow it [162, 63]. Also, NLS is
a stationary equation, and therefore does not describe dynamic behavior. A
more fundamental difficulty with the NLS model is that it requires that z be
taken as an evolution variable. Now, for the wave equation, the initial-value
problem with z as evolution variable is linearly ill-posed. Therefore, taking
z as evolution variables seems more appropriate for stationary rather than
dynamic situations. It was therefore suggested to improve the model and to
take into account terms uzz and utt. This leads to the equation

−ε1utt + ε2uzz + iuz + uxx + uyy + u|u|2 = 0.

We consider here the formation of singularities for the equation

�u + α
∂u

∂z
= 2u|u|2 (10.15)

in three space dimensions, where u is complex-valued. This equation, written
here after scaling variables, so that the leading part is the wave operator with
speed one, has been proposed as an envelope equation for laser propagation
in Kerr media. It differs from the NLS equation in two respects: it contains
a term ∂ttu, accounting for normal time dispersion, and ∂zzu, for deviations
from paraxiality. Fuchsian analysis also appears to be able to deal with models
that incorporate vectorial effects.

The objective of this section is to suggest a mathematical mechanism to
account for some of the qualitative features of blowup which, in this context,
corresponds to laser breakdown. One would like to account for the possibil-
ity that there may be more that one point (in space-time) at which break-
down might occur. This phenomenon is called “pulse-splitting.” The anal-
ysis in this section shows how to construct such solutions. It also shows
that (i) singular solutions are generic: they may be embedded in a fam-
ily of solutions parameterized by four real-valued functions of three vari-
ables, which is also the number of functions needed to encode the Cauchy
data for a complex-valued u; (ii) the expansion of the solution is related
to the local geometry of the singular set in space-time. In the process,
we justify formal computations by Papanicolaou, Fibich, and Malkin in
particular.

As usual with reduction, the results give a complete expansion of the
solution near singularities, so that one can read off which quantities become
infinite and which do not. Also, self-similar asymptotics, namely estimates
when |x−x0|/|t−t0| ≤ const, where the first singularity occurs at (x0, t0), may
be recovered, as in Sect. 10.2.7. However, here again, self-similar asymptotics
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are strictly weaker than estimates in terms of the quantity t − ψ(x), where
t = ψ(x) is the equation of the blowup set, see Problem 10.6. Indeed, in the
latter case, we obtain information on the limit of u as t → t0 for fixed x �= x0,
which is not possible with self-similar asymptotics.

We begin this section with a detailed analysis of the real cubic nonlinear
wave equation, which contains most of the salient features of the analysis, and
then turn to the general case. Results are mostly from [35, 34].

10.3.1 Cubic nonlinearity

Consider the equation
�u = 2u3. (10.16)

The argument follows the general pattern of the example in Sect. 1.5.6. We
seek real solutions of (10.16) that blow up on a prescribed hypersurface Σ =
{t = ψ(x)} of Minkowski space-time, where ψ is given, such that |∇ψ| < 1.
Therefore Σ is spacelike.

Leading-order analysis

Perform the change of variables (1.10) and let

D = T∂T .

The wave operator is given by equation (1.11). We seek the first term of the
expansion of u in the form u0(X)T ν. The only consistent choice for a singular
solution is ν = −1 and

u2
0 = 1 − |∇ψ|2; (10.17)

u0 is uniquely determined up to sign. Since −u is a solution of (10.16) whenever
u is, it suffices to consider u0 > 0 if we are interested in solutions that blow
up to +∞.

Remark 10.7. Numerical computations strongly suggest that in one space di-
mension, solutions of the same type in which u0 changes sign are possible;
such solutions tend to +∞ in an interval, and to −∞ in another.

We consider in the sequel the case in which u0 > 0.

First reduction

We take ε = 1, and let

u(X,T ) =
u0(X)

T
+ v(X,T ).

Substituting in (10.16), we obtain
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u2
0(D + 2)(D − 3)v = Δψu0 + 2ψiu0i

+ T (6u0v
2 + ΔXu0 −ΔψDv − 2ψiD∂Xiv)

+ T 2(2v3 + ΔXv)

(10.18)

The resonance polynomial is given by P (D+ε) = (D+2)(D−3); since ε = 1,
we conclude that P (D) = (D + 1)(D− 4). The resonances are −1 and 4. The
form of the solutions may now be determined.

Theorem 10.8. Equation (10.16) has infinitely many formal solutions u
blowing up exactly on Σ. They are of the form

± T−1

⎧⎪⎪⎨
⎪⎪⎩

u0(X) + u1(X)T + u2(X)T 2 + u3(X)T 3 (10.19)

+
∑
j≥4

0≤k≤j/4

uj,k(X)T j(lnT )k

⎫⎪⎪⎬
⎪⎪⎭

.

They are entirely determined by the function u4,0.

Proof. We are in the framework of Theorem 2.14. A formal solution for v may
be found in the form of a series in T and T lnT ; since 4 is the only positive
resonance, the formal solution is uniquely determined by the coefficient of T 4

in the expansion of Tu. This undetermined function may also be thought of
as the coefficient of T 3 in the expansion of v. The more specific result in the
theorem may be derived by inspection, or by applying Corrollary 2.22. �

The coefficients of the series admit of geometric interpretation; see Prob-
lem 10.7. Also, if u4,1 = 0, then no logarithmic terms appear in the series
(10.19). However, this case is exceptional, since it requires ψ to satisfy a
PDE.

Second reduction and existence of solutions

We prove that the formal solutions correspond to actual solutions. We present
two results: one for analytic data, the other for data with limited regularity.

Theorem 10.9. Let Σ = {t − ψ(x) = 0}, with |∇ψ| < 1, with ψ analytic;
fix (x0, t0) ∈ Σ. Then (10.16) admits infinitely many solutions defined close
to (x0, t0) that blow up exactly on Σ. They are of the form (10.19). The
coefficients u0, u1, . . . are analytic and uniquely determined by the choice of
an arbitrary analytic function u4,0 on Σ.
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Proof. We have determined the formal solution up to the last positive reso-
nance, namely 4. We perform a second reduction by taking as new renormal-
ized unknown the remainder of the formal solution beyond the last resonance,
divided by T 3:

u =
u0

T
+ u1 + u2T + u3T

2 + u4,1T
3 lnT + f(X,T, T lnT )T 3, (10.20)

where u0, u1, u2, u3, u4,1 are given by (14.10a–d). Since we have only one
logarithmic variable to introduce, define Y = T lnT and N = T∂T + (T +
Y )∂Y . This leads to the generalized Fuchsian equation for f :

(1 − |∇ψ|2)N(N + 5)f − T 2ΔXf + TΔψ(3u4,1 lnT + 3f + u4,1 + Nf)

+ 2Tψi(3u4,1i lnT + 3 ∂Xif + u4,1i + N∂Xif) − T (Δu3 + T lnTΔu4,1)

= 2T [(6u0u1u4,1 lnT + 6u0u1f + 6u0u2u3 + 3u2
2u1) + · · · ].

It has the general form

(1 − |∇ψ|2)N(N + 5)f = Th1[X,T, Y, f,Nf ] + Y h2[X,T, Y, f,Nf ], (10.21)

where h1 and h2 are analytic functions of X, T, Y, f , polynomial in Nf and
the spatial derivatives of f and Nf . Let z be the column vector with compo-
nents

(z1, . . . , zn+2) = (f, Nf, T∂X1f, . . . , T ∂Xnf);

we obtain

Nz1 = z2,

(1 − |∇ψ|2)(N + 5)z2 = Th1[X,T, Y, z1, z2] + Y h2[X,T, Y, z1, z2],
Nz2+i = (T∂T + (T + Y )∂Y )(T∂Xif)

= T∂Xi(Nf) + T∂Xif = T∂Xi(z1 + z2).

In a more compact form,

(N + A)z = T h̃1[X,T, Y, z] + Y h̃2[X,T, Y, z], (10.22)

where

A =

⎡
⎣0 −1

0 5
O
n

⎤
⎦ .
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In view of the definition of z, we are interested in solutions of (10.22) that
satisfy

z1(X, 0, 0) = f(X, 0, 0) = u4,0,

z2(X, 0, 0) = 0,
z2+i(X, 0, 0) = 0.

This leads to the problem

(N + A)z = T h̃1[X,T, Y, z] + Y h̃2[X,T, Y, z], (10.23)
tz(X, 0, 0) = [u4,0(X, 0, 0), 0, 0, . . . , 0 ]. (10.24)

Note that z(X, 0, 0) ∈ Ker(A). Theorem 4.5 applied to z(X,T, Y )− z(X, 0, 0)
shows that there is only one solution that reduces to f(X, 0, 0) for T = Y = 0.
Conversely, every solution of (10.23)–(10.24) satisfies

Nz1 = z2,

(1 − |∇ψ|2)(N + 5)z2 = (1 − |∇ψ|2)N(N + 5)z1

= Th1[X,T, Y, z1, Nz1] + Y h2[X,T, Y, z1, Nz1],
Nz2+i = T∂Xi(z1 + z2). (10.25)

The first and third equations imply

N(T∂Xiz1) = T∂Xi(N + 1)z1 = T∂Xi(z1 + z2),

so that
N(z2+i − T∂Xiz1) = 0.

Taking the initial condition for T = Y = 0 into account, we find that z2+i =
T∂Xiz1. Every solution of (10.23)–(10.24) is therefore of the form

z2 = Nz1, z2+i = T∂Xiz1 for 1 ≤ i ≤ n,

where z1 is solution of (10.21). Letting f = z1 ends the proof. �

We now turn to the nonanalytic case. We wish to apply Theorem 5.9.

Theorem 10.10. There are symmetric matrices Q and Aj, 1 ≤ j ≤ n, a
constant matrix A, and a function f such that if t = (t0, t1) and

Q(N + A)w = t0A
j∂Xjw + t · f(t,X,w), (10.26)

then the first component w of w generates a singular solution u of (10.16)
that blows up for T = 0, provided that

w = (w,w(0), w(i)),
t0 = T, t1 = T lnT,

u =
u0

t0
+ u1 + u2t0 + u3t

2
0 + u4,1t

2
0t1 + w(t0, t1, X)t30,



10.3 Nonlinear optics and lasers 187

and that the {w(i)} are, for t0 = t1 = 0, the components of a gradient. If
ψ ∈ Hr(Rn), then Q and Aj ∈ Hr−1

loc (Rn), while f maps Hr−1 to Hr−6 if
r > n

2 + 6.

Proof. Let γ = 1 − |∇ψ(x)|2. We define Q, Aj , A, and f as follows:

Q =

⎡
⎣ 1

γ
In

⎤
⎦ and Aj =

⎡
⎣ 0 0 0

0 −2ψj ej

0 tej 0

⎤
⎦ ,

where ej is the jth vector of the canonical basis,

A =

⎡
⎢⎢⎢⎢⎢⎣

3 −1 0 · · · 0
−6 2 0 · · · 0
0 0 2 0
...

...
. . .

0 0 0 2

⎤
⎥⎥⎥⎥⎥⎦

,

and
f(t0, t1, X,w) = [ g0(X, t0, t1,w), g1(X, t0, t1,w) ],

with

g0(X, t0, t1,w)T = [ 0, b0(X, t0, t1,w), ∂X1u4,1, . . . , ∂Xnu4,1 ],
g1(X, t0, t1,w)T = [ 0, b1(X, t0, t1,w), 3 ∂X1u4,1, . . . , 3 ∂Xnu4,1 ]

where T denotes transposition. Here, b0 and b1 are defined by

b0(X, t0, t1,w) = 6u1u
2
2 + 6u2

1u3 + 12u0u2u3 + 12u0u1w

+ (2u3
2 + 6u0u

2
3 + 12u1u2u3 + 6u2

1w + 12u0u2w)t0
+ (6u2

2u3 + 6u1u
2
3 + 12u1u2w + 12u0u3w)t20

+ (6u2u
2
3 + 12u1u3w + 6u0w

2 + 6u2
2w)t30

+ (2u3
3 + 12u2u3w + 6u1w

2)t40 + (6u2
3w + 6u2w

2)t50
+ 6u3w

2t60 + w3t70

and

b1(X, t0, t1,w) = − 6ψiu4,1i − 3Δψu4,1 + 12u0u1u4,1 + (6u2
1u4,1

+ 12u0u2u4,1)t0 + (12u1u2u4,1 + 12u0u3u4,1)t20
+ 6u0u

2
4,1t

2
0t1 + (6u2

2u4,1 + 12u1u3u4,1 + 12u0u4,1w)t30
+ 6u1u

2
4,1t

3
0t1 + (12u2u3u4,1 + 12u1u4,1w)t40

+ 6u2u
2
4,1t

4
0t1 + (6u2

3u4,1 + 12u2u4,1w)t50
+ 6u3u

2
4,1t

5
0t1 + 2u3

4,1t
5
0t

2
1 + 12u3u4,1wt60

+ 12u3u4,1wt60 + 6u2
4,1wt60t1 + 6u4,1w

2t70.
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Now, let

u =
u0

t0
+ u1 + u2t0 + u3t

2
0 + u4,1t

2
0t1 + w(t0, t1, X)t30,

u(0) = −u0

t20
+ u2 + 2u3t0 + (t20 + 3t0t1)u4,1 + w(0)(t0, t1, X)t20,

u(i) =
u0i

t0
+ u1i + u2it0 + u3it

2
0 + w(i)(t0, t1, X)t20.

(10.27)

Substitution shows that if w solves (10.26), then u := (u, u(0), u(i)) solves

∂Tu = u(0),

(1 − |∇ψ|2)∂Tu(0) =
∑
i

(∂Xiu(i) − 2ψi∂Xiu(0)) −Δψu(0) + 2u3,

∂Tu(i) = ∂Xiu(0).

(10.28)

This system is the usual symmetric-hyperbolic first-order system associated
with equation (10.16) in the new variables X and T . In particular, u solves
(10.16).

�

Equation (10.16) has been reduced to the generalized Fuchsian problem

(10.26). Applying Theorem 5.9, we obtain the following:

Theorem 10.11. Let ψ ∈ Hr, r > n
2 + 1, with |∇ψ| < 1, and let Σ = {t =

ψ(x)}. If r > n
2 + 7, there are infinitely many solutions u of (10.16) blowing

up on Σ, they have the form

u =
u0

T
+ u1 + u2T + u3T

2 + u4,1T
3 lnT + w(X,T, T lnT )T 3,

where w(X,T, T lnT ) is continuous in T , with values in Hr−6 for T small,
and the coefficients u0, u1, u2, u3, u4,1 are as in Sect. 10.3.1.

Proof. Observe that (10.26) reads

Q(N + A)w =
l∑

k=0

tk(Bk + fk(t,w)), (10.29)

for l = 1,

Bk =
n∑
j=1

Ajk∂Xj =
{∑n

j=1 Aj∂Xj if k = 0,
0 if k = 1,

N =
l∑

i,j=0

mijtj
∂

∂ti
= t0

∂

∂t0
+ (t0 + t1)

∂

∂t1
,

and
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fk(t,w) = gk(X, t0, t1,w), k = 0, 1,

using the notation of the proof of Theorem 10.10. Equation (10.29) satisfies
hypotheses (A1–A4) in Theorem 5.9. Indeed, (i) all the eigenvalues of A have
nonnegative real parts (they are 0, 2, 5); (ii) f = (f0, . . . , fl) is a C∞ function
in w and defines a map from R

l+1 × Hs to Hs, provided that ψ ∈ Hr, r >
n/2+6, and s = r−6, furthermore, f ≡ 0 if ‖w‖L∞ or |t| is large enough; (iii)
for (A4), V = diag(γ, γ, 1, 1, In, In) is a convenient choice, and multiplication
by V is a bounded operator in Hs if ψ ∈ Hr, r > n/2 + 6, and s = r − 6.
Theorem 10.11 follows. �


10.3.2 Kerr nonlinearity

Let us now turn to a slight generalization of equation (10.15):

�u + α
∂u

∂z
= 2u|u|2 + βu, (10.30)

where α ∈ iR and β ∈ R; u = u(x1, x2, x3 = z, t) is complex-valued. This
problem may be slightly simplified. If v is a solution of

�v = 2v|v|2 + (β − α2/4)u

and u = v eαz/2, then u solves (10.15). Therefore, we may assume α = 0.
Let us seek formal solutions of (10.15) that blow up on a prescribed spacelike
hypersurface Σ = {t = ψ(x)} of Minkowski space-time. We define T and X
as before. The main result is the following:

Theorem 10.12. Equation (10.30) admits infinitely many formal solutions
blowing up exactly on Σ. They have the form

u0(X)
T

⎧⎪⎪⎨
⎪⎪⎩

1 + v1(X)T + v2(X)T 2 +
∑
j≥3

0≤k≤j/3

vj,k(X)T j(lnT )k

⎫⎪⎪⎬
⎪⎪⎭

. (10.31)

The coefficients u0, v1, v2, . . . may be complex; they are completely determined
by the four singularity data: ψ, the argument of u0, the imaginary part of v3,0,
and the real part of v4,0.

Proof. Leading-order analysis yields

u(X) = u0(X)
( 1
T

+ v(X,T )
)
,

with
|u0|2 = 1 − |∇ψ|2.

The phase of u0 remains arbitrary. Substitution into (10.30) with α = i gives
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|u0|4
(
D(D − 1)v − 4v − 2v

)
= Δψ|u0|2 + 2ψiu0iu0 + Tg[X,T, v],

where
g[X,T, v] =2|u0|4(v2 + 2|v|2) + β|u0|2 − |u0|2ΔψDv

− 2ψiu0iu0Dv − 2|u0|2ψiD∂Xiv + Δu0u0

+ T
[
Δu0u0v + 2ui0u0∂Xiv + |u0|2ΔXv

+ 2|u0|4v|v|2 + β|u0|2v
]
.

Write v = a+b with a real and b pure imaginary. Separating real and imaginary
parts in the previous equation leads to

|u0|4(D + 2)(D − 3)a =Δψ|u0|2 + ψiu0iu0 + T
[
2|u0|4(3a2 − b2)

+ β|u0|2 − |u0|2ΔψDa− 2|u0|2ψiD∂Xia

+
1
2
(Δu0u0 + Δu0u0) − (ψiu0iu0 − ψiu0iu0)Db

− (ψiu0iu0 + ψiu0iu0)Da
]

+ T 2
[
(ui0u0 + ui0u0)∂Xia + (ui0u0 − ui0u0)∂Xib

+
1
2
(Δu0u0 + Δu0u0)a +

1
2
(Δu0u0 −Δu0u0)b

+ 2|u0|4a(a2 − b2) + |u0|2ΔXa + β|u0|2a
]
,

(10.32)
and

|u0|4(D + 1)(D − 2)b = ψiu0iu0 + T
[
(ψiu0iu0 − ψiu0iu0)Da

+ (ψiu0iu0 + ψiu0iu0)Db− 1
2
(Δu0u0 −Δu0u0)

− 4|u0|4ab + 2|u0|2ψiD∂Xib + |u0|2ΔψDb
]

+ T 2
[
(ui0u0 + ui0u0)∂Xib + (ui0u0 − ui0u0)∂Xia

+
1
2
(Δu0u0 + Δu0u0)b +

1
2
(Δu0u0 −Δu0u0)a

+ β|u0|2b + 2|u0|4b(a2 − b2) + |u0|2ΔXb
]
.

(10.33)
Thus, if we write

a(X,T ) = a1 + a2T + a3T
2 + · · · ,

b(X,T ) = b1 + b2T + b3T
2 + · · · ,

where the coefficients aj and bj are polynomials in lnT , the arguments of
Chap. 2 yield the announced results. �
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We now turn to the relation of the series to actual solutions. In the analytic
case, we have the following theorem:

Theorem 10.13. Let Σ = {t = ψ(x)}, with |∇ψ(x)| < 1, and (x0, t0) a point
on Σ. Then equation (10.30) admits infinitely many solutions defined close
to (x0, t0) and that blow up exactly on Σ. These solutions are of the form
(10.31).

The coefficients u0, v1, v2, . . . are analytic and uniquely determined by the
choice the argument of u0, the imaginary part of v3,0, and the real part of v4,0.

Proof. Let Y = T lnT . If N = T∂T + (T + Y )∂Y and w = P + iQ, then P
and Q satisfy:

(N + 1)(N + 6)P = f1(X) + Tg1[X,T, Y, P,Q] + Y h1[X,T, Y, P,Q],
(N + 2)(N + 5)Q = f2(X) + Tg2[X,T, Y, P,Q] + Y h2[X,T, Y, P,Q],

(10.34)
where f1, f2, g1, g2, h1, h2 are analytic in their arguments, and involve also
the derivatives of P and Q. Define z by

zT = [P, NP, T∇XP, Q, NQ, T∇XQ ].

We obtain

Nz1 = z2,

(N + 7)z2 + 6 z1 = f1 + Tg1[T, Y, z] + Y h1[T, Y, z],
Nz2+i = T (∂Xiz1 + ∂Xiz2) ∀ 1 ≤ i ≤ n,

Nz2+n+1 = z2+n+2,

(N + 7)z2+n+2 + 10 z2+n+1 = f2 + Tg2[T, Y, z] + Y h2[T, Y, z],
Nz2+n+2+i = T (∂Xiz2+n+1 + ∂Xiz2+n+2) ∀ 1 ≤ i ≤ n,

where the dependence on the spatial coordinates X has been suppressed. Thus,
z solves

(N + A)z = f(X) + Tg[X,T, Y, z] + Y h[X,T, Y, z], (10.35)

with g and h analytic in their arguments, and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1
6 7

0n

0 −1
10 7

0n

⎤
⎥⎥⎥⎥⎥⎥⎦

,

f(X)T = [ 0, f1(X), 0, . . . , 0, 0, f2(X), 0, . . . , 0 ].

We are therefore led to the system
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(N + A)z = f(X) + Tg[X,T, Y, z] + Y h[X,T, Y, z], (10.36)

z(X, 0, 0)T = [P (X, 0, 0), 0, . . . , 0, Q(X, 0, 0), 0, . . . , 0 ]. (10.37)

The eigenvalues of A are 1, 2, 5, 6 with multiplicity 1, and 0 with multiplicity
2n. Moreover, f(X) belongs to the range of A. Thus (10.36)–(10.37) admits
a unique solution by Theorem 4.5. Conversely, let z be a solution of (10.36)–
(10.37). It satisfies

z2 = Nz1, (10.38)
z2+i = T∂Xiz1, for 1 ≤ i ≤ n, (10.39)

z2+n+2 = Nz2+n+1, (10.40)
z2+n+2+i = T∂Xiz2+n+1, for 1 ≤ i ≤ n. (10.41)

Indeed, since z is solution of (10.36),

Nz1 = z2,

Nz2+i = T∂Xi(z1 + z2), (10.42)

and the analysis of equation (10.25) applies here, and shows that if z is a
solution, then necessarily

zT = [ z1, Nz1, T∇Xz1, zn+3, Nzn+3, T∇Xzn+3 ],

where (z1, zn+3) is a solution of (10.34). Defining (P,Q) as (z1, z2) ends the
proof. �

For the nonanalytic case, the main result is our next theorem:

Theorem 10.14. If r > n
2 + 7, one can find infinitely many solutions u of

(10.15) blowing up exactly on Σ,

u(x, t) = u0(X)
[ 1
T

+ v1(X) + v2(X)T + [v3,0(X) + v3,1(X) lnT ]T 2

+ [v4,0(X) + v4,1(X) lnT ]T 3 + [w(X,T, T lnT )

+ λ(X) lnT ]T 4
]
,

where w(X,T, T lnT ) is continuous in T , with values in Hr−6 for T small.

To prove this result, we reduce the problem to a generalized Fuchsian system:

Theorem 10.15. There are symmetric matrices Q and Aj, 1 ≤ j ≤ n, a
constant matrix A, and a function f such that if t = (t0, t1) and

Q(N + A)w = t0A
j∂Xjw + t · f(t,X,w), (10.43)

then the two first components P and Q of w generate a singular solution u of
(10.15) that blows up for T = 0, provided that
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w =(P,Q, P(0), Q(0), P(i), Q(i)),
w =P + iQ,

w(j) =P(j) + iQ(j),

u =u0

{
1
t0

+ v1 + v2t0 + v3,0t
2
0 + v3,1t0t1 + v4,0t

3
0 + v4,1t

2
0t1

+ w(t0, t1, X)t40 + λt30t1

}
,

and that the {w(j)} are, for t0 = t1 = 0, the components of a gradient. More-
over, if ψ ∈ Hr(Rn) with r > n

2 + 6, then Q and Aj ∈ Hr−1
loc (Rn), while f

maps Hr−1 to Hr−6.

Proof. The argument being similar to the case of the cubic wave equation,
we merely give the choices of Q, etc., and check that they have the desired
properties. Let γ = 1 − |∇ψ(x)|2. Define Q and Aj as follows:

Q =

⎡
⎣ I2

γI2
I2n

⎤
⎦ ,

Aj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

−2ψj 0 ej 0
0 −2ψj 0 ej

tej 0
0 tej

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where ej is the jth vector of the canonical basis.

Let also

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 0 −1 0
0 4 0 −1
−6 0 3 0
0 −2 0 3

3In 0
0 3In

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and f(t0, t1, X,w) = (g0(X, t0, t1,w), g1(X, t0, t1,w)), with

g0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

Re{b0}
Im{b0}

Re{∇Xu0
u0

(w0 + λ)}
Im{∇Xu0

u0
(w0 + λ)}

⎤
⎥⎥⎥⎥⎥⎥⎦

and
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g1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

Re{b1}
Im{b1}

4 Re{∇Xλ}
4 Im{∇Xλ}

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where b0 and b1 are defined by

u0 b0(X, t0, t1,w) =v4,0Δu0 + 2u0iv
i
4,0 + u0Δv4,0 + ui0wi − 2ψiu0iw0

− 2ψiu0iλ− 2u0ψ
iλi − u0w0Δψ − u0λΔψ

+ h0(t0, t1, w, w, v1, v2, . . . , v1, v2, . . .),

u0 b1(X, t0, t1,w) =v4,1Δu0 + 2u0iv
i
4,1 + u0Δv4,1 − 2ψiu0iλ− 2u0ψ

iλi

− 4u0λΔψ + h1(t0, t1, w, w, v1, v2, . . . , v1, v2, . . .),

where h0 and h1 are polynomial functions in their arguments. Let finally

u =u0

{
1
t0

+ v1 + v2t0 + v3,0t
2
0 + v3,1t0t1 + v4,0t

3
0 + v4,1t

2
0t1

+ w(t0, t1, X)t40 + λt30t1

}
,

u(0) =u0

{
− 1

t20
+ v2 + 2v3,0t0 + v3,1(t0 + 2t1) + 3v4,0t

2
0 + v4,1(t20 + 3t0t1)

+ w(0)(t0, t1, X)t30 + λ(t30 + 4t20t1)
}

,

u(i) =
u0i

t0
+ (u0iv1 + u0v1i) + (u0iv2 + u0v2i)t0 + (u0iv3,0 + u0v3,0i)t

2
0

+ (u0iv3,1 + u0v3,1i)t0t1 + (u0iv4,0 + u0v4,0i)t
3
0

+ (u0iv4,1 + u0v4,1i)t
2
0t1 + u0w(i)(t0, t1, X)t30,

where w(0) = P(0) + iQ(0) and w(j) = P(j) + iQ(j). If w is solution of (10.43),
then u := (u, u(0), u(i)) solves

∂Tu = u(0),

(1 − |∇ψ|2)∂Tu(0) =
∑
i

(∂Xiu(i) − 2ψi∂Xiu(0)) − u(0)Δψ + 2u|u|2,

∂Tu(i) = ∂Xiu(0).

(10.44)

This system is the usual symmetric-hyperbolic first-order system associated
with equation (10.15), in the new variables X and T . Thus u is clearly a
solution for (10.15), which concludes the proof. �

Since equation (10.43) written as system (10.29) satisfies the hypotheses (A1),
(A2), (A3), and (A4) of Theorem 5.12, Theorem 10.14 follows.
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10.3.3 Application to concentration of energy

Consider a solution of (10.16) decaying at spatial infinity, blowing up on a
C∞ n-dimensional spacelike manifold Σ = {t − ψ(x) = 0} ⊂ R

n, with ψ of
class C∞ and satisfying |∇ψ| < 1. Suppose also that ψ(0) = 0. The so-called
energy integral

1
2

∫
[u2
t + |∇u|2 − u4](x, t) dx (10.45)

is finite and independent of t. We study

E(α) =
1
2

∫
Bα

[u2
t + |∇u|2 − u4](x,−α) dx,

the energy integral of u at time −α over Bα, the ball of center 0 and radius
α.

Theorem 10.16. As α → 0,

(i) E(α) = O(αn−4),
(ii) if ∇ψ = 0, then E(α) ∼ − 1

3meas(B1)Δψ(0)αn−3,
(iii) if the second-order derivatives of ψ also vanish, then E(α) = O(αn−1).

Remark 10.17. Condition (ii) necessarily holds at the first point of blowup.

Proof. Let
e(x, t) = u2

t (x, t) + uiu
i(x, t) − u4(x, t);

using the expansion of u, we obtain

e(x, t) =
2u2

0ψiψ
i

T 4
+

2ψiu0i − 4u3
0u1

T 3
(10.46)

+
u0iu

i
0 + 2ψiu1iu0 − 2ψiψiu0u2 − 2u0u2 − 6u2

0u
2
1 − 4u3

0u2

T 2

+ O
(

1
T

)
.

Replacing u0, u1, u2 in (10.46) by their explicit expressions (14.10a-d) leads,
for s ∈ B1 and α > 0, to

e(α s,−α) =
2M2(1 −M2)

(1 + ψi(0)si)4α4
+ O

(
1
α3

)
,

where M =
√

1 − |∇ψ(0)|2. Indeed, if (x, t) = (α s,−α), then, since ψ(0) = 0,

T = −α− ψ(α s),= −α − α s · ∇ψ(0) + O(α2).

Furthermore,

u0(α s) =
√

1 − |∇ψ(αs)|2 =
√

1 − |∇ψ(0)|2 + O(α) = M + O(α),
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while the other coefficients u0i, u1, . . . are C∞ and thus O(1). The most sin-
gular term in e(x, t) is 2u2

0ψiψ
i/T 4. Therefore,

E(α) =
αn

2

∫
B1

e(α s,−α) ds = αn−4

∫
B1

M2(1 −M2)
(1 + ψi(0)si)4

ds + O(αn−3),

which proves (i).
Suppose now that ∇ψ(0) = 0. Then for (x, t) = (α s,−α),

T|(x,t)=(α s,−α) = −α− 1
2
α2ψij(0)sisj + O(α3),

ψi(x) = αψijsj + O(α2).

The first few terms of the series for u satisfy

u0(x) = 1 + O(α2),
u0i(x) = O(α),

u1(x) = −Δψ(0)
6

+ O(α2),

u2(x) = −Δψ(0)2

36
+

ψij(0)ψij(0)
6

+ O(α).

Therefore, for α small,

e(x, t) = − 2Δψ(0)
3α3

+
1
α2

[
2ψij(0)ψki (0)sjsk + Δψ(0)ψij(0)sisj − ψij(0)ψij(0)

]

+ O
(

1
α

)
,

and by integration,

E(α) =
αn

2

∫
B1

e(α s,−α) ds

= −1
3
meas(B1)Δψ(0)αn−3 + Cαn−2 + O(αn−1),

where C = 0 when the second-order derivatives of ψ vanish at the origin. This
completes the proof of (ii) and (iii). �

Remark 10.18. If ∇ψ(0) = 0 and Δψ(0) = 0, but |∇2ψ(0)| �= 0, then E(α) =
O(αn−2) for α close to 0.

Theorem 10.16 shows that if ψ is flat enough at the first blowup point,
the energy does not focus at this point; for instance, in case n = 3 and
∇ψ = 0, E(α) remains bounded. Moreover, in case ψ is smooth and admits a
local extremum at the origin, one can predict the value of Δψ(0) using only
integrals on the backward light-cone.
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10.3.4 Behavior of Lp norms

In 1984, Brezis [27] raised the question of finding, for a given solution of the
cubic nonlinear wave equation

utt −Δu = 2u3 (10.47)

with Dirichlet boundary condition on a smooth bounded domain Ω ⊂ R
n,

with n ≥ 1, the least upper bound q0(u) of the set of exponents p such that
the Lp norm of u blows up. More precisely, if n ≤ 3, one has local existence
and uniqueness of classical solutions for data in H2 ×H1

0 (Ω); they persist as
long as they do not blow up in H1

0 × L2(Ω); the integral

1
2

∫
Ω

[u2
t + |∇u|2 − u4]dx (10.48)

is bounded (in fact, constant); the Gagliardo–Nirenberg inequality shows that
blowup in H1

0 × L2(Ω) implies blowup in Lp if p > n. Thus, q0(u) ≤ n if
n ≤ 3. We restrict our attention to the case in which Ω is the unit ball B and
the first singularity first appears for t = 0, at the center of B.

It is both natural and convenient to consider the forced problem

utt −Δu− 2u3 = F (x, t), x ∈ B and − 1 < t < 0, (10.49)
u = ϕ(x, t), x ∈ ∂B and − 1 < t < 0, (10.50)

(u, ut) = (f(x), g(x)) for t = −1. (10.51)

Indeed, in applications or numerical work one must often allow for the presence
of “noise” of limited regularity on the right hand side F , and, as we shall see,
such noise may affect the blowup behavior.

In a nutshell, the consequences of reduction are that q0 = n for data and
F of low regularity, but q0 = n/2 for smooth and “generic” data and F . In
all our examples, ϕ(x, t) is at least C2 and u blows up for x = 0, t = 0.
By defining F through F = utt − Δu − 2u3, one generates explicit examples
demonstrating in particular that:

1. If the blowup surface is smooth, q0 ≤ n/2.
2. If n > 12, one can find F (x, t) continuous with values in L2, and classical

solutions with q0 = n/(1 + ε) for every ε ∈ (0, 1).

Both classes of examples are obtained by truncating the series (10.19). with
T = t − ψ(x), |∇ψ| < 1, given by reduction. One can again give a geometric
interpretation for the first few coefficients of expansion at the first blowup
point.

Remark 10.19. Lindblad and Sogge [134] solve the problem in Ḣs×Ḣs−1(Rn),
with s = n

2 − 1 if n ≥ 4, and find uniqueness under an additional condition
in spaces of the form Lrt (L

s
x) (with r < ∞); here, Ḣs is the set of u such

that (−Δ)s/2u is square integrable. Reduction yields better results because
the regular part of the solution has better smoothness properties, and can be
separated from the singular part in a systematic fashion.
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The main results are as follows [34,35].

Theorem 10.20. For every integer m ≥ 1, there is a problem of the form
(10.49–10.49) with f , g, F , ϕ of class C∞ for which q0 = n/2m. There are
also problems for which u blows up uniformly on a proper subset of B with
nonempty interior, and for which q0 = 0.

Note that u(x, t) = u0(x)/T + v(x, t), with T = t − ψ(x), where ψ ≥ 0 and
v ∈ C2. On the other hand, u0/T is not in L1 for any positive t, so that u has
no continuation after blowup, but v does.

We now turn to solutions of limited regularity. We say that “u is a classical
solution” if

1. u ∈ ⋂2
k=0 Ck([−1, 0);H2−k(B)),

2. u3 is uniformly bounded in L2(B) and F ∈ C([−1, 0];L2(B)),
3. the equation holds in the sense of distributions, and
4. u has finite energy.

Theorem 10.21. If ε ∈ (0, 1) and n > max(12 − 12ε, 6 + 6ε), there is a
problem of the form (10.49–10.49) with a classical solution such that q0 =
n/(1 + ε).

Theorem 10.22. If ε ∈ (0, 1) and n > 6 + 6ε, there is also a problem of the
form (10.49–10.49) with a classical solution that is bounded for every t < 0,
and such that q0 = n/(1 + ε).

Finally, we consider still weaker types of solution Let us say that “u is a
solution in H1” if

1. u ∈ ⋂1
k=0 Ck([−1, 0);H1−k(B)),

2. u3, Δu and utt are uniformly bounded in L1(B),
3. F ∈ C([−1, 0];L1 ∩H−1(B)), and
4. u solves equation (10.49).

Theorem 10.23. If ε ∈ (0, 1) and n > 4 + 4ε, there is a problem of the form
(10.49–10.49) with a solution in H1 that is bounded in space for every t < 0,
and for which q0 = n/(1 + ε); it blows up in H2 if n = 5 and ε < 1

4 .

10.4 Weak detonations

We construct explosive solutions to Short’s 3D generalization of Clarke’s equa-
tions, under the sole assumption that the detonation front is supersonic. As
usual, we give a complete expansion of solutions and specify the terms in the
expansion that determine all the others. This shows how to relate the variation
of the data to the variation of the (nonplanar) detonation front.
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10.4.1 Background information

The so-called weak detonation, which terminates on the supersonic branch
of the Hugoniot curve, has been considered only recently, because no steady
traveling weak detonation wave can exist [64]. However, it appears that a
“quasisteady” form of weak detonation is relevant in the description of both
the shock-induced and initial-disturbance-induced transition to detonation in
an explosive material modeled by a one-step Arrhenius reaction with large
activation energy [98, 53]. The Arrhenius factor expA/ϕ, where ϕ is propor-
tional to temperature, is approximated by an exponential, and the blowup
represents a phase of very rapid increase in temperature. Although the tem-
perature does not actually become infinite, it is believed that the blowup set
for the resulting model does represent an approximation of the time evolution
of the detonation front. There seems to be some agreement about the scenario
proposed by Kapila and Dold [98], which is based on a long series of contribu-
tions on the possible mechanisms leading to the ignition of a Zel’dovich–von
Neumann–Döring detonation, in ignition induced by a piston creating a shock;
in particular, one of the phases involves a weak, shockless supersonic detona-
tion wave that moves away from the piston, “as neighboring fluid elements
undergo thermal ignition at different times at different locations in space.”
The reader will recognize the close similarity between this description and the
blowup mechanism for nonlinear wave equations.

The problem is therefore to show how the equations for a weak detonation
may support an explosive solution in which a supersonic detonation front
determines ignition at different points at different times. Since the detonation
path is not a straight line, the detonation wave is not a steady wave; in this
sense, it is quasisteady, because it is nevertheless expected to admit a tangent
plane. We now describe the mathematical problem, and solve it by reduction.

10.4.2 Mathematical problem

The mathematical task is to construct singular solutions to Clarke’s reactive-
acoustic equations singular on the detonation front; we describe Short’s three-
dimensional generalization [165], which is not more difficult to handle than
the one-dimensional case. The equations are derived from the reactive Euler
equations by (i) nondimensionalization; (ii) introduction of the inverse acti-
vation energy parameter ε � 1; (iii) definition of induction zone unknowns
(ϕ, p,u , v) related to temperature, pressure, velocity, and specific volume by
T = 1 + εϕ + O(ε2), P = 1 + εp + O(ε2), U = 1 + εu + O(ε2), and
V = 1 + εv + O(ε2). The scaled reactant mass fraction y = 1 − εw + O(ε2) is
determined by wt = expϕ at first order. Expanding and retaining the leading-
order terms in one dimension, corresponding to a mass-weighted Lagrangian
coordinate, leads to Clarke’s equations. Its three-dimensional generalization
reads
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vt = divu ,
u t = −∇p,

ϕt − (γ − 1)pt = eϕ,
(10.52)

where
γp = ϕ− v.

The system (10.52) will be referred to as the weak detonation equations. It
contains five equations in five unknowns: v, ϕ, and the three components of
u . The last equation of the system is equivalent to

ϕt = (1 − γ)vt + γeϕ. (10.53)

We are interested in solutions that become infinite on some hypersurface t =
ψ(x) representing the evolution of the detonation front. More precisely, since
the solutions are meaningful only in a domain in which the unknowns remain
O(1/ε), the detonation path corresponds to the set on which this limitation
is barely violated. The detonation path is close to the blowup set, because of
the expansion of the solution.

Remark 10.24. We may derive a single third-order equation for ϕ as follows.
Since vtt = −Δp = γ−1Δ(ϕ− v), we have

�γv := γvtt −Δv = −Δϕ. (10.54)

Applying �γ to equation (10.53) and rearranging terms and using (10.54), we
obtain

�(ϕt) = �γ(eϕ) (10.55)

with � = ∂tt−Δ. This suggests logarithmic leading-order asymptotics for the
three unknowns. We now show that this is indeed the case.

Change of independent variables

Let us take as new independent variables x, y, z, and T = ψ(x)− t, and view
the five unknowns as functions of these variables. Here T = 0 represents the
detonation front. Replacing ∂t by −∂T and ∇ by ∇ + (∇ψ)∂T , the system
takes the form

vT + divu + ∇ψ · uT = 0, (10.56a)
uT = ∇p + pT∇ψ, (10.56b)

ϕT − (γ − 1)pT + eϕ = 0. (10.56c)

Before we proceed to the first reduction, let us eliminate p from this system:

Lemma 10.25. System (10.56) is equivalent to
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(1 − |∇ψ|2)vT + A− |∇ψ|2eϕ = 0, (10.57a)

uT = ∇p +
A− exp(ϕ)
1 − |∇ψ|2 ∇ψ, (10.57b)

(1 − |∇ψ|2)ϕT + (γ − |∇ψ|2)eϕ = +(γ − 1)A, (10.57c)

where
A = A[v,u , ϕ] = divu + γ−1∇ψ · ∇(ϕ− v).

Proof. From the third equation, we obtain

γ(ϕT + eϕ) = (γ − 1)(γp)T = (γ − 1)(ϕT − vT ),

hence, using the expression of vT ,

ϕT + eϕ = (1 − γ)vT = (γ − 1)[A + pT |∇ψ|2].
Since

γpT =
γ

γ − 1
(ϕT + eϕ) =

γ

γ − 1
(ϕT + γeϕ + (1 − γ)eϕ)

= γ[A + pT |∇ψ|2] − γeϕ,

we obtain

pT =
A− exp(ϕ)
1 − |∇ψ|2 ,

and hence

ϕT + eϕ = (γ − 1)
A− |∇ψ|2 exp(ϕ)

1 − |∇ψ|2 .

Equation (10.57c) follows. Equation (10.57b) results from the expression for
pT . Substitution of the value of uT into the equation for v gives (10.57a). �


Leading order and first reduction

Theorem 10.26. The weak detonation equations admit of reduction of the
form

ϕ = ln
b

T
+ TΦ; v = v0 lnT + v1 + TV ; u = u0 lnT + u1 + TU, (10.58)

where

b =
1 − |∇ψ|2
γ − |∇ψ|2 ; v0 =

|∇ψ|2
γ − |∇ψ|2 ; u0 =

∇ψ

γ − |∇ψ|2 . (10.59)

If |∇ψ| < 1, the five unknowns (ϕ,u , v) are uniquely determined by the five
singularity data ψ, v1, and the three components of u1. This provides a su-
personic detonation front of arbitrary shape.
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Proof. Direct substitution and identification of the leading terms, which are
O(1/T ), yields

v0 = u0 · ∇ψ; u0 = (k − 1)
∇ψ

γ
; (b − 1) =

γ − 1
γ

(k − 1).

The relations (10.59) follow. �

Second reduction is obtained by the procedure of Sects. 2.2.4 and 3.2. The
determination of solutions from the singularity data follows from the existence
theorems in Chap. 4 and Chap. 5 in the usual way. The variation of the solution
when the singularity data are varied may now be now computed by solving the
linearization of the reduced Fuchsian equation. This is possible because this
linearization is again Fuchsian; the procedure parallels that of Sect. 10.2.5.

10.5 Soliton theory

Soliton equations are nonlinear wave equations with traveling wave solutions
having remarkable superposition properties [104, Chaps. 4 and 5]. Their mod-
ern mathematical theory, the method of inverse scattering, may often be un-
derstood as a procedure to compute a complete set of first integrals for an
infinite-dimensional Hamiltonian system; for this reason, soliton equations are
often referred to as integrable systems.3 Although of very special form, soliton
equations may be derived from extremely general nonlinear wave equations
by a perturbative modeling method (the “reductive perturbation method”),
characterized by a specific choice of scaled independent variables adapted to
the dominant wave number in the problem at hand; see [104, pp. 137–145].
The theory of solitons is useful because it replaces the search for approximate
solutions of an exact model equation by the search for exact solutions of an
approximate model with rich mathematical structure.

We prove that reduction techniques justify the so-called ARS-WTC ex-
pansions for solutions of integrable systems, and show how to generalize them
to nonintegrable systems [109,120,124]. Let us begin with some background
information.

10.5.1 ARS-WTC expansions

Exact solutions given by the method of inverse scattering are, in many cases
of interest to applications, rational functions of exponentials. As such, they
admit complex singularities that travel at the same speed as the wave. For
instance, the Korteweg–de Vries equation (KdV)

ut + 6uux + uxxx = 0

3 The rigorous construction of a complete set of integrals may be delicate; see [12].
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admits the traveling wave solutions 2k2 sech2(kx−4k3t), which is singular for
kx − k3t = iπ/2 + inπ, where n is an integer. Ablowitz, Ramani, and Segur
(ARS) [4, 2] observed that ODE reductions of integrable equations are very
often ODEs of Painlevé type, that is, ODEs the solutions of which are not
ramified around their movable singularities.4 Weiss et al., in a series of papers,
starting from [180], made the basic observation that all the integrable PDES
considered by Ablowitz et al. appeared to admit formal solutions to all orders,
called WTC expansions, involving only pure powers, of the form

u = φ−m∑
j≥0

uj(x, t)φj ,

where φ(x, t) is an arbitrary analytic function subject only to the condition
that the singularity surface φ = 0 is noncharacteristic (for KdV, this amounts
to φx �= 0). Furthermore, the functions uj may be chosen arbitrarily for certain
values of j; for example, for the KdV equation, one finds that m = 2 and that
uj is arbitrary for j = 4 and 6; these values of j were called the “resonances,”
and we have kept this terminology. Since both φ and the uj are allowed to
depend on x and t, several expansions may correspond to the same function;5

however, if we take φ of the form x − ψ(t) (“reduced ansatz”), and require
the uj to depend only on t, a given function can have at most one expansion
if it converges. Unfortunately, should the series diverge, it is conceivable that
several solutions have the same expansion: recall that, using the function
exp(−1/x2), one can construct infinitely many functions asymptotic to a given
divergent series. Weiss et al. [180] therefore suggested that the functions ψ(t),
u4(t), and u6(t) determine a unique solution of the KdV equation. This result
will follow from reduction. Since integrable systems generally require only pure
powers, it was widely held that expansions with logarithms were not relevant
to the theory of solitons. However, as a rule, perturbation of soliton equations
does lead to expansions with logarithms.

10.5.2 The impact of reduction

We therefore have two problems before us: (i) Do WTC expansions converge?
This would prove that the arbitrary functions in the expansion determine only
one solution of the corresponding PDE. (ii) What is the rigorous analogue
of WTC expansions for nonintegrable problems? Reduction techniques give
answers to both questions. In fact, the examples considered by Weiss et al.
fall within the scope of the general methods of Chap. 3. Take for instance the
case of KdV.

4 A movable singularity is one that depends on the solution: it moves when the
Cauchy data are perturbed.

5 For instance, we may replace u1 by u1 + φ provided we replace u2 by u2 − 1,
leaving all the other coefficients uj unaltered.
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Theorem 10.27. If φ = x − ψ(t), u4(t), and u6(t) are analytic near the
origin, the KdV equation admits a unique local solution given by a conver-
gent expansion φ−2

∑∞
j=0 uj(t)φj . Therefore, the WTC expansion determines

a unique solution of KdV for every choice of the arbitrary coefficients.

Proof. Let us associate a system to the KdV equation. For convenience, we
scale variables so that KdV reads ut + uux− uxxx = 0. Define new unknowns
uj = (x∂x)ju for j = 0, 1, 2. We obtain

x∂xu0 = u1;
x∂xu1 = u2;
x∂xu2 = 3u2 − 2u1 + x3u0t + x2u0u1.

Assume that the singularity surface is given by x = ψ(t). Take x − ψ(t) as
the new space variable, still denoted by x for convenience, so that we should
replace u0t by u0t − ψ′(t)u0x = u0t − ψ′u1/x. Now, if the uj’s behave like xν ,
we find that both sides of the equation balance each other at leading order
if ν = −2. This suggests the substitution uj = vjx

−2. We find that v = (vj)
solves the system

(x∂x − 2)v0 = v1;
(x∂x − 2)v1 = v2;
(x∂x − 2)v2 = 3v2 − 2v1 + v0v1 − ψ′x2v1 + x3v0t.

For x = 0, we find that if v �= 0, necessarily v = (12,−24, 48). Setting v0 =
12+xw0, v1 = −24+xw1, v2 = 48+xw2, we obtain the first reduced equation,
with ε = 1:

(x∂x − 1)w0 − w1 = 0;
(x∂x − 1)w1 − w2 = 0;

(x∂x − 4)w2 − 10w1 + 24w0 = x(w0w1 − ψ′xw1 + 24ψ′ + x2w0t).

This has the general form (x∂x + A)w = O(x). Computing the eigenvalues
of A, we find that the positive resonances are 4 and 6, each corresponding
to one arbitrary coefficient in the expansion of u. The third resonance, −1,
corresponds to the translation-invariance of the problem; see Sect. 3.5.1. We
find that one may take � = 0 (no logarithms). Performing the second reduction
and appealing to Theorem 4.5, we obtain the convergence of the expansion,
parameterized by ψ and two arbitrary functions. �


Let us now outline the corresponding results for other integrable equations.
Results are in all respects similar to those for KdV, except that the exponent
m, and the values j for which uj is arbitrary, vary from one equation to
another. The modified KdV equation

ut + 3u2ux − 2uxxx = 0

admits convergent series solutions in which m = 1, and u3 and u4 are arbitrary.
The sine–Gordon equation in the form
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uxt = sinu

is such that exp(iu) admits a convergent series solution with m = 2 and u2

arbitrary. The Kadomtsev–Petviashvili equation

utx + u2
x + uuxx + δuxxx + uyy = 0,

in which δ is a positive constant, admits series solutions with m = 2 and
arbitrary functions u4, u5, and u6. The fifth-order KdV equation

4ut = ∂x[uxxxx + 5u2
x + 10uuxx + 10u3]

admits two types of series solutions, both having m = 2. The first has u0 =
−2φ2

x and arbitrary uj for j = 2, 5, 6, and 8; the second has u0 = −2φ2
x

and arbitrary uj for j = 6, 8, and 10. Other examples may be found in the
problems. For a class of nonintegrable fifth-order equations, see Problem 10.12.

The general pattern of WTC analysis is that the coefficients uj of the
expansion of the solution should satisfy a recurrence of the form

P (j)uj = fj(u0, . . . , uj−1),

where the zeros of the polynomial P give the resonances. In integrable cases,
it turns out that whenever j is a resonance, the expression fj also happens
to be identically zero. What about nonintegrable problems? In general, fj
has no reason to be zero if P (j) = 0. Nevertheless, if we perturb KdV by
terms that do not affect the leading balance, the general results of Chap. 3
yield a result similar to Theorem 10.27, except that the expansion may now
contain logarithms; see Problem 10.13. For nonintegrable perturbations of
integrable systems, even though the solution is generally not analytic, it may
be uniformized by the introduction of finitely many new variables of the form
φ, φ lnφ,. . . ,φ(lnφ)�. In other words, even the nonintegrable case corresponds
to a function of several complex variables that is free from branching.

10.5.3 Resonances and Poincaré–Dulac expansions

We justify the term “resonance” for the indices j such that uj is arbitrary by
showing that resonances in the sense of WTC theory are closely related to the
resonance of frequencies in an ODE near a stationary solution, in the sense of
Poincaré–Dulac theory. Consider an ODE

xt = F (x),

where x has n components, and F (x) = Ax + Q(x)(x, x) near x = 0. The
eigenvalues λj are said to exhibit resonance, in the sense of Poincaré and
Dulac, if there exists a nontrivial relation of the form

λj0 = m1λ1 + · · · + mnλn,



206 10 Applications to Nonlinear Waves

where the coefficients mk are nonnegative integers. Let us seek a solution of
this equation in the form

x(t) = x(z1, . . . , zn),

where zk = exp(λkt). We find that x must solve

Nx = F (x),

where
N = λ1z1

∂

∂z1
+ · · · + λnzn

∂

∂zn
.

Consider the ansatz
x(t) =

∑
k

zkyk(t),

where, to fix ideas, y1 → 1 as t tends to −∞, but yk → 0 for k > 1. The
equation for x yields ∑

k

zkEk = 0

with
Ek = (N + λk −A)yk −

∑
l

zlQ(x)(yk, yl).

Therefore, it suffices to solve the generalized Fuchsian system E1 = · · · =
En = 0. If we wish to compute a solution of this system as a power series
in the zk’s, we need to substitute for yk a sum of homogeneous monomials
Xza1

1 · · · zan
n , where X is a constant vector. Now, the operator (N + λk − A)

transforms this monomial into

(λ1a1 + · · · + λnan + λk −A)Xza1
1 · · · zan

n .

Therefore, we can recursively compute the coefficients of y unless λ1a1 +
· · ·λnan + λk is equal to an eigenvalue λj0 of A. This provides a resonance
whenever the ak are not all zero. Thus, the resonances in the sense of dy-
namical systems correspond to the possible arbitrary terms in a series of the
solution in powers of exponentials. The occurrence of logarithmic terms in
this context corresponds to the familiar terms tj exp(λkt) in the solution of
an equation with multiple eigenvalues.

As an application, consider the problem of finding solitary waves to the
fifth-order water-wave model:

vt + αvxxxxx + μvxxx + γ∂x[2vvxx + v2
x] + 2qvvx + 3rv2vx = 0. (10.60)

This equation has exact solitary waves (with tails decaying to zero) and nega-
tive speed when α > 0, r ≤ 0, q �= 0, and μ > 0 (see [107] for details and other
situations in which existence holds). This model has been studied extensively;
see [121, 107]. It arises as a model for water waves, and as a general model
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for the interaction of long and short waves [15]. There are several arguments
to the effect that there exists no such solution in the KdV limit, which would
correspond here to waves with positive speed. Reduction can be used to prove
that the solution actually has a convergent expansion in powers of exponen-
tials [107]. This generalizes the result of [121], which was based on a direct
study of the series.

10.5.4 Truncated expansions and Lax pairs

By choosing the expansion variable suitably, it is possible to collapse the
infinite series for the solution into a finite sum; this may be understood as
follows: if u is the desired solution, and if u admits a simple pole along some
hypersurface, we may simply take T = 1/u, so that the solution takes the
trivial form

u =
1
T

.

A less trivial computation is possible in some cases, and may lead to the
construction of a Lax pair (see [104], Chap. 4, for a discussion of Lax pairs
and the method of inverse scattering).

The results below on truncated expansions are essentially due to Weiss,
although a complete proof that the truncated expansions do solve KdV seems
difficult to find. Similar manipulations have been performed by other authors
on several examples, but the underlying mechanism is still not well under-
stood. We give in the rest of the section the details of the relation between
truncated singular expansions and Lax pairs. The point is that the function φ
in the WTC expansion should be taken equal to the ratio of two eigenfunctions
of the scattering problem associated to another solution of KdV.

Let us define

K[u] = ut + ∂x

{
uxx +

1
2
u2

}
.

Thus, the equation K[u] = 0 is equivalent, after scaling u, to the KdV equa-
tion.

We solve the following problem: Find u0(x, t), u1(x, t), u(x, t), and φ(x, t)
such that

K[ũ] = 0,

where
ũ = φ−2(u0 + u1φ) + u. (10.61)

The difficulty to be overcome is that direct substitution appears to lead
to five conditions for the four unknowns φ, u0(x, t), u1(x, t), u(x, t). More
precisely, if we write out K[ũ] and collect powers of φ, we obtain an expression
of the form

K[ũ] = φ−5
[
k0(x, t) + φk1(x, t) + · · · + φ5k5(x, t)

]
; (10.62)
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if we require k0 = · · · = k5 = 0, we obtain five independent equations (not
six, because the fifth condition turns out to be the derivative of the sixth).
The first and second conditions give u0 = −12φ2

x and u1 = 12φxx, and the
last gives

K[u] = 0,

so that both u and ũ should solve KdV.
There remain two conditions to be satisfied by φ (the equations E2 = 0

and E3 = 0 below; see (10.71–10.72). A priori, it is not clear that they are
compatible with K[u] = 0. Weiss [179] noticed that E2 = ∂xE3 = 0, provided
that φx is the square of a solution of the Lax pair equations associated with
some solution of KdV. This specifies φ up to the addition of a function of t
alone. He also proved that if φ is the quotient of solutions of some Lax pair,
then E2 = 0 iff E3 = 0. We identify this latter solution of KdV: u and ũ are
both obtained by a Bäcklund transformation from a third solution q of KdV,
and a complete, self-contained proof may be obtained by working with the
Lax pair equations associated with q:

Theorem 10.28. Let λ be a constant, and assume (i) K[q] = 0 and (ii)
φ = v1/v2, where v1 and v2 are independent solutions of the Lax pair equations
associated with v:

vxx +
1
6
(q + λ)v = 0, (10.63)

vt =
(
−1

3
q +

2
3
λ

)
vx +

1
6
qxv. (10.64)

Define ũ by (10.61), with

u0 = −12φ2
x, (10.65)

u1 = 12φxx, (10.66)
u = q − 6∂xx lnφx. (10.67)

We then have
K[u] = K[ũ] = 0.

We list without comment some further properties that may be checked di-
rectly.

• u = q + 12∂xx ln v2 and ũ = u + 12∂xx lnφ.
• If we replace φ by 1/φ, u and ũ are exchanged.
• φx is the square of an eigenfunction of the eigenvalue problem associated

with u (it is proportional to 1/v2
2).

• φxx solves the linearization of K[u] = 0.
• Define

S = φt/φx + {φ;x},
where {φ;x} is the Schwarzian derivative
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{φ;x} = ∂x

(
φxx
φx

)
− 1

2
φxx
φx

.

We then have

{φ;x} =
1
3
(q + λ), (10.68)

S = λ. (10.69)

• A priori, ũ admits singularities whenever φ or φx = 0.

Main steps of proof:

The proof is completely elementary, but slightly tricky. One first checks di-
rectly the relations (10.68–10.69). Next let π = φxx/φx. One obtains

φxxx/φx = πx + π2

and
πx = {φ;x} +

1
2
π2 =

1
3
(q + λ) +

1
2
π2.

One computes K[u], which simplifies to −K[q] = 0. One then computes

K[ũ] −K[u] = 12∂x

[
E2

φ
− E3

φ2

]
, (10.70)

where

E2 = φxt + uφxx + φxxxx, (10.71)

E3 = φxφt + 4φxφxxx − 3φ2
xx + uφ2

x. (10.72)

One then checks

E2 − (φxS)x = φxx [u− (q + λ) + 6∂xx lnφx] , (10.73)

φ2
xE2 − φxxE3 = φ3

xSx. (10.74)

Since S = λ, and u satisfies (10.67), we obtain E2 = E3 = 0, hence the result.

10.6 The Liouville equation

We consider here the equation

utt − uxx = eu,

for which the general solution, in the analytic case, was obtained by Liouville
in 1853 [136]. Generalizing the features of its exact solution gave the first
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impetus for developing reduction techniques. The exact solution also allows
very sharp regularity results. It is equivalent to

uξη = eu, (10.75)

by the change of variables

ξ = (t + x)/2, η = (t − x)/2;
∂ξ = ∂t + ∂x, ∂η = ∂t − ∂x.

Here, t = 0 corresponds to ξ+η = 0. We describe in this section the structure
of the general solution, and derive its consequences, following [109]. There is
a large literature on the applications of the 1+1 Liouville equation both in
physics and geometry; see [97, 68, 160] and their references.

Theorem 10.29. If u is a solution of (10.75) of class Ck near (ξ0, η0), with
k ≥ 3, there are two functions f and g of class Ck+1 such that

u = ln
2f ′(ξ)g′(η)

(f(ξ) + g(η))2
= ln[−2∂ξη ln(f + g)]. (10.76)

The functions f and g are determined up to homographies: all other represen-
tations of u are given by this formula, with f and g replaced by

af + b

cf + d
and

−ag + b

cg − d

respectively, where ad− bc �= 0.

Remark 10.30. From the representation (10.76), it follows that there are two
types of characteristic singularities: those coming from singularities of f or g,
and those coming from the vanishing of f ′ or g′. We are interested here in the
second type, which we relate to the degeneration of noncharacteristic (WTC)
singularities.

Proof. The existence of the representation is classical; it is related to the
existence of a Bäcklund transformation between the Liouville and wave equa-
tions [160]. Of the possible ways to prove it, we choose one that gives some
insight into the degree of indeterminacy of the functions f and g: We first
need a few formulas involving Schwarzian derivatives. For any function u, let
E = uξη − eu. We have

∂ξE − uξE = ∂η

(
uξξ − 1

2
u2
ξ

)
.

Therefore, if E = 0, uξξ− 1
2u

2
ξ = F (ξ), and, similarly, uηη− 1

2u
2
η = G(η). If the

representation formula holds, F and G are given by Schwarzian derivatives:

F (ξ) = {f ; ξ} and G(η) = {g; η}, (10.77)
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where

{f ; ξ} :=
f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

.

To prove the theorem, consider a given solution u of E = 0. We may take ξ0 =
η0 = 0 without loss of generality. Let us determine f and g by the third-order
equations {f ; ξ} = uξξ− 1

2u
2
ξ and {g; η} = uηη− 1

2u
2
η. We need three conditions

for f and g, and we require, for definiteness, f(0) = g(0) = g′(0) = 1 and

1
2
f ′(0) = eu(0,0);

f ′′(0)
f ′(0)

− f ′(0) = uξ(0, 0); g′′(0) − 1 = uη(0, 0).

These conditions express that the representation (10.76) gives the correct
values for u(0, 0), uξ(0, 0), and uη(0, 0). They determine f ′(0), f ′′(0), and
g′′(0) respectively.

Let w = ln[2f ′(ξ)g′(η)/(f(ξ) + g(η))2]. We now prove that u = w. We
know that uξξ − 1

2u
2
ξ = wξξ − 1

2w
2
ξ . Since uξ(0, 0) = wξ(0, 0), we have

uξ(ξ, 0) = wξ(ξ, 0). Since u(0, 0) = w(0, 0), we have u(ξ, 0) = w(ξ, 0).
Since ∂ξ(uη)(ξ, 0) = expu(ξ, 0) = expw(ξ, 0) = ∂ξ(wη)(ξ, 0), we also have
uη(ξ, 0) = wη(ξ, 0). Similarly, we also know that uηη − 1

2u
2
η = wηη − 1

2w
2
η. We

conclude that since u − w and uη − wη both vanish for η = 0, they vanish
everywhere. This means that u = w, which proves the representation formula.

As for the arbitrariness in f , it follows from the invariance of the Schwarzian
derivative under homographies that f may be replaced by (af + b)/(cf + d).
Since the functions u, f , and g are assumed to be regular near the origin, it
is easily seen that we must have f(ξ) + g(η), f ′, and g′ nonzero. Therefore,
if f is given, the three values uξ(0, 0), u(0, 0), and uη(0, 0) determine respec-
tively g(0), g′(0), and g′′(0). Therefore, g is uniquely determined, since its
Schwarzian derivative is also known. If we replace f by (af + b)/(cf + d), it is
a simple matter to check that g can be replaced by (−ag+b)/(cg−d), and this
is the only possible choice for the second function entering in the representa-
tion, as we just proved. We have therefore obtained a complete description of
the desired solutions. This argument proves that if u is of class Ck, then f
and g are of class Ck+1. �

The occurrence of homographies suggests that f and g may have isolated
poles even when u has no singularity near the origin. This and other special
features are confirmed by the following examples.

Examples

1. f = ξ, g = −1/η, u = ln[2/(1− ξη)2]. Even though g has a singularity for
η = 0, the solution u has no such singularity.

2. f = ξ, g = −∑m
k=1 1/(η−xk). Here, the singular set has m+1 connected

components.
3. f = ξ, g = −1/η3, u = ln[6η2/(1− ξη3)2] has three singular surfaces, two

of them noncharacteristic, and one characteristic (η = 0).
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4. A general recipe for producing solutions with prescribed blowup curve is

u = ln
[
−2f ′(ξ)f ′(ψ(η))ψ′(η)

[f(ξ) − f(ψ(η))]2

]
,

where f is monotone and ψ is nonincreasing, possibly with isolated sin-
gularities.

5. The case f = ξ2, g = η2 − 1 leads to the solution ln[8ξη/(ξ2 + η2 −
1)2], defined only for ξη > 0, and singular inside this domain on two
quarter-circles. The singularity surface becomes characteristic precisely
when it meets the boundary of the domain of definition, which is itself
characteristic.

We now compute the singularity data for noncharacteristic singularities of
real-valued solutions.

Theorem 10.31. Let u be real-valued with the above representation. Any
noncharacteristic singularity is given by ξ = ψ(η), with ψ decreasing, and
g(η) = −f(ψ(η)) locally. Furthermore, if T = ξ − ψ(η), the solution has the
expansion

u = ln
(
−2ψ′

T 2

)
+

T 2

6
S(ψ(x)) + O(T 3),

where S(x) = {f ;x}. The singularity data are ψ and 1
6S(ψ(ξ)).

Proof. Noncharacteristic singularities occur on surfaces that are not parallel to
the axes, which means that f ′g′ remains positive. The singularity is therefore
described by f(ξ)+ g(η) = 0. By the implicit function theorem, we may write
locally ξ = ψ(η). This gives g(η) = −f(ψ(η)), and ψ′ = −g′(η)/f ′(ψ(η)) < 0.
Substituting ξ = T + ψ(η) into the representation formula, we obtain the
expansion of u after a short calculation. The proof of the theorem is complete.

�

We now show that the requirement that the solution have no initial singulari-
ties provides information on the number of components of the blowup surface:

Theorem 10.32. If u ∈ C3 for ξ + η small, then the singular set Σ, if
nonempty, is the graph of a decreasing function of ξ, and has at most two
components, one on each side of the second diagonal.

Proof. See Problem 10.10. �

Remark 10.33. The blowup set in this case has 0, 1, or 2 components. Ex-
amples are as follows: (a) no singularities: any example where f + g never
vanishes, such as f = arctan ξ, g = arctan η + π; (b) one singularity curve:
take f and g linear; (c) two singularity curves: ln[2/(1 − ξη)2].

Finally, we show that characteristic singularities may be emitted when the
singular set is deformed. The result is the following.
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Theorem 10.34. Generically, the crossing of two characteristic singularities
can be perturbed into (a) a solution without singularity or (b) a noncharac-
teristic singularity.

Proof. See Problem 10.11. �


10.7 Nirenberg’s example

If �u = 0, then v = lnu solves

�v + v2
t − |Dxv|2 = 0. (10.78)

This example, pointed out by Nirenberg in connection with the problem of
global existence, is the simplest equation that satisfies the “null condition”
(see [104]). By taking u close to 1, we see that the solution of (10.78) with small
initial data in an appropriate norm will have no singularity at all. On the other
hand, there are singular solutions, which correspond precisely to solutions of
the wave equation that take the value zero. In this case, the singularity data
that determine the WTC series are directly related to suitable Cauchy data.
Indeed, consider the solution of the Cauchy problem

�u = 0; u = 0 and ut = u1(x) for t = ψ(x),

where u1 and ψ are, say, in C∞ to fix ideas. This solution has the behavior

u(x, t) = (t− ψ(x))u1(x) + (t − ψ(x))2u2(x) + . . . ,

and is completely determined by the pair {ψ, u1}. Let us now relate this
solution to the WTC solutions for the equation for v.

Theorem 10.35. The solution v = lnu of equation (10.78) has a logarithmic
noncharacteristic singularity provided that u1 does not vanish. Its singularity
expansion is entirely determined by the data {ψ, u1}.
Proof. Letting T = t− ψ(x), we obtain

v(x, t) = lnT + lnu1(x) + O(T ).

The series is entirely determined by its first two terms. The singularity data
are therefore {ψ, lnu1}, as announced. �

Remark 10.36. If u is a solution of the wave equation that changes sign, the
theorem yields solutions that are real-valued only on part of space-time. Thus,
the solution v = ln(2x2−y2+t2) remains real on the outside of a cone, and its
singularity surface contains two lines of characteristic points, but is otherwise
noncharacteristic.

Remark 10.37. Nonnegative solutions of the wave equation, when they exist,
provide simple examples of solutions that are defined and real in a full neigh-
borhood of their singular locus.
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Problems

10.1. Show that each of the following problems admits a convergent series
solution of the form φ−m∑

j≥0 uj(x, t)φj ; find in each case the arbitrary co-
efficients.

1. (Caudrey–Dodd–Gibbon) ut + ∂x[uxxxx + 30uuxx + 60u3] = 0.
2. (Kaup–Kuperschmidt) ut = ∂x[uxxxx + 45

2 u2
x + 30uuxx + 60u3] = 0.

3. (Hirota–Satsuma) ut = 1
2uxxx + 3uux − 6vvx; vt = −wxxx − 3uvx.

4. (Nonlinear Schrödinger (NLS)) iut + uxx + 2u|u|2 = 0.
5. (Boussinesq) utt + ∂2

x[
1
3 + u2] = 0.

6. (modified KdV (mKdV)) ut − 3u2ux + 2σ2uxxx = 0.
7. (Fifth-order KdV (KdV5)) 4ut = ∂x(uxxxx + 5u2

x + 10uuxx + 10u3).
8. (Kadomtsev–Petviashvili (KP)) ∂x[ut + uux + δuxxx] + uyy = 0.
9. (sine–Gordon) uxt = sinu (in this case, expand exp iu rather than u).

10.2. Analyze the singular series solutions of the H. Dym equation ut =
∂3
xu

−1/2. (Let v = 1/
√

u and seek a solution in powers of φ1/3.)

10.3. Throughout this problem we are interested in solutions u of various
nonlinear PDEs in n space dimensions that blow up on a hypersurface of
equation t = ψ(x); the blowup time is t∗ = infx ψ(x).

(a) Find singular solutions of �u = um for m integer ≥ 2 by reduction.
What happens if m is odd? List all possible ways to continue the solution
after blowup, as a real or a complex solution.

(b) Same question if m = p/q, and for m > 1 irrational.
(c) Show that the condition for the absence of the logarithms in the series

is given by the vanishing of the coefficient of the first logarithmic term, and
that this condition depends only on the geometry of the blowup surface as a
hypersurface of Minkowski space.

(d) Write out this condition explicitly for m = 2 and one space dimension.
(e) By choosing ψ suitably, construct examples of solutions with smooth

data (hence of locally6 finite “energy” in any reasonable sense) that (i) blow
up at precisely N points for t = t∗, for any given N ; (ii) blow up on the
surface of a sphere for t = t∗; (iii) are finite for every x if t = t∗.

(f) In one space dimension, find examples such that at any time t > t∗,
the solution is finite except at two points x1(t), x2(t), which become equal
for t = t∗ and move apart as t increases. If the growth of ψ as |x| → ∞ is
sublinear, show that this structure of the blowup points in space as a function
of time is not preserved by Lorentz transformations.

10.4. Find singular solutions for �u = umt , for m > 1.

10.5. Find singular solutions for the “φ4 equation” uxt + u− u3 = 0.

6 Behavior at infinity is irrelevant for the study of local behavior of equations
admitting finite speed of propagation.
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10.6. On any of the examples of problem 10.3, derive self-similar asymptotics
from the expansions given by reduction, in the spirit of Sect. 10.2.7, and show
that the domain of validity of self-similar asymptotics is always smaller than
the domain of validity of expansions given by reduction.

10.7. (a) Show that for nonlinear wave equations of the form �u = f(u),
where f is a polynomial, the condition that no logarithms occur in the expan-
sion of singular solutions is invariant under Lorentz transformation.

(b) In the expansion of singular solutions of (10.16), find the expression
for the coefficients u1, u2, u3, and u4,0. Check that logarithms are absent if
and only if u4,0 = 0.

(c) Consider a particular point P on the blowup surface, corresponding
to X = X0. Show that after performing a Lorentz transformation, one may
assume that ∇ψ(X0) = 0. How does this simplify the formulas in (b).

(d) Can one give a geometric interpretation of the coefficients in (b)? In
particular, can they be expressed in terms of the first and second fundamental
forms of Σ? Work out the case of low dimensions.

(e) Compute the first few terms of series (10.31) and give a geometric
interpretation for them along the lines of (d).

(f) Discuss the continuation of solutions of the nonlinear wave equations
in this chapter, in the real and the complex domains. One may, for instance,
consider functions of the unknown that are smooth up to the blowup set.

10.8. What is the smallest � such that the renormalized unknown v in the
solution of (10.15) belongs to A�? Same question for equation (10.16). Hint:
Compare with Problem 2.3.

10.9. Perfom reduction directly on equation (10.55).

10.10. Prove Theorem 10.32

10.11. Prove Theorem 10.34

10.12. Perform a reduction analysis of equation

ut + ∂x{αuxxxx + βuuxx + γu2
x + μuxx + qu2 + ru3} = 0,

where α, β, γ, μ, q, and r are constants. List all cases in which there is one
branch of singular solutions with four nonnegative resonances. In each case,
estimate the number � such that the reduced equation may be solved in the
algebra A�. (This is solved in [180, Sect. 5]. This equation arises as a higher-
order model for water waves, beyond the KdV approximation; see [121], which
also mentions other applications.)

10.13. Perform a reduction analysis of the forced KdV equation

ut + uux − uxxx = f(x, t),

where f is, say, a polynomial, and prove the analogue of Theorem 10.27.
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Boundary Blowup for Nonlinear Elliptic
Equations

Thanks to the detailed asymptotics on solutions of elliptic PDEs with bound-
ary blowup proved in Chap. 9, we give a variational characterization of these
singular solutions. It relies on an inequality that contains both Hardy’s and
Trudinger’s inequalities. As a result, a global bound on the maximal solution
is obtained. Results are from [118].

Let Ω be an arbitrary domain in R
N , N ≥ 2, of class C2+α; in this chapter,

we let δ(x) denote the distance of x from ∂Ω. The nonlinear PDE

−Δu + f(u) = 0

on Ω, with f monotone, with power or exponential growth to fix ideas, ad-
mits a maximal solution [100, 153] that dominates all solutions with bounded
boundary data. Since this maximal solution tends uniformly to +∞ as one
approaches the boundary, it is said to “blow up at the boundary.” This
has been proved on typical examples in Sect. 9.7 and Problem 9.1. This
remarkable fact provides a uniform interior bound for solutions, which de-
pends on the distance to the boundary and not at all on the boundary
data. There is an extensive literature on the issue of boundary blowup; see
[7, 8, 9, 10, 100, 128, 131, 137, 140, 153] and their references for details.

Even though the equation is formally the Euler–Lagrange equation of a
first-order Lagrangian, the integral of this Lagrangian is divergent for the
maximal solution. We show how to circumvent this problem. This leads to a
renormalized functional that will be shown to be finite on H1

0 (Ω) thanks to a
synthesis of Hardy’s and Trudinger’s inequalities.

We begin with background information and the statement of the main re-
sults. The rest of the chapter is devoted to the proof of these results. Sect. 11.2
states and proves two auxiliary results (Theorems 11.9 and 11.12), from which
generalizations of Hardy’s and Trudinger’s inequalities (Theorems 11.5 and
11.6) follow as special cases. The main results, Theorem 11.1 and Corrol-
lary 11.3, are both proved in Sect. 11.3. The proofs of Sect. 11.2 require the
construction of a partition of unity with special properties, carried out in
Sect. 11.4.
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11.1 A renormalized energy for boundary blowup

Let Ω ⊂ R
2 be a bounded domain of class C2+α, with 0 < α < 1. The

distance function δ(x) is of class C2+α near and up to the boundary, but is
merely Lipschitz over Ω in general. It is therefore convenient to introduce a
function d(x) ∈ C2+α(Ω), which coincides with δ(x) near ∂Ω, and is positive
inside Ω.1

Consider the maximal solution uΩ of the Liouville equation

−Δu + 4e2u = 0 (11.1)

in Ω. It is known that uΩ is the supremum of all solutions of the Dirichlet
problem with smooth boundary data, and that it is equivalent to − ln(2d)
near the boundary. Even though the equation is formally the Euler–Lagrange
equation derived from the Lagrangian L[u] := |∇u|2 + 4e2u, a direct varia-
tional approach is impossible, because L[uΩ] �∈ L1(Ω). Nevertheless, Fuchsian
reduction [111, 113, 115] enables one to decompose uΩ into an explicit singular
part v and a more regular function w,

uΩ = v + w,

where the following properties hold:

(P1) w ∈ C1+α(Ω) ∩ C2(Ω);
(P2) w = O(d) as d → 0;
(P3) ev = O(1/d) as d → 0;
(P4) r[v] := −Δv + 4e2v = O(1/d) as d → 0.

One may, for instance, take v = − ln(2d) [113].
For φ ∈ H1

0 , let us define

R[φ, v] :=
∫
Ω

|∇φ|2 + 4e2v[e2φ − 1 − 2φ] + 2r[v]φ, (11.2)

which is well defined thanks to (11.4), properties (P3–P4), and Hardy’s in-
equality. The volume element in integrals is omitted for convenience. We then
have a variational characterization of uΩ:

Theorem 11.1. The infimum

Inf{R[ψ − v, v] : ψ ∈ v + H1
0 (Ω)}

is attained precisely for ψ = uΩ.

Since v is given, this provides a characterization of uΩ.

1 One may simply take d = F (δ) for an appropriate F .
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Remark 11.2. The result may be stated equivalently as follows: if φ ∈ H1
0 ,

then
R[φ, v] ≥ R[w, v], (11.3)

with equality if and only if φ = w.

As a consequence of the variational characterization, we derive a new global
a priori bound on uΩ:

Corollary 11.3. The maximal solution uΩ of Liouville’s equation satisfies

‖uΩ + ln(2d)‖H1
0
≤ 2H‖Δd‖L2(Ω).

Remark 11.4. The boundary blowup problem appears at first sight to be be-
yond the reach of critical-point theory. We have shown that it is in fact equiv-
alent to the minimization of a convex functional in H1

0 . How is this functional
related to the usual functional E[u] :=

∫
Ω

L[u]? Take v = − ln(2d) to fix
ideas. Even though E[u] is infinite for u = uΩ, it is easy to see that if φ is
smooth and sufficiently flat near the boundary, Ẽ[φ] :=

∫
Ω

L[φ + v] − L[v]
is well defined. But this does not provide a satisfactory variational principle
for two reasons: (i) uΩ − v is not very flat at the boundary; it is only O(d);
(ii) Ẽ[φ] is not well defined if φ is merely O(d) (indeed, the term 2∇φ · ∇v
is not necessarily integrable). However, subtracting

∫
Ω 2 div(φ∇v) from Ẽ[φ],

and using the equation satisfied by v, one recovers an expression equivalent
to our functional R. Note that the integral of this divergence term is not zero,
even if φ is smooth, because ∇v blows up at the boundary.

11.2 Hardy–Trudinger inequalities

In this section, Ω ⊂ R
N , N ≥ 2, is an arbitrary domain with ∂Ω �= ∅.

11.2.1 Background results and motivation

If Ω is bounded with Lipschitz boundary, and u ∈ H1
0 (Ω), the generalized

Hardy’s inequality states that
∥∥∥u

δ

∥∥∥
L2(Ω)

≤ H‖∇u‖L2(Ω).

The optimal value of the “Hardy constant” H , as well as possible general-
izations and improvements of this inequality, have been the object of much
attention; see [139, 141, 152]. Hardy’s inequality arises naturally in several
variational problems, as well as in the proof of decay estimates [9, 105].

On the other hand, if N = 2, Trudinger’s inequality implies that exp(u2)−1
is integrable. This suggests our first result:
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Theorem 11.5. Let Ω ⊂ R
2 be such that Hardy’s inequality holds. Then, for

any u ∈ H1
0 (Ω),

[exp(u2) − 1]/δ2 ∈ L1(Ω).

This theorem will be derived from a result of independent interest:2

Theorem 11.6. Let Ω ⊂ R
2 be an arbitrary domain with ∂Ω �= ∅. Then, if

u ∈ H1
0 (Ω), and q > 2,

(∫
Ω

uq

δ2

)1/q

≤ Σq

(∫
Ω

|∇u|2 +
u2

δ2

)1/2

,

where Σq = O(q1/2+1/q) as q → ∞.

Remark 11.7. These results admit natural generalizations to higher dimen-
sions, which are stated and proved in Sect. 11.2. Theorem 11.6 may be con-
sidered as trivially true if ∂Ω = ∅ with the convention that δ ≡ +∞ in this
case. For background results on Trudinger’s inequality, see [177, 145, 6, 29];
our argument is closer to Trudinger’s than to Moser’s, because the distance
function does not transform in a convenient manner under symmetrization.

Remark 11.8. No regularity or boundedness assumptions on Ω are required.
This is somewhat surprising in view of the fact [6, p. 120] that elements of
H1(Ω) are not necessarily Lq for q > 2 if Ω is unbounded and with finite
volume. Note that for domains with thin “ends” at infinity, δ is very small,
and the r.h.s. of our inequality is not equivalent to the H1 norm.

In the situation of Theorem 11.5, we find in particular that

e2u − 1 − 2u
δ2

∈ L1(Ω). (11.4)

The N -dimensional analogues of Theorems 11.5 and 11.6 are stated in
Sect. 11.2.2, and proved in Sects. 11.2.3 and 11.2.4 respectively.

11.2.2 A synthesis of Hardy’s and Trudinger’s inequalities

Let N ′ = N/(N − 1) and define

ΦN (u) :=
∑

k≥N−1

|u|kN ′

k!
,

and, for 1 ≤ p < ∞,

Mp(u) :=
(∫

Ω

|∇u|p +
|u|p
δp

)1/p

.

2 The Lebesgue measure dx is understood in all integrals in this chapter.



11.2 Hardy–Trudinger inequalities 221

Theorem 11.9. If ∂Ω �= ∅, there are constants c1 and c2, which depend only
on the dimension N , such that for any u ∈ W 1,N

0 (Ω) with MN(u) = 1,
∫
Ω

ΦN (u/c1)
δN

≤ c2.

Remark 11.10. Note that no smoothness or boundedness assumptions on Ω
are required, and that MN (u) is not necessarily equivalent to the W 1,N

0 norm.
This result implies Theorem 11.6.

Remark 11.11. If Ω is bounded and Lipschitz, Hardy’s inequality holds, and
we claim that ΦN (u) is integrable for any u ∈ W 1,N

0 (Ω): write u = f+g, where
f is smooth with compact support; since (|f |+ |g|)kN ′ ≤ 2kN

′
(|f |kN ′

+ |g|kN ′
),

we have ΦN (f + g) ≤ ΦN (2f) + ΦN (2g). The result follows if g is small in
W 1,N

0 . For N = 2 and u ∈ H1
0 (Ω), we recover Theorem 11.5.

11.2.3 An auxiliary result

Let 1 ≤ p ≤ N , p∗ = Np/(N − p) if p < N (respectively p∗ = +∞ if p = N).

Theorem 11.12. If N ≥ 2, Ω is a domain in R
N , 1 ≤ q < ∞, and 1 ≤ p <

q ≤ p∗, there is a constant Σq(N, p) such that

(∫
Ω

|u|q
δN

)1/q

≤ Σq

(∫
Ω

|∇u|p
δN−p +

|u|p
δN

)1/p

for any u ∈ W 1,p(Ω).

Remark 11.13. In general, the right-hand side may be infinite. If p = N and
Hardy’s inequality holds in Ω, the right hand side is finite for u ∈ W 1,p

0 (Ω).

11.2.4 Proof of Theorem 11.12

Step 1: Partition of unity. Denote by Q(x, s) the cube of center x and side
s. We prove in Sect. 11.4 that there is a smooth partition of unity (φk)k≥0 in
Ω with the following properties:

(PU1) For every k, φk is supported in a cube Qk = Q(xk, sk) ⊂ Ω and∑
k

φk = 1.

(PU2) For every k, 0 ≤ φk ≤ 1 and |∇φk| ≤ c3/sk, where c3 depends only on
N .

(PU3) There are two positive constants λ and μ such that on suppφk, λ ≤
δ/sk ≤ μ.

(PU4) There is an integer P that depends only on the dimension N such that
for every x ∈ Ω, φk(x) is nonzero for at most P values of k.
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Simple consequences of these properties are:

1. For every q ≥ 1,
∑
k φqk ≤ 1.

2.
∑

k χQk
≤ P , where χQk

denotes the characteristic function of Qk.
3. (

∑
k φk)q ≤ P q

∑
k φqk. Indeed, for any x, φk(x) �= 0 for at most P values

of k, so that (
∑

k φk(x))q ≤ P q maxk φk(x)q.

We also need an elementary observation: for any collection of nonnegative
numbers bk, and any r ≥ 1,

∑
k

brk ≤
(∑

k

bk

)r
. (11.5)

This may be seen for finite sequences by induction, starting from the inequality
xr + yr ≤ (x + y)r. Recall also that (x + y)r ≤ 2r(xr + yr).

Step 2: Decomposition of u. For any u ∈ W 1,p(Ω), we have
∫
Ω

|u|q
δN

=
∫
Ω

|
∑
k

uφk|qδ−N

≤ P q
∑
k

∫
Qk

|uφk|qδ−N

≤ P q
∑
k

(λsk)−N‖uφk‖qLq(Qk).

Write Q(s) for Q(0, s), and let Sq = Sq(N, p) denote the norm of the embed-
ding of W 1,p

0 (Q(1)) into Lq(Q(1)). If v ∈ W 1,p
0 (Q(s)), the Sobolev inequality

applied to v(sx) ∈ W 1,p
0 (Q(1)) gives

‖v‖Lq(Q(s)) ≤ Sqs
N
q +1−N

p ‖∇v‖Lp(Q(s)). (11.6)

It follows that for every k,

(λsk)−N‖uφk‖qLq(Qk) ≤ Sqqλ
−Ns

q(p−N)/p
k ‖∇(uφk)‖qLp(Qk).

It follows that

(∫
Ω

|u|q
δN

)p/q
≤ (PSq)p

(∑
k

λ−Ns
q(p−N)/p
k ‖∇(uφk)‖qLp(Qk)

)p/q

≤ (PSqλ
−N/q)p

∑
k

sp−Nk ‖∇(uφk)‖pLp(Qk)

≤ (2PSqλ
−N/q)p

∑
k

sp−Nk

[
‖φk∇u‖pLp(Qk) + ‖u∇φk‖pLp(Qk)

]
,

where we used (11.5) to obtain the second inequality. Now,
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∫
Ω

∑
k

sp−Nk φpk|∇u|p ≤ μN−p
∫
Ω

|∇u|p
δN−p

and

∑
k

sp−Nk ‖u∇φk‖pLp(Qk) ≤ cp3

∫
Ω

(
∑
k

χQk
(x))

|u|p
sNk

≤ Pcp3μ
N

∫
Ω

|u|p
δN

.

We have therefore the desired inequality, with

Σq = 2PSq(N, p)λ−N/q[μN−p + Pcp3μ
N ]1/p. (11.7)

This completes the proof.

11.2.5 Proof of Theorem 11.9

We now consider the case p = N , so that p∗ = +∞, and q can take arbitrarily
large values. From [69, Lemma 7.12 and (7.37)], it follows that

Sq(N,N) ≤ (ωNq)1−1/N+1/q if q ≥ N.

If q ≥ N − 1, we have N ′q ≥ N , and therefore,

SN ′q(N,N)N
′q ≤ (N ′qωN )q+1 if q ≥ N − 1.

For any c1 > 0, we therefore obtain
∫
Ω

∑
q≥N−1

|u|N ′q

q!cN
′q

1 δN
≤ c2 :=

∑
q≥N−1

λ−NN ′ωN

(
N ′ωNA

cN
′

1

)q
qq

(q − 1)!
,

where A = {2P [1+P (c3μ)N ]1/N}N ′
. The series defining c2 converges if cN

′
1 >

eωNN ′A. This completes the proof.

11.3 Variational characterization of solutions
with boundary blowup

11.3.1 Proof of Theorem 11.1

Let φ ∈ H1
0 (Ω). We wish to prove inequality (11.3). Since uΩ = v + w solves

Liouville’s equation,

Δw = −Δv + 4e2v + 4e2v(e2w − 1) = r[v] + 4e2v(e2w − 1). (11.8)

It follows from (P2–P4) that

Δw = O(1/d).
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Since w ∈ C1
0 (Ω) ∩ C2(Ω), we have, for any ψ ∈ C1

0 (Ω) and any ε > 0 small
enough, ∫

d>ε

∇ψ · ∇w =
∫
d=ε

ψ(∇w · ∇d) ds−
∫
d>ε

ψΔw.

Letting first ε → 0, and then approximating φ by ψ in the H1
0 norm, we obtain

∫
Ω

∇φ · ∇w +
∫
Ω

φΔw = 0. (11.9)

Using equation (11.8), we obtain
∫
Ω

∇φ · ∇w + 4e2v(e2w − 1)φ + r[v]φ = 0. (11.10)

Since

R[φ+w, v]−R[w, v] =
∫
Ω

|∇φ|2 +2∇φ ·∇w+4e2v[e2w+2φ−e2w−2φ]+2r[v]φ,

we obtain

R[φ + w, v] −R[w, v] =
∫
Ω

|∇φ|2 + 4e2(v+w)(e2φ − 1 − 2φ), (11.11)

which is manifestly nonnegative, and vanishes precisely if φ = 0. Q.E.D.

Remark 11.14. Since v+w = uΩ and r[uΩ ] = 0, the right hand side of equation
(11.11) is equal to R[φ, uΩ].

11.3.2 Proof of Corollary 11.3

Property (P4) and Hardy’s inequality ensure that there is a constant K[v]
such that

−
∫
Ω

2r[v]φ ≤ K[v]‖φ‖H1
0
.

Expressing that R[w, v] ≤ R[0, v] = 0, we obtain

‖w‖H1
0
≤ K[v].

If v = − ln(2d), one obtains r[− ln(2d)] = (Δd)/d. Hölder’s and Hardy’s
inequalities yield K[v] ≤ 2H‖Δd‖L2. Since w = uΩ − v, the announced a
priori H1 bound on uΩ follows.
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11.4 Construction of the partition of unity

We construct the partition of unity used in the proof of Theorem 11.12; the
basic ideas go back to Whitney [185], and many variants may be found in the
literature; see, e.g., [171, 141].

First of all, choose two constants η and η′ such that

η/
√

N > η′ > 1.

Recall that Q(x, s) is the closed cube of center x and side s. For any σ > 0,
we write Qσ(x, s) for Q(x, σs). The following observation will be useful: for
any x ∈ Ω,

δ(x) >
s

2

√
N ⇒ Q(x, s) ⊂ Ω ⇒ δ(x) >

s

2
.

Conversely,
δ(x) ≤ s

2
⇒ Q(x, s) �⊂ Ω ⇒ δ(x) ≤ s

2

√
N.

Covering by dyadic cubes

For k ∈ Z, let Fk denote the family of closed cubes of the form

[0, 2−k]N + (m1, . . . ,mN )2−k,

where the mj are signed integers. The cubes in Fk+1 are obtained by dyadic
subdivision of the cubes in Fk; in particular, for any k, every Q(x, s) ∈ Fk+1

is included in a unique cube Q̃(x̃, s̃) ∈ Fk, with s̃ = 2s. Since Q is obtained by
dyadic division of Q̃, x̃ must be a vertex of Q; it follows that |x− x̃| = 1

2s
√

N .
Also, if Q(x, s) ∈ Fk, s = 2−k and x/s has half-integer coordinates.

Let F =
⋃+∞
k=−∞ Fk. Define a set Q ⊂ F as follows: Q ∈ Q if and only if

Qη ⊂ Ω and Q̃η �⊂ Ω. (11.12)

The set F is not empty, since ∂Ω �= ∅ by assumption.

Lemma 11.15. Ω is the union of the cubes Q ∈ Q.

Proof. Let y ∈ Ω. Consider the set of numbers k for which there is a cube
Q(x, 2−k) ∈ Fk that contains y and that satisfies Qη ⊂ Ω. This set is not
empty: if k is large enough, we have δ(x) ≥ δ(y) − 1

22−k
√

N > 1
22−kη

√
N ,

and Qη ⊂ Ω. It is bounded below because ∂Ω �= ∅. Let k0 be the smallest
integer in that set, and consider a cube Q with the above property with k = k0.
Since k0 is minimal, Q̃η �⊂ Ω. Therefore, y ∈ Q ∈ Q, as desired. �

Since for each Q ∈ Q, Q ⊂ Qη′ ⊂ Ω, we have a fortiori

Ω =
⋃
Q∈Q

Qη′ .



226 11 Boundary Blowup for Nonlinear Elliptic Equations

Properties of the cube decomposition

We now prove that the covering of Ω by the cubes Qη′ has the additional
property that on each of them, the function δ is comparable to the side of Q:

Lemma 11.16. There are positive constants c4 and c5, independent of Ω,
such that if Q(x, s) ∈ Q and y ∈ Qη′ , then

c4 ≤ δ(y)
s

≤ c5.

Proof. Since Qη ⊂ Ω, δ(x) > ηs/2. If y ∈ Qη′ , δ(y) ≥ δ(x) − 1
2η

′s
√

N >
1
2 (η − η′

√
N)s. Therefore,

1
2
(η −

√
Nη′) <

δ(y)
s

.

To establish an upper bound, we first estimate δ(x)/s. Since Q(x, ηs) ⊂ Ω
and Q̃(x̃, 2ηs) �⊂ Ω, δ(x) > 1

2ηs and δ(x̃) ≤ 1
2 (2ηs)

√
N . Therefore,

δ(x) ≤ δ(x̃) + |x− x̃| ≤
(
η +

1
2

)
s
√

N.

Therefore, if Q(x, s) ∈ Q,

1
2
η <

δ(x)
s

≤
(
η +

1
2

)√
N. (11.13)

We now estimate δ(y):

δ(y) ≤ δ(x) +
1
2
η′s

√
N ≤

(
η +

1
2

+
1
2
η′
)

s
√

N.

It follows that δ(y)/s lies between positive bounds that do not depend on Ω,
as desired. �


Finite intersection property

The cubes Qη′ are not disjoint; nevertheless, two such cubes may intersect
only if the ratio of their sides lies between fixed bounds; this implies that a
given cube may intersect only finitely many others.

Lemma 11.17. There is a constant c6, independent of Ω, such that if Q(x, s)
and Q′(x′, s′) belong to Q, and if Q(x, η′s) ∩ Q′(x′, η′s′) �= ∅, with s < s′,
necessarily

s < s′ < c6s.

Furthermore, there is a number P , independent of Ω, such that given Q ∈ Q,
there are at most P cubes Q′ ∈ Q such that Qη′ ∩Q′

η′ �= ∅.
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Proof. Let y ∈ Qη′ ∩Q′
η′ . We have |x−x′| ≤ |x−y|+ |y−x′| ≤ 1

2 (s+s′)η′
√

N .
Since Q and Q′ both belong to Q, inequality (11.13) yields δ(x′) > 1

2ηs
′ and

δ(x) ≤ (1
2 + η)s

√
N . Since δ is 1-Lipschitz,

1
2
ηs′ < δ(x′) ≤ δ(x) + |x− x′| ≤

[(
1
2

+ η +
1
2
η′
)

s +
1
2
η′s′

]√
N.

It follows that s′ < c6s with

c6 =
2η + 1 + η′

η − η′
√

N

√
N.

Therefore, if s = 2−k and s′ = 2−k
′
, we have |k − k′| ≤ J1 := ln c6/ ln 2. On

the other hand, |x − x′| ≤ 1
2 (s + s′)η′

√
N ≤ J2s, with J2 = 1

2 (1 + c6)η′
√

N .
Scaling the cubes by the factor 1/s, and taking x as the origin of coordinates,
we are led to the question, “how many cubes Q(x′, 2−j) ∈ Fj can one find
subject to the restrictions |j| ≤ J1 and |x′| ≤ J2?” The answer is a finite
number P , which depends only on N , η, and η′. �


The partition of unity

Take a smooth function ϕ(x) with support in Q(0, η′), equal to 1 on Q(0, 1),
and such that 0 ≤ ϕ(x) ≤ 1 for all x. Consider

ψ(x) =
∑

Q=Q(xQ,sQ)∈Q
ϕ

(
x− xQ

sQ

)
.

Since the cubes Q ∈ Q cover Ω, ψ(x) ≥ 1 for all x ∈ Ω. Since any point
belongs to at most P of the cubes Qη′ , we have ψ(x) ≤ P for all x ∈ Ω. It
follows that the functions φQ(x) := ϕ((x− xQ)/sQ)/ψ(x) form a partition of
unity, and are supported in the cubes Qη′ .

We now prove that properties (PU1–4) of Sect. 11.2.4 hold. (PU1) and
(PU2) are immediate. If x ∈ Qη′ , Lemma 11.16 ensures that δ(x)/sQ is
bounded above and below by positive bounds that depend only on N . This
proves property (PU3). Finally, since ϕ((x− xQ)/sQ) is supported in Q′

η, we
find, thanks to Lemma 11.17, that (PU4) holds. This completes the construc-
tion of the partition of unity.

Problems

11.1. Let α > 0 and p > α+1. Fix R > 0. Apply reduction to find a solution
of

−(|u′|p−2u′)′ +
n− 1

r
|u′|p−2u′ + uα = 0, (11.14)
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for R − r small and positive such that u(r) ∼ u0(R − r)σ(1 + O((R − r)ε)
with σ > 1 and ε > 0; show that σ = p/(p − α − 1). Remark: This problem
shows how to construct solutions of equations of p-Laplacian type with “dead
zones” [110, 123, 52]; u extended by zero for r > R satisfies the equation
in the weak sense. These ideas go back further, in particular to suggestions
by Brezis on the possible existence of solutions with compact support for
nonlinear problems.
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Distance Function and Hölder Spaces

We prove the basic properties of the distance to the boundary of a C2+α

domain that are required in the study of boundary blowup. We also give sev-
eral characterizations of Hölder spaces, and the proof of the interior Schauder
estimates; further details may be found in [117, 69].

12.1 The distance function

We prove a few properties of the function d(x) = dist(x, ∂Ω) when Ω⊂R
n is

bounded with boundary of class C2+α. Without a smoothness assumption on
the boundary, all we can say is that d is Lipschitz; indeed, since the boundary
is compact, there is, for every x, a z ∈ ∂Ω such that d(x) = |x− z|. If y is any
other point in Ω, we have d(y) ≤ |y− z| ≤ |y−x|+ |x− z| = |y−x|+ d(x). It
follows that |d(x)−d(y)| ≤ |x−y|. For more regular ∂Ω, we have the following
results:

Theorem 12.1. If ∂Ω is bounded of class C2+α,

1. There is a δ > 0 such that every point such that d(x) < δ has a unique
nearest point on the boundary.

2. In this domain, d is of class C2+α; furthermore, |∇d| = 1, and

−Δd =
∑
j

κj
1 − κjd

,

where κ1, . . . , κn−1 are the principal curvatures of ∂Ω. In particular,
−Δd/
(n − 1) is equal to the mean curvature of the boundary.

Proof. We work near the origin, which we may take on ∂Ω. Our proofs will
give local information near the origin, which can be made global by a standard
compactness argument.
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Choose the coordinate axes so that Ω is locally represented by {xn >
h(x′)}, where x′ = (x1, . . . , xn−1) and h is of class C2+α with h(0) = 0 and
∇h(0) = 0. We may also assume that the axes have been rotated so that the
Hessian (∂ijh(0)) is diagonal. Its eigenvalues are, by definition, the principal
curvatures κ1, . . . , κn−1 of the boundary. Their average is, again by definition,
the mean curvature of the boundary. At any boundary point, the vector with
components

ν(x′) = (νi) = (−∂1h, . . . ,−∂n−1h, 1)/
√

1 + |∇h|2

is the inward normal to ∂Ω at that point. One checks that ∂jνi(0) =
−∂ijh(0) = κjδij for i and j less than n. Thus, ν is of class C1. For any T > 0
and Y ∈ R

n−1, both small, consider the point x(Y, T ) = (Y, h(Y )) + Tν(Y );
this represents the point obtained by traveling the distance T into Ω along
the normal, starting from the boundary point (Y, h(Y )). We write

Φ : (Y, T ) �→ x(Y, T ).

We want to prove that all points in a neighborhood of the boundary are
obtained by this process, in a unique manner: in other words, (Y, h(Y )) is
the unique closest point from x(Y, T ) on the boundary, provided that T is
positive and small. It suffices to argue for Y = 0; in that case, since h is C2, it
is bounded below by an expression of the form a|Y |2, which implies that for
T sufficiently small, the sphere of radius T about x(Y, T ) contains no point
of the boundary except the origin.1 We may now consider the new coordinate
system (Y, T ) thus defined. We compute, for Y = 0, but T not necessarily
zero,

∂xi
∂Yj

= δij(1 − κjT )

for i and j < n, while

∂xn
∂Yj

=
∂xi
∂T

= 0;
∂xn
∂T

= 1.

The inverse function theorem shows that near the origin, the map Φ and its
inverse are of class C1, and that the Jacobian of Φ−1 is, for Y = 0,

∂(Y, T )
∂x

= diag
(

1
1 − κ1T

, . . . ,
1

1 − κn−1T
, 1
)

.

In fact, Φ−1 is of class C1+α. Indeed, Φ has this regularity, the differential of
Φ−1 is given by [Φ′ ◦ Φ−1]−1, and the map A �→ A−1 on invertible matrices
is a smooth map. Since ν(Y ), which is equal to the gradient of d, is a C1+α

function of Y , we see that it is also a C1+α function of the x coordinates. It

1 Indeed, the equation of this sphere is xn = T −√T 2 − |Y |2, which, by inspection,
is bounded below by a|Y |2 for 2aT < 1.
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follows that d is of class C2+α. The computation of the second derivatives of
d now results from that of the first-order derivatives of ν.

It follows from this discussion that T = d near the boundary, |∇d| = 1,
and ∇d = ν. �


Since ∂Ω is compact, there is a positive r0 such that in any ball of radius
r0 centered at a point of ∂Ω, one may introduce a coordinate system (Y, T ) in
which T = d is the last coordinate. We may assume that the domain of this
coordinate system contains a set of the form

0 < T < θ and |Yj | < θ for j ≤ n − 1.

Let ∂j = ∂xj , and write dn and dj for ∂d/∂xn and ∂d/∂xj respectively. Primes
denote derivatives with respect to the Y variables: ∂′

j = ∂Yj , ∇′ = ∇Y ,
Δ′ =

∑
j<n ∂′2

j , etc. We write ∇̃d = (d1, . . . , dn−1). We let throughout

D = T∂T .

The transformation formulas are

T = d(x1, . . . , xn); Yj = xj for j < n;
∂n = dn∂T ; ∂j = dj∂T + ∂′

j .

We recall that Δd = (1 − n)H , where H is the mean curvature of ∂Ω. We
further have

d∇d · ∇w = (D + T ∇̃d · ∇′)w,

|∇w|2 = w2
T + |∇′w|2 + 2wT ∇̃d · ∇′w,

Δw = wTT + Δ′w + 2∇̃d · ∇′wT + wTΔd.

12.2 Hölder spaces on C2+α domains

12.2.1 First definitions

Let Ω ⊂ R
n be a domain (i.e., an open and connected set).

Definition 12.2. A function u is Hölder continuous at the point P of Ω, with
exponent α ∈ (0, 1), if

[u]α,Ω,P := sup
Q∈Ω,Q�=P

|u(P ) − u(Q)|
|P −Q|α < ∞.

It is Hölder continuous over Ω, or of class Cα(Ω), if it satisfies this con-
dition for every P ∈ Ω. We write [u]α,Ω := supP [u]α,Ω.

It is of class Cα(Ω) if

‖u‖Cα(Ω) := sup
Ω

|u| + [u]α,Ω.
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Functions of class Cα are in particular uniformly continuous. If ∂Ω is smooth,
one can extend u by continuity to a continuous function on Ω; for this reason,
it is sometimes convenient to write Cα(Ω) for Cα(Ω) in this case, to emphasize
that u is continuous up to the boundary. It is easy to check that

[uv]α,Ω ≤ ‖u‖Cα(Ω)‖v‖Cα(Ω).

Higher-order Hölder spaces Ck+α(Ω) are defined in the natural way: first,
write |∇ku| for the sum of the absolute values of the derivatives of u of order
k, and define [∇ku]α,Ω similarly; then, define

‖u‖Ck(Ω) := max
0≤j≤k

sup
Ω

|∇ju|

and
‖u‖Ck+α(Ω) := ‖u‖Ck(Ω) + [∇ku]α,Ω.

In all these norms, the reference domain Ω will be omitted whenever it is clear
from the context.

12.2.2 Dyadic decomposition

The Hölder spaces defined above are all Banach spaces, but smooth functions
are not dense in them: even in one dimension, if (fm) is a sequence of smooth
functions and f ∈ Cα(R) is such that ‖f − fm‖Cα(R) → 0, one proves easily
that for any P and any ε > 0, there is a neighborhood of Q on which |f(P )−
f(Q)| ≤ ε|P − Q|α. In other words, limQ→P |f(P ) − f(Q)||P − Q|−α = 0.
Any function f that does not satisfy this property cannot be approximated
by smooth functions in the Cα norm. Nevertheless, there is a systematic way
to decompose Hölder-continuous functions on R

n into a uniformly convergent
sum of smooth functions: define the Fourier transform of u by

û(ξ) =
∫

Rn

e−ix·ξu(x) dx

and consider ϕ ∈ C∞
0 (R) such that 0 ≤ ϕ ≤ 1, ϕ = 1 for |x| ≤ 1, ϕ = 0 for

|x| ≥ 0. Define

û0 = ϕ(|ξ|)û(ξ); ûj = [ϕ(2−j |ξ|) − ϕ(2−(j−1)|ξ|)]û(ξ) for j ≥ 1.

We let v̂j = û0 + · · · + ûj.

Definition 12.3. The decomposition

u =
∑
j≥0

uj

is the Littlewood–Paley (LP), or dyadic decomposition, of u [171].
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By Fourier inversion, we have

uj = ψj ∗ u with ψj(x) = 2jnψ(2jx),

where ψ(x) = (2π)−n
∫

Rn [ϕ(|ξ|/2)−ϕ(|ξ|)] exp(ix · ξ)dξ. Note that ψ̂ vanishes
near the origin; in particular, ψ̂j(0) =

∫
Rn ψjdx = 0.

Theorem 12.4. Let 0 < α < 1.

1. (Bernstein’s inequality) There is a constant C such that for any k,
supx(|∇kuj | + |∇kvj |) ≤ C2jk supx |u(x)|.

2. If u ∈ Cα(Rn), there is a constant C independent of j such that

sup
x

|uj(x)| ≤ C2−jα‖u‖Cα .

3. Conversely, if the above inequality holds for every j ≥ 1, then u ∈ Cα(Rn).

Proof. (1) On the one hand, we have |uj(x)| ≤ ‖ψ‖L1 sup |u| and |vj(x)| ≤
‖φ‖L1 sup |u|. On the other hand, if a is a multi-index of length k,

|∇auj(x)| =
∣∣∣∣
∫

u(y)2jk∇aψ[2j(x− y)]2jndy
∣∣∣∣ = C2jk sup |u|.

The result follows.
(2) Since

∫
ψ(y)dy = 0, uj may be written, for j ≥ 1, as

uj(x) =
∫

[u(x− y) − u(x)]2jnψ(2jy)dy =
∫

[u(x− z/2j) − u(x)]ψ(z)dz.

If u ∈ Cα, it follows that

|uj(x)| ≤ 2−jα[u]α
∫

|z|α|ψ(z)|dz,

QED.
(3) Conversely, if the uj are of order 2−jα, the series u0 + u1 + · · · con-

verges uniformly. Call its sum u; it is readily seen that the uj do give its LP
decomposition. We may apply (1) to uj−1 + uj + uj+1, and obtain

sup
x

|∇uj(x)| ≤ C2j(1−α).

Writing u = vj−1 + wj , where wj = uj + uj+1 + · · · , we find that

|u(x) − u(y)| ≤
∑
j>k

|x− y| sup |∇uj | + 2 sup |wj |

≤ C|x− y|(1 + · · · + 2(j−1)(1−α)) + C2−jα

≤ C[2−jα + |x− y|2j(1−α)].

Choose j such that 2−j ≤ |x− y| ≤ 2−(j−1). A bound on [u]α follows. �
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12.2.3 Weighted norms

Several of the results we shall prove estimate the Hölder norm of a function
u on a ball of radius R in terms of bounds on the ball of radius 2R with the
same center. In order to exploit these inequalities in a systematic fashion, it
is useful to define Hölder norms weighted by the distance to the boundary.
Let Ω �= R

n and let d(P ) denote the distance from P to ∂Ω, and

dP,Q = min(d(P ), d(Q)).

Let also δ be a smooth function in all of Ω that is equivalent to d for d
sufficiently small.2 Define, for k = 0, 1, . . . ,

‖u‖#
k,Ω =

k∑
j=0

sup
Ω

dj |∇ju|

and

‖u‖#
k+α,Ω =

k∑
j=0

‖δju‖Cj+α(Ω).

The spaces corresponding to these norms are called Ck
#(Ω), Ck+α

# (Ω). The
space Ck+α

∗ (Ω) has the norm

‖u‖∗k+α,Ω = ‖u‖∗k,Ω + [u]∗k+α,Ω ,

where

‖u‖∗k,Ω =
k∑
j=0

[u]∗j,Ω,

with [u]∗k,Ω = supΩ dk|∇ku| and

[u]∗k+α,Ω = sup
P,Q∈Ω

dk+αP,Q

|∇ku(P ) −∇ku(Q)|
|P −Q|α .

We also need the further definitions

[u](σ)
α,Ω = sup

P,Q∈Ω
dα+σ
P,Q

|u(P ) − u(Q)|
|P −Q|α ; ‖u‖(σ)

α,Ω = sup
Ω

|dσu| + [u](σ)
α,Ω.

As before, the mention of Ω will be omitted whenever possible.

2 Such a function is easy to construct if Ω is bounded and smooth. Note that even
in this case, d is smooth only near the boundary; see Sect. 11.1.
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12.2.4 Interpolation inequalities

Theorem 12.5. For any ε > 0, there is a constant Cε such that

[u]∗1 ≤ ε[u]∗2 + Cε sup |u|,
[u]∗1 ≤ ε[u]∗1+α + Cε sup |u|,
[u]∗2 ≤ ε[u]∗2+α + Cε[u]∗1,

[u]∗1+α ≤ ε[u]∗2 + Cε sup |u|.
Proof. Recall the elementary inequality, for C2 functions of one variable t ∈
[a, b],3

sup |f | ≤ 2
b− a

sup |f | + (b − a) sup |f |.

Fix θ ∈ (
0, 1

2

)
, and P ∈ Ω. Let r = θd(P ). If Q ∈ Br(P ) and Z ∈ ∂Ω, we

have

|Z −Q| ≥ |Z − P | − |P −Q| ≥ d(P )(1 − θ) ≥ 1
2
d(P ) ≥ r ≥ |P −Q|.

It follows in particular that d(Q) ≥ d(P )(1 − θ) ≥ 1
2d(P ); hence

dP,Q ≥ 1
2
d(P ).

Applying the elementary inequality to u restricted to the segment [P, P+rei],4

where ei is the ith basis vector, we obtain

|∂iu(P )| ≤ 2
r

sup
Br

|u| + r sup
Br

|∂iiu|.

It follows that

sup
Br

|∂iiu| ≤ sup d(Q)−2 sup d(Q)2|∂iiu| ≤ [u]∗2
d(P )2(1 − θ)2

.

Therefore,

[u]∗1 = sup
Br

|d(Q)∂iu(Q)| ≤ 2
θ

sup |u| + θ

(1 − θ)2
[u]∗2.

If we choose θ such that θ(1 − θ)−2 ≤ ε, we arrive at the first of the de-
sired inequalities. For the second, we note that, using again the mean-value
theorem, there is on the segment [P, P + rei] some P̃ such that |∂iu(P̃ )| ≤
(2/r) supBr

|u|. It follows that

3 For the proof, write f ′(t) = f ′(s) +
∫ t

s
f ′′(τ )dτ , where s satisfies f ′(s) = (f(b) −

f(a))/(b− a).
4 By the choice of r, this segment lies entirely within Ω.
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|∂iu(P )| ≤ |∂iu(P̃ )| + |∂iu(P ) − ∂iu(P̃ )|
≤ 2

r
sup
Ω

|u|

×
(

sup
Q∈Br(P )

d−1−α
P,Q

)
|P − P̃ |α sup

Q∈Br(P )

d1+α
P,Q

|∇u(P ) −∇u(Q)|
|P −Q|α

≤ 2
r

sup
Ω

|u| + (2/d(P ))1+α(θd(P ))α[u]∗1+α.

Multiplying through by d(P ) = r/θ, we obtain the second inequality. A similar
argument gives the third and fourth inequalities. �


12.2.5 Integral characterization of Hölder continuity

Let Ω be a bounded domain. Write Ω(x, r) for Ω∩Br(x). We assume that the
measure of Ω(x, r) is at least Arn for some positive constant A, if x ∈ Ω and
r ≤ 1. This condition is easily verified if Ω has a smooth boundary. Define
the average of u:

ux,r = |Ω(x, r)|−1

∫
Ω(x,r)

u dx.

Theorem 12.6. The space Cα(Ω) coincides with the space of (classes of)
measurable functions that satisfy

∫
Ω(x,r)

|u(y) − ux,r|2 dy ≤ Crn+2α

for 0 < r < diamΩ. The smallest constant C, denoted by ‖u‖L2,n+2α, is
equivalent to the Cα(Ω) norm.

Remark 12.7. If one defines Lp,λ by the property
∫
Ω(x,r) |u(y) − ux,r|p dy ≤

Crλ, with n < λ < n+p, one obtains a characterization of the space C(λ−n)/p.

Proof. The integral estimate is clearly true for Hölder continuous functions.
Let us therefore focus on the converse. We first prove that u is uniformly
approximated by its averages, and then derive a modulus of continuity for u.

If x0 ∈ Ω and 0 < ρ < r ≤ 1, we have

Aρn|ux0,ρ − ux0,r|2 ≤
∫
Ω(x0,ρ)

|ux0,ρ − ux0,r|2dx

≤ 2

(∫
Ω(x0,ρ)

|u− ux0,ρ|2dx +
∫
Ω(x0,r)

|u− ux0,r|2dx
)

≤ C(rλ + ρλ).

Letting rj = r2−j and uj = ux0,rj for j ≥ 0, we obtain
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|uj+1 − uj | ≤ C2j(n−λ)/2r(λ−n)/2 = C2−jαrα.

For almost every x0, the Lebesgue differentiation theorem ensures that uj →
u(x0) as j → ∞. It follows that

|u(x0) − ux0,r| ≤
∑
j

|uj+1 − uj | ≤ Crα.

Since ux,r is continuous in x and converges uniformly as r → 0, it follows that u
may be identified, after modification on a null set, with a continuous function.
To conclude the proof of Theorem 12.7, it suffices to estimate |u(x) − u(y)|
by |u(x) − ux,r|+ |ux,r − uy,r|+ |uy,r − u(y)| ≤ 2Crα + |ux,r − uy,r|, which is
possible thanks to the following Lemma. �

Lemma 12.8. Let u ∈ L2,n+2α, x, y two points in Ω, and r = |x − y|; we
have

|ux,r − uy,r| ≤ Crα.

Proof. We may assume r = |x−y| ≤ 1. If z ∈ Br(x), we have |z−y| ≤ r+ |x−
y| ≤ 2r. Therefore Ω(y, 2r) ⊃ Ω(x, r). It follows that Ω(x, 2r) ∩ Ω(y, 2r) ⊃
Ω(x, r) has measure Arn at least. We therefore have

|Ω(x, 2r) ∩Ω(y, 2r)||ux,2r − uy,2r|
≤
∫
Ω(x,2r)

|u(z) − ux,2r|dz +
∫
Ω(y,2r)

|u(z) − uy,2r|dz

≤
[∫

Ω(x,2r)

|u(z) − ux,2r|2dz
]1/2

|Ω(x, 2r)|1/2

+

[∫
Ω(y,2r)

|u(z) − uy,2r|2dz
]1/2

|Ω(y, 2r)|1/2

≤ Crα+n/2rn/2.

It follows that
|ux,2r − uy,2r| ≤ CA−1rα.

�

This completes the proof of Lemma 12.8.

12.3 Interior estimates for the Laplacian

12.3.1 Direct arguments from potential theory

Let n ≥ 2, and let BR(P ) denote the open ball of radius R about P . Mention
of the point P is omitted whenever this does not create confusion. The volume
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of BR is ωnR
n, and its surface area, nωnRn−1. The Newtonian potential in n

dimensions is

g(P,Q) =
|P −Q|2−n
(2 − n)nωn

for n ≥ 3

and
1
2π

ln |P −Q| for n = 2.

It is helpful to note that:

1. The derivatives of g of order k ≥ 1 with respect to P are O(|P −Q|2−n−k).
2. The average of each of these second derivatives over any sphere of center

Q vanishes.5

Next consider, for f ∈ L1 ∩ L∞(Rn), the integral

u(P ) =
∫

Rn

g(P,Q)f(Q) dQ.

We wish to estimate u and its derivatives in terms of bounds on f . Because of
the behavior of g as P → Q, g and its first derivatives are locally integrable,
but its second derivative is not.

It is easy to see that if the point P lies outside the support of f , u is
smooth near P and satisfies Δu = 0. For this reason, it suffices to study the
case in which the density f is supported in a neighborhood of P .

We prove three theorems (i) a pointwise bound on u and its first-order
derivatives; (ii) a representation of the second-order derivatives that involves
only locally integrable functions; (iii) a direct estimate of ∇2u(P ) −∇2u(Q)
using this representation.

Theorem 12.9. If f vanishes outside BR(0), we have

sup
BR

(|u| + |∇u|) ≤ CR2 sup |f |,

and ∇u is given by formally differentiating the integral defining u.

Proof. Consider a cutoff function ϕε(P,Q) := ϕ(|P − Q|/ε), where ϕ(t) is
smooth, takes its values between 0 and 1, vanishes for t ≤ 1, and equals 1 for
t ≥ 2. Considering the functions

uε(P ) =
∫

g(P,Q)ϕε(P,Q)f(Q)dQ,

which are smooth, it is easy to see that the ∂iuε converge uniformly, as ε ↓ 0, to∫
∂ig(P,Q)f(Q)dQ. Similarly, uε converges to u. Therefore, u is continuously

5 To check this, it is useful to note that the average of x2
i /r

2 over the unit sphere
{r = 1} is equal to 1

n
, and similarly, using symmetry, the average of (xi−yi)

2/|x−
y|2 over the sphere {|x − y| = const} has the same value.
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differentiable. Using the growth properties of g and its derivatives, we may
estimate ∂iu(P ) by

C

∫
B2R(P )

C|P −Q|1−n sup |f |dQ,

because BR(0) ⊂ B2R(P ). Taking polar coordinates centered at P , the result
follows. �


The case of second derivatives is more delicate, since the second derivatives
of g are not locally integrable. We know (since Poisson) that the integral
defining u is smooth near P if f is constant in a neighborhood of P . This
suggests a reduction to the case in which f vanishes at P . We therefore first
prove, for such f , a representation of the second-order derivatives in terms of
f − f(P ).

Theorem 12.10. If f has support in a bounded neighborhood Ω of the origin,
with smooth boundary, and if f ∈ Cα(Rn) for some α ∈ (0, 1), then all second-
order derivatives of u exist, and are equal to

wij :=
∫
Ω

∂ijg(P,Q)[f(Q) − f(P )]dQ− f(P )
∫
∂Ω

∂ig njds(Q),

where derivatives of g are taken with respect to its first argument, and nj are
the components of the outward normal to ∂Ω.

Proof. To establish the existence of second derivatives, we consider

viε(P ) =
∫

∂ig(P,Q)ϕε(P,Q)f(Q)dQ,

which converges pointwise to ∂iu(P ); in fact, since 1 − ϕε is supported by
a ball of radius 2ε, a direct computation yields |ui − viε|(P ) = O(ε sup |f |).
Writing P = (xi) and Q = (yi), we have

∂jviε(P ) =
∫
Ω

∂xj (ϕε∂xig)(P,Q)[f(Q) − f(P )]dQ

+ f(P )
∫
Ω

(ϕε∂xig)(P,Q)dQ.

Since ϕε and g depend only on |P − Q|, we may replace ∂/∂xj by −∂/∂yj
and integrate by parts. This yields

∂jviε(P ) =
∫
Ω

∂xj (ϕε∂xig)(P,Q)[f(Q) − f(P )]dQ

− f(P )
∫
∂Ω

ϕε∂xig(P,Q)nj(Q)ds(Q).

We may now estimate the difference ∂jviε−wij using the same method as for
the first-order derivatives. It follows that ∂iju = wij . �
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We now give the main estimate for second-order derivatives.

Theorem 12.11. Let

u(P ) =
∫
B2R(0)

g(P,Q)f(Q) dQ,

where f ∈ Cα(B2R), with 0 < α < 1. Then

sup
BR

|∇2u| + [∇2u]α,BR ≤ C(sup
B2R

|f | + Rα[f ]α,B2R). (12.1)

Proof. To estimate the regularity of ∂iju, we study |∂iju(P ) − ∂iju(P ′)|, for
P , P ′ in BR(0), where the second derivatives are given by the expressions in
the previous theorem. The main step is to decompose the first integrand in
the resulting expression for wij(P ) − wij(P ′) into

[f(Q) − f(P ′)][∂ijg(P,Q) − ∂ijg(P ′, Q)] + [f(P ′) − f(P )]∂ijg(P,Q).

We therefore need to estimate the following quantities:

(I) f(P )[∂ig(P,Q) − ∂ig(P ′, Q)] for Q ∈ ∂B2R.
(II) [f(P ) − f(P ′)]∂ig(P ′, Q) for Q ∈ ∂B2R.

(III) [f(P ′) − f(P )]∂ijg(P,Q) for Q ∈ B2R.
(IV) [f(Q) − f(P ′)][∂ijg(P,Q) − ∂ijg(P ′, Q)] for Q ∈ B2R.

The first boundary term (I) is easy to estimate using the mean-value theorem:

|∂ig(P,Q) − ∂ig(P ′, Q)| ≤ |P − P ′| sup
ξ∈[P,P ′]

|∇∂ig(ξ,Q)|.

Since Q ∈ ∂B2R and ξ ∈ BR, we have |ξ − Q| ≥ 2R − R = R; therefore, the
supremum in the above formula is bounded by a multiple of R−n. Integrating,
we get a contribution O(|P − P ′|/R), which is a fortiori O(|P − P ′|α/Rα).

Expression (II) is O(|P − P ′|α), since f is of class Cα.
To estimate (III) and (IV), let r0 = |P−P ′| and M the midpoint of [P, P ′].

We distinguish two cases: (i) When |Q−M | > r0, the distance from Q to any
point on the segment [P, P ′] is comparable to |Q−M |; this will enable a direct
estimation of (IV) using the mean-value theorem, and of (III) by integration
by parts. (ii) On the set on which |Q−M | ≤ r0, we may directly estimate the
sum of (III) and (IV); the smallness of the region of integration compensates
the singularity of the derivatives of g. We begin with the first case: consider
first the integral of (III) over the set

A := {Q ∈ B2R : |Q−M | > r0}.

Its boundary is included in ∂B2R(0) ∪ ∂Br0(M). Integrating by parts and
using the fact that on this set, |P −Q| is bounded below by min(R, r0/2), we
find that (III) = O(|P − P ′|α). For the term (IV), integrated over the same
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set, we estimate ∂ijg(P,Q) − ∂ijg(P ′, Q) by C|P − P ′||ξ − Q|−n−1, for some
ξ ∈ [P, P ′]. Using the Hölder continuity of f , the integral of (IV) is estimated
by

Cr0
|Q− P ′|α
|Q− ξ|n+1

.

Its integral over A is estimated by its integral over

A′ := {Q : |Q−M | > r0}.
On A′,

|Q − P ′| ≤ |Q−M | + |M − P ′| = |Q−M | + 1
2
r0 ≤ 3

2
|Q −M |.

On the other hand,

|Q − ξ| ≥ |Q−M | − |M − ξ| ≥ |Q−M | − 1
2
r0 ≥ 1

2
|Q −M |.

Combining the two pieces of information, we obtain∫
A′

Cr0
|Q− P ′|α
|Q− ξ|n+1

dQ ≤ Cr0

∫
A′

|Q−M |α−n−1dQ

= Cr0

∫ ∞

r0

rα−2dr = C|P − P ′|α.

This completes the analysis of the integrals of (III) and (IV) over A.
It remains to consider (III) and (IV) over the part of B2R on which |Q−

M | ≤ r0. In this case, |P −Q| ≤ |P −M |+ |M −Q| ≤ 3
2r0, and similarly for

|P ′ −Q|. We therefore estimate directly the sum of (III) and (IV), namely

[f(Q) − f(P )]∂ijg(P,Q) − [f(Q) − f(P ′)]∂ijg(P ′, Q),

by

C[f ]α,B2R

∫
|Q−M|<r0

(|Q− P |α−n + |Q− P ′|α−n)dQ

≤ C[f ]α,B2R

∫ 3r0/2

0

|Q− P |α−1d|Q − P | ≤ Crα0 .

Since r0 = |P − P ′|, this completes the proof. �


12.4 Perturbation of coefficients

12.4.1 Basic a priori estimate

Working on a relatively compact subset Ω′ of Ω, we may assume that [u]∗2+α <
∞; since the constants in the various inequalities will not depend on the choice
of Ω, the full result will follow.
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Consider x0 ∈ Ω and let r = θd(x0) with θ ≤ 1
2 . Let L0 =

∑
ij a

ij(x0)∂ij
(the “tangential operator,” with coefficients “frozen” at x0). We define

F := L0u =
∑
ij

(aij(x0) − aij(x))∂iju−
∑
i

bi∂iu− cu + f.

We apply the constant-coefficient interior estimates on the ball Br(x0). Let
y0 �= x0 be such that d(y0) ≥ d(x0).

If |x0 − y0| < r/2, we have

(r

2

)2+α

[∇2u]α,x0,y0 ≤ C

(
sup |u| + sup

Br

|r2F | + sup
Br×Br

r2+α |F (x) − F (y)|
|x− y|α

)
.

Therefore,

d(x0)2+α[∇2u]α,x0,y0 ≤ Cθ−2−α
(
sup |u| + ‖F‖(2)

α,Br

)
. (12.2)

If |x0 − y0| ≥ r/2, we have

d(x0)2+α[∇2u]α,x0,y0 ≤ 2[u]∗2
d(x0)α

|x0 − y0|α ≤ 2[u]∗2

(
2
θ

)α
. (12.3)

The issue is therefore the estimation of ‖F‖(2)
α,Br

in terms of norms of u and
its derivatives over Ω.

For clarity, we begin with three lemmas. The first is proved by direct
verification.

Lemma 12.12. ‖uv‖(s+t)
α,Ω ≤ ‖u‖(s)

α,Ω‖v‖(t)
α,Ω.

Lemma 12.13. If r = θd(x, ∂Ω), with 0 < θ ≤ 1
2 (so that Br(x) ⊂ Ω), we

have

‖∇2u‖(2)
α,Br

≤ 8
[
θ2‖∇2u‖∗2,Ω + θ2+α[u]∗2+α,Ω

]
, (12.4)

‖f‖(2)
α,Br

≤ 8θ2‖f‖(2)
α,Ω. (12.5)

Proof. We need to estimate, for y ∈ Br(x), d(y, ∂Br(x)) and dx,y,Br in terms
of the corresponding distances relative to Ω. On the one hand, d(y, ∂Br) ≤
r − |x − y| ≤ r = θd(x). On the other hand, if z ∈ Br(x) and d(y, ∂Br(x)) ≤
d(z, ∂Br(x)), we have dy,z,Br ≤ θd(x) and also d(y) ≥ d(y, ∂Br(x)) ≥ (1 −
θ)d(x); it follows that d(x) ≤ (1 − θ)−1dx,y,Ω. Therefore,

d(y, ∂Br) ≤ θd(x)

and
dy,z,Br ≤ θ

1 − θ
dy,z,Ω.

The inequalities (12.4–5) follow. �
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Lemma 12.14. If x ∈ Br(x0) with r = θd(x0), with 0 < θ ≤ 1
2 , we have

‖a(x) − a(x0)‖(0)
α,Br

≤ Cθα[a]∗α,Ω.

Proof. If d(x) ≤ d(y) and |x− y| ≤ r = θd(x0) with θ ≤ 1, then

|a(x) − a(y)| ≤ d(x)α
|a(x) − a(y)|

|x− y|α (
|x − y|
d(x)

)α ≤ Cθα[a](0)α ,

since (1− θ)d(x0) ≤ d(x) ≤ (1 + θ)d(x0). Therefore, estimating |a(x)− a(x0)|
by rα[a]∗α,Ω , we obtain the announced inequality. �


We now resume the proof of the estimate of [∇2u]α: first,

‖(a(x) − a(x0))∇2u(x)‖(2)
α,Br

≤ ‖a(x) − a(x0)‖(0)
α,Br

‖∇2u‖(2)
α,Br

≤ Cθ2+α‖a‖(0)
α,Ω(‖∇2u(x)‖∗α,Ω + θα[u]∗2+α,Ω).

Similarly,

‖b∇u(x)‖(2)
α,Br

≤ 8θ2‖b∇u‖(2)
α,Ω

≤ 8θ2‖b‖(1)
α,Ω‖∇u‖(1)

α,Ω

≤ Cθ2‖b‖(1)
α,Ω{θ2α[u]∗2+α,Ω + sup |u|}.

Finally,

‖cu‖(2)
α,Br

≤ 8θ2‖cu‖(2)
α,Ω ≤ 8θ2‖c‖(2)

α,Ω‖u‖(0)
α,Ω

≤ 8θ2{θ2α[u]∗2+α,Ω + sup |u|}.

It follows that

‖F‖(2)
α,Br

≤ Cθ2+2α[u]∗2+α,Ω + c(θ)(sup |u| + ‖f‖(2)
α,Ω).

Therefore, using this inequality in (12.2) and (12.3), we obtain

d(x0)2+α[u]∗2+α,Ω ≤ Cθα[u]∗2+α,Ω + c′(θ)(sup |u| + ‖f‖(2)
α,Ω).

The desired estimate on [u]∗2+α,Ω follows.
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Nash–Moser Inverse Function Theorem

We present two forms of the Nash–Moser or “hard” inverse function theorem
(IFT) [144]. Both are based on Newton-type iteration in a scale of Banach
spaces. We present two varieties: one in spaces of analytic functions [148, 149],
the other in Sobolev or Ck spaces[164].

13.1 Nash–Moser theorem without smoothing

Let {Xs} and {Ys} be two scales of Banach spaces, with respective norms
‖ ‖s and | |s, where s ∈ [0, 1]. We assume that Xs′ ⊃ Xs and Ys′ ⊃ Ys if
s′ < s. A typical example is the case in which Xs consists of functions analytic
in a strip | Im z| ≤ s, the norm being the uniform norm.

We wish to solve the equation

F (u) = 0,

where F satisfies the following assumptions, in which s, C, and R are given:

(H1) F is defined for ‖u‖s < R, and sends Xs to Ys′ for every s′ < s.
(H2) There is a mapping L(u) : Xσ → Yσ′ , for any σ′ < σ ≤ s, such that

|F (v) − F (u) − L(u)(v − u)|σ′ ≤ C(σ − σ′)−p‖u− v‖1+δ
σ ,

for some δ ∈ (0, 1].
(H3) For any f ∈ Yσ′ , one can find w ∈ Yσ such that L(u)w = f , and

‖w‖σ ≤ c(σ − σ′)−q|f |σ′ .

By abuse of notation, we write w = L(u)−1f .

The result can now be stated.

Theorem 13.1. There is a function ε0(s) such that if |F (0)|1 < ε0(s), F (u) =
0 has a solution in Xs.
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Proof. We define an iteration by u0 = 0, and

uk+1 = uk − L(uk)−1F (uk). (13.1)

We recognize Newton’s method. Since we assume F (0) ∈ Y1, we can find
u1 ∈ Xσ, σ < 1, but not in X1 in general. Therefore, we cannot iterate in a
fixed space. To tackle this problem, we define a sequence {sk} with sk ↓ s, and
estimate ‖uk‖sk

. It will be convenient to define another sequence {tk} and to
track |F (uk)|tk .

More precisely, we let

s0 = 1; sk−1 − sk = ρk−2,

for k ≥ 2, and

tk =
1
2
(sk − sk+1) = sk − 1

2
ρ(k + 1)−2,

for k ≥ 0. For sk to tend to s, we must take (1− s) = ρ
∑∞
k=1 k−2. We also let

ε = |F (0)|1 and ak = |F (uk)|tk . Note that sk > tk > sk+1. In the following,
the letter C denotes various positive constants independent of k. We prove by
induction on k that ‖uk‖sk

< R/2,

ak ≤ ε(k + 1)−r, (13.2)

with r = 1 + 2
δ (p + q + (1 + δ)), and

‖uk+1 − uk‖sk+1 ≤ Cε(k + 1)−(1+2(p+q)/δ), (13.3)

if ε is small enough. Using (H2), the definition of uk+1, and (H3), we obtain
for any σ ∈ (tk+1, tk),

ak+1 ≤ c‖L(uk)−1F (uk)‖1+δ
σ (σ − tk+1)−p

≤ C[ak(tk − σ)−q]1+δ(σ − tk+1)−p

= Ca1+δ
k (tk − σ)−q(1+δ)(σ − tk+1)−p.

We minimize this quantity by taking

σ = tk+1 − p(tk − tk+1)
p + q(1 + δ)

.

We obtain
ak+1 ≤ Ca1+δ

k (tk − tk+1)−p−q(1+δ).

It now follows from the induction hypothesis that

ak+1 ≤ ε(k + 2)−r

for ε small enough, using the property r > 2(p + q(1 + δ))/δ.
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As for the last estimate, we have, using the recurrence relation and (H3),

‖uk+1 − uk‖sk+1 ≤ Cak(tk − sk+1)−q

= Cak[2(k + 1)2/ρ]q

≤ Cε(k + 1)−(1+2(p+q)/δ).

Finally,

‖uk+1‖sk+1 ≤ Cε

∞∑
1

(k + 1)−(1+2(p+q)/δ)

is less than R < 2 if ε has been chosen small enough. This proves the desired
estimates. Thus, the sequence {uk} certainly converges in Xs, and since ak →
0, its limit is a solution. �


13.2 Nash–Moser theorem with smoothing

The preceding result assumes that the inverse of the linearization of F sends
Xσ to Xσ′ for any σ′ < σ. This mimics the behavior of the operator d/dz
on Xs = {u : |u(x + iy)| is bounded for |y| < s}. It is clearly inadequate
in Sobolev-type spaces, where differential operators induce a definite loss of
derivatives. This loss forces us to modify the iteration (13.1) into

uk+1 = uk − SkL(uk)−1F (uk), (13.4)

where Sk is a smoothing operator. This new iteration procedure will be shown
to converge, under a new set of hypotheses.

It is convenient not to restrict the index s to lie between 0 and 1.
There are two sets of hypotheses: one pertaining to the smoothing, the

other to F . In all, M ≥ 1 is a fixed constant and σ < s.
One usually assumes that there is a family S(t) of smoothing operators

such that

• (S1) ‖S(t)u‖s+σ ≤ Mtσ‖u‖s if u ∈ Xs.
• (S2) limt→∞ ‖(I − S(t))u‖s = 0 if u ∈ Xs.
• (S3) ‖(I − S(t))u‖s−σ ≤ Mt−σ‖u‖s if u ∈ Xσ.
• (S4) ‖(d/dt)S(t)u‖s ≤ Mts−σ−1‖u‖s if u ∈ Xσ.

We will not make use of (S4), but it usually holds, and does enter in other
proofs. We also assume that the map F has the following properties:

• (F1) F is of class C2 from Xs to Ys, with first and second derivatives
bounded by M ≥ 1.

• (F2) F ′(u) has a right inverse L(u) that sends Ys to Xs−a and that satisfies
the estimate

‖L(u)F (u)‖s+b ≤ M(1 + ‖u‖s+a+b)
for some b > 8a.
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Thus, if s is identified with a degree of differentiability, F ′ fails to be invertible
because L(u) lands in Xs−a instead of Xs.

Theorem 13.2. Under assumptions (S1)–(S4) and (F1)–(F2), the equation
F (u) = 0 has a solution if F (0) is small enough in Xs.

Remark 13.3. The assumptions are stronger than requiring that F ′ have an
unbounded inverse. In fact, this latter assumption alone would lead to an
incorrect result, as the case of the mapping F (u) = u− u0 from Hs to Hs−1

shows, if u0 �∈ Hs. What happens here is that (F2) requires L(u)F (u) to
be smoother and smoother if u is. This excludes the counterexample we just
gave. Also, in practice, it is much easier to find L(0) than to construct L(u) for
u �= 0. At the formal level, the existence of L(0) suffices to construct a formal
series to all orders. This series may, however, be completely meaningless.

Remark 13.4. We can construct a family of smoothing operators by choosing a
function φ(ξ) that equals 1 for |ξ| < 1 and 0 for |ξ| > 2, with 0 ≤ φ ≤ 1, and by
letting S(t)u = F−1φ(ξ/t)Fu, where F denotes the Fourier transform. Indeed,
we then have φ(ξ/t)(1 + |ξ|2)σ ≤ (1 + 4t2)σ and (1 − φ(ξ/t))(1 + |ξ|2)−σ ≤
(1 + t2)−σ.

Proof. Let qk = exp[λρk] and Sk = S(qk), where ρ = 3
2 . We define {uk}k≥0

by u0 = 0 and
uk+1 = uk − SkL(uk)F (uk).

We prove by induction that there exist positive constants μ and ν such that

‖uk − uk−1‖s ≤ q−μak ; 1 + ‖uk−1‖s+a+b ≤ qνak . (13.5)

These estimates will ensure that the iteration is well defined, and converges
in the s-norm.

We first estimate the difference of two consecutive approximations:

‖uk+1 − uk‖s
≤ Mqak‖L(uk)F (uk)‖s−a
≤ M2qak |F (uk)|s
= M2qak

[
|F (uk−1) − F ′(uk−1)Sk−1L(uk−1)F (uk−1)|s

+
∣∣∣∣
∫ 1

0

(1 − σ)F ′′((1 − σ)uk−1 + σuk) · (uk − uk−1)2
∣∣∣∣
s

]

≤ M2qak

{
|F ′(uk−1)(I − Sk−1)L(uk−1)F (uk−1)|s + Mq−2aμ

k

}
.

Now, using (S3) and (F2), we obtain

‖L(uk−1)F (uk−1)‖s+b ≤ M(1 + ‖uk−1‖s+b+a) ≤ Mqaνk−1,

while (F1) and (S3) imply
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|F ′(uk−1)(I − Sk−1)v|s ≤ M2q−bk−1‖v‖s+b.
Therefore

‖uk+1 − uk‖s ≤ M5qakq
aν−b
k−1 + M3qa−2μ

k .

Since M ≥ 1, it suffices to have

M5(qakq
aν−b
k−1 + q

a(1−2μ)
k ) ≤ q−aμk+1 (13.6)

to ensure the first estimate in (13.5).
As for the second estimate, we have

1 + ‖uk+1‖s+b+a ≤ 1 +
k∑
j=0

‖SjL(uj)F (uj)‖s+b+a

≤ 1 + M
∑
j

qaj ‖L(uj)F (uj)‖s+b

≤ 1 + M2
∑
j

qaj (1 + ‖uj‖s+b+a)

≤ 1 + M2
∑
j

q
a(1+ν)
j .

We therefore need

1 + M2
k∑
j=1

q
a(1+ν)
j ≤ qaνk+1. (13.7)

This amounts to requiring, since qk+1 ≥ qj+1,

1 ≥ q−aνk+1 (1 + M2eλa(1+ν)) + M2
k∑
j=2

eλρ
ja[(1+ν)−ρν],

which, since ρ = 3
2 , holds if ν > 2 and λ is large enough. As for (13.6), it

suffices to require

λρk−1(aν − b + aρ + aμρ2) ≤ −5 lnM − ln 2

and
λρk(a(1 − 2μ) + aμρ) ≤ −5 lnM − ln 2.

These hold for λ large as well, provided that

μ > 2 and b ≥ aν + 3a/2 + 9aμ/4.

This estimate also ensures that ‖uk‖s remains less than R/2, so that the
iterations are well defined.

To summarize, we need to choose μ > 2, ν > 2, and b > aν+3a/2+9aμ/4.
This is possible if b is greater than 2a + 3a/2 + 18a/4 = 8a, which is the case
by assumption.
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To start the induction, consider u1 = −S0L(0)F (0). Since from (S2),

‖S0L(0)F (0)‖s+a+b ≤ Mqa0‖L(0)F (0)‖s+b ≤ M2qa0 ,

we require
M2qa0 ≤ qνa1 . (13.8)

For the first part of (13.5), we write

‖u1‖s ≤ Mqa0‖L(0)F (0)‖s+a ≤ M2qa0 |F (0)|s,

which leads to the condition

|F (0)|s ≤ q−a0 q−μa1 /M2. (13.9)

We therefore choose λ large enough to satisfy (13.8), and then check the
smallness condition on F (0).

If F (0) is small enough, the iterations remain in a small neighborhood
of 0 (and are therefore well defined), and converge in Xs norm. It follows
from the continuity of F and the existence of a uniform bound on L(u) that
L(uk)F (uk) converges in Xs−a, and since the smoothing operators approxi-
mate the identity, we may write

‖(I − Sk)L(uk)F (uk)‖s−a−1 ≤ Cq−1
k → 0

as k → ∞. We conclude that u∞ = limk→∞ uk solves

L(u∞)F (u∞) = 0,

in the space Xs−a−1. Applying F ′(u∞), we conclude that

F (u∞) = 0,

QED. �




Solutions

This section gives answers to, or detailed hints for the solution of, selected
problems. Most of these are further prototypes of reduction; accordingly, com-
ments on the general rules for reduction suggested by these problems are in-
cluded. In some cases, further details or references on the context of these
problems are also given.

Chapter 2

2.6 Let u = 1 + tv. We obtain

(t∂t − 1)v = t(1 − 3v2g(t, tv)),

since u1/3 = 1 + tv/3 + t2v2g(t, tv). For t = 0, v(0) must be zero. However, it
is easy to check that there is no solution that is analytic in t. In fact, if we let
v = tṽ, the equation takes the form t∂tṽ = 1 + O(t), which suggests that the
leading order for v is t1 := t ln t. Write v = t1 + z. We obtain

(t∂t − 1)z = −3tg(t, tt1 + tz)(z2 + 2t1z + t21).

Introduce two new variables and two unknowns w0 and w1 by the ansatz

z = w0t0 + w1t1,

where t0 = t and t1 = t ln t. We have

t∂t = N := t0∂/∂t0 + (t0 + t1)∂/∂t1.

The equation for z can therefore be written in the form

t0E0 + t1E1 = 0,

where
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E0 = Nw0 + w1 + 3t0g[w2
0t0 + 2w0(w1 + 1)t1]

and
E1 = Nw1 + 3t0t1g(w1 + 1)2.

Therefore, in order to find z, it suffices to solve the generalized Fuchsian
system

E0 = 0,
E1 = 0.

This splitting is not unique. For instance, 2t20t1 may be split as t0(2t0t1), or
as t0(t0t1) + t1(t0)2.

We have therefore achieved the reduction to a Fuchsian system with one
logarithmic variable, and the general results of Chap. 4 ensure that there
are convergent series solutions of this system in which the value of w0 for
t0 = t1 = 0 can be prescribed arbitrarily (indeed, the system forces w1 = 0,
but leaves w0 undetermined). In terms of the original equation, this means
that there are solutions of the form

u = 1 + t ln t + [a2t
2 + b2t

2 ln t + c2(t ln t)2] + [a3t
3 + · · · ] + · · · ,

in which all the coefficients are determined in terms of a2; the series converges
when t and t ln t are sufficiently small. The arbitrariness of the coefficient of
t2 corresponds to the fact that 2 is a resonance.

2.7 A convenient set of sufficient conditions, which covers most applications,
is (i) A(T,u) = A(0,u0) + T σG[T,u ] + H [u ], where H [u ] has no constant
term for T = 0, (ii) A(0,u0)u0 + H [u0] = 0, and (iii) identities of the form

H [u0 + T εv] = H0 + T η1K1[T, v ]

and
F [T,u0 + T εv] = T η2K2[T, v ].

It may be necessary to enlarge the set of formal series to include T ε, T σ, T η1 ,
and T η2. Substitution yields

(D+A)u = A(0,u0)u0+T ε(D+A(0,u0)+ε)v+T σG[T,u ]+H0+T η1K1[T, v ].

Dividing through by T ε, we obtain a Fuchsian system of the form

(D + A(0,u0))v = F̃ [T, v ],

provided that ε < min(σ, η1, η2). Of course, the space of formal series must
again be extended to contain powers such as T η1−ε if need be.
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Chapter 3

3.2 (b) Hint: Seeking solutions of the form u =
∑
j≥0

ujx
j , one is led to a

recurrence of the form j(j − 2)(j − 9)uj = fj(u0, . . . , uj−1).

3.4 In all cases, the solution has leading order u ∼ u0T
ν, where T = t − a,

with a constant. Resonances are those values of r for which the coefficient of
T ν+r in the expansion of u is arbitrary. In each case, we give ν, u0, and the
resonances. All solutions with the same value of u0 are said to belong to the
same branch. The first reduced equation is the equation for the renormalized
unknown w defined by u = u0T

ν(1 + T εw), where ε is positive, but less than
the least positive exponent in the expansion of 1 + T εw (or the minimum of
the real parts of the resonances with positive real parts whichever is least).
Similarly, the second reduced equation is the equation satisfied by z, defined
by u = u0T

ν(1 + · · · + Tmw), where m is greater than the largest positive
resonance (or the maximum of the real parts of all resonances), and the dots
stand for the formal solution up to order m + 1, in which all the arbitrary
constants have been incorporated.

1: u = −1/T + v leads to (D + 2)v = Tv2; the only resonance is −1.
2: ν = −1, u0 = 1 or 2. The transformation u = vt/v leads to vttt = 0.

The general solution is therefore u = (t− a)−1 + (t− b)−1, where a and b are
arbitrary; The second branch corresponds to the case a = b, and is therefore
a limiting case of solutions of the first branch.

3: It is convenient to work with v = expu. One finds three leading behav-
iors: v ∼ 2/T 2, v ∼ v0 with v0 �= 0 or v ∼ ±T . In each case, one may compute
a reduced equation with ε = 1.

5: ν = −2/3, u0 = (10/9)1/3. This suggests using s = T 1/3 as independent
variable. One obtains ds/s = 1

3dT/T , hence T∂T = 1
3Ds, where Ds = s∂s.

If u = u0s
−2
(
vf + ws11

)
, where vf is a formal solution up to order 11, one

obtains a second reduced equation of the form (Ds+1)(Ds+14)w = sh[s, w].
The coefficient of s10 in the expansion of s2u is arbitrary.

6: ν = −1, r = −1, 2 ± i
√

2.
7: ν = −2/p, r = −1, 2 + 2/p, 2 + 4/p.

3.5 Proof of Theorem 3.18: Let y be a solution of (3.27). Let

y =
u′

2u
.

We find that u satisfies

u3u(4) − 5u2u′u(3) − 3
2
u2u′′2 + 12uu′2u′′ − 13

2
u′4 = 0. (14.1)

If u is a solution, so is

(cx + d)−12u

(
ax + b

cx + d

)
.
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Since ex is an exact solution of this equation, we seek solutions of the form
exv(ex). Note that u = exp(2bx) leads to y = b, that is, to constant solutions
of (3.26).

We make the change of variables z = ex, and let D := zd/dz = d/dx. This
turns (14.1) into a Fuchsian equation for v(z) = u(z)/z:

v3(D + 1)4v − 5v2(D + 1)v(D + 1)3v − 3
2
v2(D + 1)2v

+ 12v[(D + 1)v]2(D + 1)2v − 13
2 [(D + 1)v]4 = 0.

Letting v(z) = 1 + zw(z), we find that w satisfies an equation of the form

(D + 1)3Dw = zG[z, w,Dw,D2w,D3w].

It follows that there is exactly one solution with w(0) = a, given by a conver-
gent series in z near z = 0.

Coming back to x, we have obtained a solution of the desired form, given
by a series of exponentials that converges at least for Re x < −ρ for some finite
ρ. This completes the proof of the claims regarding the family of exponential
solutions.

Next, consider a solution y with the real axis as natural boundary, to
fix ideas. The transformation (3.28) generated by x �→ εx/(x − iε), which
maps the real axis to the circle (Γε) of center ε/2 and radius ε, yields the
one-parameter family of solutions

y(x; ε) = − 6
x− iε

− iε2

(x− iε)2
y

(
εx

x− iε

)
,

which are defined outside (Γε). As ε → 0, the natural boundary shrinks to a
point, and the solutions y(x; ε) converge, uniformly on any disk at positive
distance from the origin, to the solution −6/x. However, the limits ε → 0 and
x → 0 do not commute; in fact, y(x; ε) is not defined in a full neighborhood
of x = 0 for all small values of ε. This completes the proof of Theorem 3.18.

Proof of Theorem 3.19: Let y be a solution of (3.27). Let

y =
k − 6

2
u′

u
.

We find that u satisfies

uu(4) − (k − 2)u′u′′′ +
3k(k − 2)
2(k + 6)

u′′2 = 0. (14.2)

If u is a solution, so is

(cx + d)12/(6−k)u
(

ax + b

cx + d

)
.
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The first part of the theorem follows from general results on nonlinear Fuchsian
equations. Let us seek y in the form

y(x) = x−1(a + bz + w(z)z2),

where z = xk, a = (k − 6)/2, and b is arbitrary. Letting D = zd/dz, we
find, after substitution into the equation and some algebra, that w satisfies
an equation of the form

(D + 1)(k(D + 2) + 1)(k(D + 2) − 1)w = zF [z, w,Dw,D2w].

It follows that there is precisely one solution of the form y = h(xk)/x if we
specify h(0) = (k − 6)/2 and h′(0) = b. This proves the first part of the
theorem. If b = 0, we obtain w ≡ 0.

Let us now focus on k = 2, 3, 4, 5. In each case, there is a polynomial
solution of (14.2), which generates the desired solutions using the SL(2) action
[43]. In fact, we have

u = (x− a1) · · · (x − aN)

and

y(x) =
1
2
(k − 6)

N∑
j=1

1
x− aj

=
(k − 6)

2x

∑
n≥0

∑
j a

n
j

xn
,

with N = 1 + (k + 6)/(6− k) = 12/(6− k). Note that u is analytic near x = 0
even when the aj tend to zero. The relation between linearized solutions and
possible confluence patterns is given by the following:

Lemma 14.1. If we choose the pole locations such that aj = ε1/mbj, where∑
j b
q
j vanishes for q < m, but is nonzero if q = m, then

y(x; ε) = − 6
x

+
const ε

x1+m
(1 + o(1)).

In other words, we have a resonance at −m. Since the possible pole locations
are obtained by applying homographic transformations to the zeros of a fixed
function, not all pole configurations are possible. The lemma follows by direct
computation.

If all the poles are equal to zero, we recover y = −6/x; if they are all zero
except for one that we let tend to infinity, we obtain the solution −(k + 6)/x.
If all poles but one are sent to infinity, we obtain the solution (k − 6)/x. It is
apparent that the first two solutions are unstable.

Let us now show that there cannot be any other type of confluence. As-
sume that there is a family of homographic transformations, depending on
a parameter ε, under which two distinct poles a1 and a2 tend to zero while
two other poles a3 and a4 remain fixed at nonzero (distinct) locations. We
do not restrict the location of any additional poles. The anharmonic ratio of
(a1, a2, a3, a4) tends to 1. But it is also independent of ε; it is therefore identi-
cally equal to 1. This implies that a1 = a2 for all ε: a contradiction. Therefore,
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if there is such a confluence, all poles except one at most must cluster at the
same point.

Proof of Theorem 3.20: The stability statements have already been
proved in the course of the proof of the previous theorem. Since the solution
(k− 6)/2x has two positive resonances, namely 1 and k, we expect to be able
to conclude using Theorem 3.21. There are in fact no logarithms in the pole
expansion, but this does not follow from Theorem 3.18, which only generates
a one-parameter solution corresponding to the resonance k: to generate the
complete solution, we need to check that the resonance 1 is compatible. It
is convenient to do so using the group action. More precisely, the solution
y = x−1h(xk) generates the solutions

− 6ε
1 + εx

+
h(xk/(1 + εx)k)

x(1 + εx)
,

which contain the additional parameter ε. Adding the translation parame-
ter, we obtain a three-parameter family to which Theorem 3.21 applies; this
completes the proof.

3.6 (a) Let v = u, v0 = tut, v1 = tux and v2 = tuy; (v, v0, v1, v2) solves the
system

t∂tv = v0,
t∂tv0 = λv0 + t∂xv1 + t∂yv2,
t∂tv1 = t∂xv + t∂xv0,
t∂tv2 = t∂yv + t∂yv0.

Remark 14.2. It is essential that the space derivatives in the Fuchsian equation
contain a factor of t. This concern is the main guide in the choice of variables
in more complicated examples. For λ = 0, the EPD equation is satisfied by the
mean of any function of x and y, over the circle of radius t about (x, y). Note
that the most general smooth solution in this case is entirely determined by
only one function, namely the value of u for t = 0, even though the equation
is of second order. For the n-dimensional case, see [104].

(b) The method used for case (a) is not appropriate, for if we let
(v, v0, v1) = (u, tut, tux), we obtain the system

t∂tv = v0,
t∂tv0 = ∂xv1,
t∂tv1 = v1 + t∂xv0,

in which the term ∂xv1 does not have a factor of t. We obviate this problem
by letting t = s2. The original equation then becomes

(s∂s)2u− 4s2uxx = 0;

expanding and dividing through by s2, we recover the Euler–Poisson–Darboux
equation, up to a factor of 4 which may be scaled away.
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3.7 By leading-order analysis, we expect the leading terms to be proportional
to 1/t; We therefore let x = t−1X and y = t−1Y . This leads to

(D − 1)X = X(ta + cY ),
(D − 1)Y = Y (tb + dX),

where D = td/dt. For t = 0, we find that (X,Y ) = −(1/d, 1/c). We therefore
try X = −1/d + tu(t), Y = −1/c + tv(t), which leads to the system

DU + AU = t

(
(a + cv)u
(b + du)v

)
+ X0,

where

U =
(
u
v

)
, X0 =

(−a/d
−b/c

)
, and A =

(
1 c/d

d/c 1

)
.

Unfortunately, this system has no solution which remains bounded as t → 0 if
X0 �∈ RanA. Therefore, let us replace U by U +U0 +U1 ln t, where U0 and U1

are constant vectors to be determined presently. The equation for U becomes

DU + AU + AU0 + U1 −X0 + AU1 ln t = F,

where every term in the components of F has a factor t, t ln t, or t(ln t)2. The
eigenvalues of A are 0 and 2. We now solve the system

AU0 + U1 = X0,
AU1 = 0.

To see that there always is a solution, it suffices to consider the case that X0

is an eigenvector of A, since any vector is a linear combination of eigenvectors.
If AX0 = 2X0, we take U1 = 0 and U0 = X0/2. If AX0 = 0, we take U0 = 0
and U1 = X0. Note that U0 is determined up to the addition of an element in
the null space of A: this introduces one free parameter into the solution. The
second parameter comes from the translations in time.

We have therefore reduced the problem to a generalized Fuchsian system
(D +A)U = F involving three time variables. The existence and convergence
of expansions with logarithms now follows.

Remark 14.3. The Lotka–Volterra system was given in [129] as an example
of a system that one would like to call “integrable,” because it has a (tran-
scendental) first integral, but which does not pass the so-called Painlevé test,
which requires singular solutions to have expansions free of logarithmic terms;
see the discussion in Sect. 10.5. A similar reduction argument would also apply
to the Lorenz system, of which the formal theory was considered in detail in
[132]. More general quadratic systems have been extensively studied in recent
years.
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3.8 The proof is by inspection. One first finds, from the second reduction,
that 3γR1 + α = 0, where

α(X) = v(1)Δψ −Δv(0) + 2ψi∂iv(1) − (1 − |∇ψ|2)[v(1)]2.

We wish to prove that
α(X) = 2R,

where R is the scalar curvature of Σ. Using the expressions for v(0) and v(1),
we find, writing ψiψ

i for |∇ψ|2, that1

α = −2(Δψ)2/(1 − ψiψ
i) + ∂j

[
2ψjkψk

(1 − ψiψi)

]
− 2ψj∂j

[
Δψ/(1 − ψiψ

i)
]

= (1 − ψiψ
i)−2

{
4ψjkψkψjiψi − 4ψjψijψiΔψ

}

+ (1 − ψiψ
i)−1

{−2ψjψkjk + 2ψjkjψk + 2ψjkψjk − 2(Δψ)2
}

= 4(1 − ψiψi)−2ψjkψk(ψjlψl − ψjΔψ)

− 2(1 − ψiψi)−1[(Δψ)2 − ψjkψjk].

Let us now relate this quantity to the scalar curvature. The induced metric
on Σ is

gij = δij − ψiψj .

The Christoffel symbols are

Γ kij = (1/2)gkm{∂igjm + ∂jgim − ∂mgij}
= (1/2)

(
δkm + ψkψm/(1 − |∇ψ|2))

{−∂i(ψjψm) − ∂j(ψiψm) + ∂m(ψiψj)}
= (1/2)

(
δkm + ψkψm/(1 − |∇ψ|2)) {−2ψmψij}

= −{ψkψij + ψkψijψ
mψm/(1 − |∇ψ|2)}

= −ψkψij/(1 − |∇ψ|2).

It follows that for any covariant field ωj ,

∇iωj = ∂iωj + ψkωkψij/(1 − |∇ψ|2).

We compute the curvature tensor from the relation

(∇i∇jωk −∇j∇iωk) = Rijk
lωl.

1 Recall that the summation convention is used throughout, and that indices are
raised and lowered using the Kronecker δ.
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First,

∇i∇jωk = ∂i(∇jωk) − Γ lij∇lωk − Γ lik∇jωl

= ∂i
{
∂jωk + ψjkψ

hωh/(1 − ψmψm)
}

+ [∂lωk + ψlkψ
hωh/(1 − ψmψm)]ψlψij/(1 − ψmψm)

+[∂jωl + ψjlψ
hωh/(1 − ψmψm)]ψlψik/(1 − ψmψm).

Since we know that all the derivatives of ω must cancel in the final result, we
have, letting M = 1 − ψmψm,

Rijk
lωl = ∂i(ψjkψl/M)ωl − ∂j(ψikψl/M)ωl

+ ψlψikψjlψ
ρωρ/M

2 − ψlψjkψilψ
ρωρ/M

2,

and therefore,

Rijk
l = ∂i[ψjkψl/M ] − ∂j [ψikψl/M ] + (ψikψjρψρψl − ψjkψ

ρψiρψ
l)/M2.

The derivatives of M give rise to −2 times the last two terms. The net result
is

Rijk
l = [ψjkψil − ψikψj

l]/M + [ψjkψρψiρψl − ψikψjρψ
ρψl]/M2.

Therefore,

Rik = [ψilψlk − ψikΔψ]/M + [(ψlkψl)(ψρiψρ) − ψikψlρψ
ρψl]/M2.

Finally, the scalar curvature is equal to

R = Rik(δik + ψiψk/M)

= [ψilψil − (Δψ)2]/M + [(ψlkψl)(ψklψk) − ψiψkψikΔψ]/M2

+ [(ψliψl)(ψρiψρ) − (Δψ)ψlρψlψρ]/M2

+
{
(ψlkψlψk)(ψiρψiψρ) − (ψikψiψk)(ψlρψlψρ)

}
/M3

= [ψilψil − (Δψ)2]/M + 2
{
(ψρψiρ)(ψσψiσ) − ψρψσψρσΔψ

}
/M2.

The relation α = 2R follows.

Chapter 4

4.2 Such problems arise as soon as one mixes different powers in the ex-
pansions. To take a simple example, if u is expected to have an expansion in
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t0 = T , t1 = T lnT , and t2 = T
√

2, one should write u = u(x, t0, t1, t2), and
T∂Tu = Nu with

Nu = t0∂t0 + (t0 + t1)∂t1 +
√

2t2∂t2 .

4.3 The proofs of (a) and (b) will be carried out together, in three steps:
(1) multiply v by a suitable function to make the leading part of a vanish; (2)
make a change of variables to force b−1 = bε−1 = 0; (3) multiply the unknown
by a second function to remove b−2.

Step 1: First change of unknown

If v(y) = eψ(y)z(y), with ψ satisfying

2Dψ +
a−1

y
+ a0 + aεy

ε = 0,

the equation satisfied by z becomes

D2z + A(y)Dz + B(y)z = 0,

with

A(y) = yε+να(y), B(y) = γ−2y
−2 + γ−1y

−1 + γε−1y
ε−1 + γ0 + yδγ(y),

γ−2 = b−2 − a2
−1

4
, γ−1 = b−1 +

a−1

2
(1 − a0),

γε−1 = bε−1 − a−1aε
2

, γ0 =
(
b0 − a2

0

4

)
,

where δ = min(ε, ν+ε−1, σ) ∈ (0, ε], and the function γ is continuous near 0.
We take ψ1 = ψ. If γ−1 = γε−1 = 0, we may go directly to Step 3. Otherwise,
we must modify these coefficients by a change of variables.

Step 2: Change of variables

Let w(s) = z(θ(s)), where θ is invertible near s = 0. Then w is a solution of

D2
sw(s) + A1(s)Dsw(s) + B1(s)w(s) = 0,

where

A1(s) = (1 + A(θ(s)))
Dsθ

θ
− D2

sθ

Dsθ
,

B1(s) =
(

Dsθ

θ

)2

B(θ(s)).
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Lemma 14.4. One can choose θ such that

A1(s) = O(sμ),

B1(s) = γ−2/s
2 + γ0 + O(sμ),

θ(s) = s + as2 ln(s) + O(s2+μ),

with μ > 0 and a = −γ−1/(2γ−2). The asymptotics obtained by applying Ds

and D2
s to the equation for θ are valid.

Proof. We will find θ ∼ s such that
(

Dsθ

θ

)2

(B(θ(s)) − γ0 − θ(s)δγ(θ(s))) = γ−2s
−2 + 0(r(s)),

where r(s) = sμ ln s. Inserting a formal asymptotic expansion, one finds that
θ should have the form

θ = s + as2 ln s +
b

ε
s2+ε + s2θ1(s),

where b = −γε−1/(2γ−2), and θ1 should tend to zero as s → 0. We find that
it suffices to have θ1 solve

Dsθ1 = s(a ln(s) + θ1(s))2 + 3as(a ln(s) + θ1(s)) + 3a2s/2.

Now Theorem 5.3 applies to this equation, with M = 1 and, for instance,
m = 1, ζ = ψ = s1/2. We conclude that there is a unique solution that
is O(s1/2). The equation shows that we have in fact θ1 = O(s(ln s)2). The
equation may also be differentiated, showing that Dθ1 and D2θ1 have a similar
behavior. It follows that

Dsθ(s)/θ(s) = 1 + as ln(s) + o(s ln(s))

and
D2
sθ(s)/Dsθ(s) = 1 + 2as ln(s) + o(s ln(s)),

whence A1 = 0(sμ) for μ small. Furthermore, B1(s) differs from γ−2s
−2 by

(sθ′/θ(s))2 (γ0 + θ(s)δγ(θ(s))) + O(r(s)).

This expression behaves like

γ0 + O(s ln(s)) if δ = 1,
γ0 + O(sδ) if δ < 1.

The coefficient of sw′(s) is equal to
[
1 −D2

sθ/Dsθ(s) + (1 + A(θ(s)))sθ′/θ(s)
]

= (O(s ln(s)) + (1 + O(sε+ν))(1 + O(s ln(s)) = 1 + O(s ln(s)),
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for ε+ν > 1. Let μ further satisfy μ < min(1, ε) and μ ≤ δ. Then all (possible)
residual terms

sε ln(s), sδ, s ln(s)

are O(sμ). The equation satisfied by w therefore has the form

s2w′′(s) + (1 + O(sμ))sw′(s) +
(
γ−2s

−2 + γ0 + O(sμ)
)

= 0.

We may in fact write a0(s)sμ, a1(s)sμ, with a0, a1 continuous instead of
O(sμ). �

Remark 14.5. By letting T = s1/3 and Y = s1/3 ln s, one could reduce the
search for θ1 to a generalized Fuchsian PDE to which Theorem 4.3 applies
with � = 1, yielding θ1 in the form of a holomorphic function of T and Y near
(0, 0). One could also seek an expansion in powers of (s, s ln s, s(ln s)2) and
use Theorem 4.3 with � = 2.

Step 3: Second change of unknown

The function w solves

D2w(s) + (sμa1(s))Dw(s) +
(
γ−2s

−2 + γ0 + sμa0(s)
)
w(s) = 0.

Let
w(s) = eψ2(s)f(s),

where ψ2 = −γ/s + 1
2 ln s. Then the function f satisfies

D2f + [2γs−1 + 1 + sμa1(s)]Df + [(γ2 + γ−2)s−2 + sμ−1a3(s)]f = 0,

with

a3(s) =
(
γ0 +

1
4

)
s1−μ +

(
a0 +

1
2
a1

)
s + γa1.

Let us choose γ such that γ2 + γ−2 = 0, Re(γ) ≥ 0. Letting α0 = a3, α1 =
a1, we obtain the desired simplified form of the equation. We now turn to
questions (c) and (d) of Problem 4.2.

(c) Let u(x) = v(y), y = 1/ sinh(x); v satisfies

D2v +
y2

1 + y2
Dv +

λ

1 + y2
v − c2

y2(1 + y2)
v = 0.

It has the form studied above with

a0 = a−1 = aε = 0, ν = 1, σ = 2,

b−2 = −c2, b−1 = 0, b0 = c2 + λ.

It follows that
γ = c and a = a1 = 0.
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Therefore, there exists only one solution v such that

v(y) = y1/2e−c/y[1 + h],

with h tending to zero. A similar method yields an expansion to all orders, in
terms of s = 1/y:

v(s) = s1/2e−a/s
(

1 +
∞∑
1

Aks
2k

)
.

Remark 14.6. This is the first example used by Jeffreys [92] in one of his
papers on what we now call WKBJ expansions [151]. By reducing the irregular
singularity at infinity to a regular singularity, we obtain directly the sum
associated with the (divergent) WKBJ expansion for the eigenfunction with
fastest decay.

(d) It suffices to let γ = −ik, a1 = 0, a = c
2λ.

Remark 14.7. This example is motivated in part by the recent interest in scat-
tering theory on curved space-time, where the Regge–Wheeler coordinate on
Schwarzschild space plays a role. This coordinate has the form r + a ln r for
large r. If we consider radial solutions of

Δu + V (r)u + k2u = 0,

where the spectral parameter k is fixed, it is well known that there are
solutions that behave like eikr/r at infinity if V has sufficient fast de-
cay, but not for V = c/r with c constant (Coulomb potential): the phase
must be corrected by a logarithmic term. This is interpreted as meaning
that the influence of the potential may be felt “even at infinity,” hence
“long-range” behavior. This problem shows that equations with long-range
potentials may be reduced to short-range problems, in which coefficients
have better decay, by introducing a new radial coordinate. But unlike the
Regge–Wheeler coordinate, this coordinate cannot be independent of k, or
otherwise it would lead to a unitary equivalence of the two types of opera-
tors, in contradiction to their known properties. The specific potential of the
form a/r + b/r1+ε has been proposed [130] as effective interaction potential
to represent clusters of charged particles.

4.4 Consider A = z−2A0 + A1, where

A0 =
(

0 0
−3/16 0

)
; A1 =

(
0 1
0 0

)
.

The system u ′ = Au has the fundamental system of solutions SzP , where

S =
(

z z
1/4 3/4

)
; P =

(−3/4 0
0 −1/4

)
.
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Chapter 5

5.2 It is easily verified that there is a constant CA such that

‖σA‖ ≤ CA(1 + | lnσ|M−1) for 0 < σ < 1.

Then (H1) follows if α > 0 and α > M − 1. Next, let s = tσ, 0 < σ < 1 and
τ = | ln(σ)|| ln(t)|−1. We obtain, if M > 0,

K(t) ≤
∫ t

0

[1 + | ln(s/t)|]M−1ψ(s)ζ(s)ζ(t)−1 s−1ds

= const
∫ ∞

0

[1 + τ | ln(t)|]M−1| ln(t)|−a[1 + τ ]−a−α | ln(t)|dτ.

Estimating [1 + τ | ln(t)|]M−1 by [1 + τ ]M−1[1 + | ln(t)|]M−1, we obtain

K(t) ≤ [1 + | ln(t)|]M−1| ln(t)|1−a
∫ ∞

0

[1 + τ ]M−1−a−α dτ.

The integral converges if a > M − α, and K tends to zero as t → 0 if a > M .
If M = 0, Hypothesis (H4) follows for a > 0 and α > 0.

For (H2), it suffices to estimate an integral obtained from the above ex-
pression for K by replacing a by M . The desired properties follow, since
M > M − α. The case of power weights is treated similarly.

Chapter 8

8.2 Away from t = 0, system (8.16a–c) is of Cauchy–Kovalevskaya type.
More precisely, we can reduce it to the following first-order system for
(z0, z1, z2, α, ν) := (u, ut, uθ, α, ν):

∂tz0 = z1,

∂tz1 = α∂θz2 − z1

t
− m

2t3
z1e

2ν +
1
2
z2αθ,

∂tz2 = ∂θz1,

∂tα = −α2

t3
me2ν ,

∂tν = tz2
1 + tαz2

2 +
α

4t3
me2ν .

In particular, ignoring the constraint (8.16d), we obtain a unique solution of
the remaining equations by prescribing the data {u, ut, α, ν, . . . } for t = t0.
Now let

N := νθ − 2uθDu +
αθ
2α

.
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Since
0 = Dνθ − ∂θDν = DN + D

(
2uθDu− αθ

2α

)
− ∂θDν,

we obtain, using (8.16a–c),

DN − 1
2α

NDα = 0. (14.3)

This is a linear ordinary differential equation for N (there are no θ-derivatives).
Hence if we choose data {u, ut, α, ν, . . . } for t = t0 so that N(t0) = 0, the
uniqueness theorem for ODEs guarantees that N is identically zero for all time.
We therefore have solved the initial-value problem. The results of [17] ensure
that the solution remains bounded for t > ρ, where ρ ≥ 0 is independent
of θ. It is expected that ρ > 0 in special cases only, such as exact Kasner
space-times.

8.3 The strategy is as follows: We first treat αθ as a new field variable ζ := αθ,
and produce an evolution equation for ζ by differentiating (8.16b) with respect
to θ. We then use (8.16b) to eliminate Dα from (8.16a), and (8.16d) to express
∂θν in terms of the other field variables. This gives us a symmetric-hyperbolic
system (14.4) for (z0, z1, z2, α, ζ, ν). Standard theorems then ensure that (14.4)
admits a unique solution, defined in a small time interval, for nonanalytic, but
sufficiently smooth, initial data. We then show that the constraints ζ = αθ and
N = 0 do propagate, by a variant of the argument used for the propagation
of the constraint N = 0. This will establish that we do obtain solutions to
(8.16a–d) with nonanalytic initial data. We proceed with the details of this
argument. The symmetric-hyperbolic system is

∂tz0 = z1, (14.4a)

∂tz1 = α∂θz2 − z1

t
− m

2t3
z1e

2ν +
1
2
z2ζ, (14.4b)

α∂tz2 = α∂θz1, (14.4c)

∂tα = −α2

t3
me2ν , (14.4d)

∂tν = tz2
1 + tαz2

2 +
α

4t3
me2ν , (14.4e)

∂tζ = −2mα

t3
e2ν

[
ζ + α

(
2tz1z2 − ζ

2α

)]
. (14.4f)

This system is symmetric-hyperbolic, so that if we prescribe sufficiently
smooth initial data {u, ut, α, ζ, ν} for t = t0, it has a unique solution. The
first and third equations ensure z1 = ∂tz0 and ∂t(z2 − ∂θz0) = 0 respectively;
we may thus set z0 = u, z1 = ut, and z2 = uθ. Equations (8.16a–c) therefore
hold, with αθ replaced by ζ in (8.16a).

Now let

R := ζ − αθ and N ′ := νθ − 2uθDu +
ζ

2α
. (14.5)
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We proceed to derive a first-order system of ODEs for R and N ′. For the
rest of this argument, we write N for N ′, for convenience. First of all, using
equations (14.4d) and (14.4f),

DR = D(ζ − αθ)

= −2mα

t2
e2ν

[
ζ + α

(
2uθDu− ζ

2α

)]
− ∂θ

(
−α2

t2
me2ν

)

= −2mα

t2
e2ν [R − αN ]

= 2
Dα

α
[R − αN ]. (14.6)

Using the expression for N from (14.5), taking the relation ζ = αθ + R into
account, we have

DN = (Dν)θ − 2DuDuθ − 2uθD2u + D

(
αθ + R

2α

)
,

or

DN −D

(
R

2α

)
= (Dν)θ − 2DuDuθ − 2uθD2u + D

(αθ
2α

)
.

From (14.4a,b,d) and the definition of R, we obtain

DN −D

(
R

2α

)
= ∂θ

(
−Dα

4α

)
− Dα

α
uθDu− t2u2

θR + D
(αθ

2α

)

= −t2u2
θR + ∂θ

(
Dα

4α

)
− Dα

2α
(2uθDu).

From (8.16b), (
Dα

4α

)
θ

=
Dα

2α

(
νθ +

αθ
2α

)
.

It follows that

DN −D

(
R

2α

)
+ t2u2

θR =
Dα

2α

(
N − R

2α

)
. (14.7)

Combining (14.6) and (14.7), we have

DN = N
Dα

2α
+ R

(
D

(
1
2α

)
− t2u2

θ

)
− RDα

4α2
+

Dα

α2
[R − αN ]

= R

[
Dα

4α2
− t2u2

θ

]
− N

Dα

2α
. (14.8)

Equations (14.6) and (14.8) constitute a linear homogeneous system of ODEs
for R and N . Therefore, if the initial data are such that these quantities are
zero for t = t0, they remain so for all time, QED.
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Chapter 9

9.1 Leading-order analysis suggests that u ∼ ln(2d). We therefore define
v = exp(−u), which solves

vΔv = |∇v|2 − 4.

We then define the renormalized unknown w by v = 2d+ d2w, where d is the
distance to the boundary. One obtains

Lw + 2Δd = Mw(w),

where
L := d2Δ + 2d∇d · ∇ − 2,

and Mw is a linear operator with w-dependent coefficients, defined by

Mw(f) :=
d2

2 + dw
[2f∇d · ∇w + d∇w · ∇f ] − 2dfΔd.

The assumptions on ∂Ω ensure that d is of class C2+α near the boundary. We
wish to prove that 2d + d2w is of class C2+α near (and up to) the boundary.

Step I. One first proves, by a comparison argument combined with regu-
larity estimates, that w and d2∇w are bounded near ∂Ω; it follows that the
operator L−Mw is of type (I).

Step II. Since w and (L − Mw)w are both bounded near ∂Ω, Theorem
6.7 shows that d∇w is bounded near ∂Ω, so that Mw(w) = O(d) as d → 0.

Step III. One finds w0, defined near the boundary, such that

Lw0 + 2Δd = 0 (14.9)

and
dkw0 ∈ Ck+α for k = 0, 1, 2,

and proves that one can formally set d = 0 in equation (14.9), so that

w0 = Δd/(n− 1) = −H on∂Ω,

where H is the curvature of the boundary.
Step IV. Let Z = w − w0. One proves, using comparison functions in-

volving d, that Z = O(d ln(1/d)).
Step V. Since Z = O(dα) and LZ = O(d), one first gets, by the “type

(I)” Theorem 6.8, that Z and d∇Z are of class Cα. It follows, by inspection
of the definition of Mw(w), that LZ is in fact of class Cα near and up to the
boundary.

Step VI. Since LZ, Z, and d∇Z are Cα near and up to the boundary,
Theorem 6.9 gives that d2Z is of class C2+α. Since w = w0 + Z, we find that
2d + d2w is of class C2+α near the boundary, QED.
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Chapter 10

10.1 We use the notation of the solution of Problem 3.4. We give the positive
indices only; −1 is a resonance in all cases.

Caudrey–Dodd–Gibbon: ν = −2. If u0 = −φ−2
x , the indices are 2, 3, 6,

and 10. If u0 = −2φ−2
x , they are 5, 6, and 12.

Hirota–Satsuma: u ∼ u0φ
μ, v ∼ v0φ

ν , where (μ, ν) = (−2,−1) or
(−2,−2).

Boussinesq: ν = −2, indices 4, 5, and 6.
modified KdV: ν = −1, indices 3 and 4.
KdV5: ν = −2. If u0 = −2φ−2

x , the indices are 2, 5, 6, and 8. If u0 = −6φ−2
x ,

they are 6, 8, and 10; the other resonances are −1 and −3. The presence of
the resonance 6 in both branches is natural: the linearization of the equation
at u0x

ν has the form wt = ∂x(x−4P (D)w), where D = x∂x. The resonances
are the values of r for which there is a solution w with w ∼ w0x

ν+r with
w0 �= 0. Now, since ν = −2, ∂x(x−4P (D)w0x

ν+r) = w0∂x(xr−6P (ν + r)) =
(r−6)w0P (ν+r)xr−7. The resonance equation is therefore divisible by (r−6).

KP: ν = −2, indices 4, 5, and 6.

10.5 This equation is well known in field theory, and is one of the most widely
studied nonlinear perturbations of the wave equation. It derives from a fourth-
order variational principle, whence the name. We are writing the equation in
characteristic coordinates (x, t): this makes some of the computations slightly
easier.

Let us seek solutions that become singular for t = g(x), where g′ < 0. We
let u = u(X,T ), where X = x and T = t − g(x). We obtain

uTT = a(X)[uXT + u− u3],

where a = 1/g′. Multiplying by T 2, this becomes

D(D − 1)u = a[TDuX + T 2(u − u3)],

with D = Td/dT . Leading-order analysis suggests a first reduction with ε = 1:
u = T−1(u0 + Tv), where u2

0 = −2/a. We obtain

(D + 2)(D − 3)v = −a∂Xu0 + aT [DvX + u0(1 − 3v2) + Tv(1 − v2)].

Replacing v by v + a∂Xu0/6, we can cancel the first term in the right-hand
side. This equation is converted into a Fuchsian system for the unknowns
w0 = v, w1 = Dv, and w2 = TvX . The matrix A in the Fuchsian system has
eigenvalues −2 and 3, corresponding to the resonances −1 and 4 of the equa-
tion for u. The general theory enables us to conclude that since the resonance
3 is simple, v is represented by a convergent series in T and T lnT , and is
entirely determined by the choice of the coefficient of T 3.

If one wishes to obtain explicitly a generalized Fuchsian system with a
matrix A with nonnegative eigenvalues, one could use the following second
reduction: Let



Solutions 271

v = v0 + v1t0 + v2t
2
0 + z0t

3
0 + z1t

2
0t1 + z2t0t

2
1 + z3t

3
1,

where t0 = T and t1 = T lnT , and z0,. . . , z3 are new renormalized unknowns.
Substitute this series into the equation, and compute the coefficients v0, v1,
v2. The equation takes the form

E0t
3
0 + E1t

2
0t1 + E2t0t

2
1 + E3t

3
1 = 0.

This decomposition is not unique. However, as in Sect. 2.2.4, it is always
possible to choose the decomposition so that the system

E0 = E1 = E2 = E3 = 0

is a generalized Fuchsian system for the zk’s. Its solution will generate a
solution v of the original problem. The existence of an expansion for z (hence
for v and u) to all orders and its convergence for small t follow from the
general results.

Thus, it is not necessary to go beyond the computation of the second
term in the expansion of u in order to conclude that there exists a convergent
logarithmic series for the solution, because we can ascertain already at this
level that (1) the equation can be cast in Fuchsian form; (2) there is only one
resonance that is simple and greater than 1. In particular, there is no need
to compute explicitly the compatibility (or “no-logarithm”) condition for the
resonance. If more detailed information on the formal properties of the series is
available, it is of course possible to use it to simplify the reduction to Fuchsian
form, using the general results from Sect. 2.2.4.

10.7 (b) One obtains

u0 =
√

1 − |∇ψ|2, (14.10a)

u1 =
ψijψiψj

3(1 − ψiψi)3/2
− Δψ

6
√

1 − ψiψi
, (14.10b)

u2 = − (ψijψiψj)2

9(1 − ψiψi)7/2
+

2 (ψijψiψj)Δψ + 3ψijψjψ
k
i ψk

18(1 − ψiψi)5/2
(14.10c)

+
6Δψiψi + 6ψijψij − (Δψ)2

36(1 − ψiψi)3/2
,

u3 =
λ5

27(1 − ψiψi)11/2
+

λ4

9(1 − ψiψi)9/2
+

λ3

36(1 − ψiψi)7/2
(14.10d)

+
λ2

108(1 − ψiψi)5/2
+

λ1

24(1 − ψiψi)3/2
,

where the coefficients λ1, λ2, λ3, λ4, and λ5 are as follows:
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λ1 =Δ2ψ,

λ2 = − 2 (Δψ)3 + 18Δψ(ψijψij) + 15Δψ(Δψiψi) − 18ψijψki ψjk

− 36ψijkψiψjψk,

λ3 =2 (Δψ)2(ψijψiψj) − 4 (ψijψiψj)(Δψiψi) + 13Δψ(ψijψjψki ψk)

+ 2 (ψijkψiψjψk) − 4 (ψijψiψj)(ψijψij) − 12ψijkψjψkψ
l
kψl

− 30ψijψki ψjψ
l
kψl,

λ4 =Δψ(ψijψiψj)2 − 11 (ψijψiψj)(ψijψjψki ψk)

− (ψijψiψj)(ψijkψiψjψk),

λ5 = − 8 (ψijψiψj)3.

(d) Let x be such that ∇ψ(x) = 0. Then (14.10a–d) become

u0(x) =1 ,

u1(x) = − Δψ

6
,

u2(x) = − 1
36

(Δψ)2 +
1
6
ψijψij ,

u3(x) = − 1
54

(Δψ)3 +
1
6
Δψψijψij +

1
24

Δ2ψ − 1
6
ψijψkj ψik,

while u4,0 is arbitrary and

u4,1(x) = − 2
27

(Δψ)4 − 2
3
Δψijψij +

7
9
(Δψ)2ψijψij

− 8
9
Δψψijψkj ψik −

1
9
ΔψiΔψi − 2

3
(ψijψij)2

+
2
9
ΔψΔ2ψ − 1

3
ψijkψijk − 1

3
ψijψklψikψjl.

In one space dimension,

u0(x) = 1 ,

u1(x) = −H(x)
6

,

u2(x) =
5
36

H2(x) ,

u3(x) =
1
24

d2H

ds2
(x) − 31

216
H3(x) ,

while the condition u4,1 = 0 reads, whether ∇ψ(x) vanishes or not,

d2(H2)
ds2

(x) =
2
3
H4(x),
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where H(x) is the curvature of Σ at the point x and s is arc length on Σ. In
two space dimensions, these expressions are replaced by

u0(x) = 1 ,

u1(x) = −H(x)
6

,

u2(x) =
5
36

H2(x) − 1
3
K(x) ,

u3(x) =
1
24

ΔgH(x) − 31
216

H3(x) +
1
2
H(x)K(x) ,

where x satisfies ∇ψ(x) = 0. The equation u4,1 = 0 is always equivalent to

−37
54

H4 +
23
9

H2K − 4
3
K2 +

1
6
HΔgH +

1
36

Δg(H2) +
1
6
Δ2
gγ = 0,

where H(x) represents the mean curvature of Σ at x, K(x) is the total (Gauss)
curvature, γ = 1−|∇ψ(x)|2, and Δg stands for the Laplace–Beltrami operator
on Σ, with respect to the metric induced on Σ by the Minkowski metric on
R

2 × R.

Remark 14.8. In higher dimensions, one finds for the no-logarithm condition

−37
54

H4 +
23
9

H2K2 − 4
3
K2

2 − 5
3
HK3 +

1
6
HΔgH

+
1
36

Δg(H2) − 4
3
K4 +

1
6
Δ2
gγ = 0,

where H is the mean curvature of Σ, while K2, K3, and K4 are symmetric
functions of the principal curvatures of the blowup surface.

10.10 The first task is to prove that such a solution has a global descrip-
tion valid over all of the curve ξ + η = 0. Indeed, Theorem 10.30 shows that
the initial line ξ = −η can be covered by countably many open intervals
{Ik}k=0,±1,..., each of which gives rise to a representation with functions fk,
gk, which remain finite in the interval Ik. We may always assume that each
interval overlaps its immediate neighbors only. Now, we know that there are
homographies rk+1,k such that fk+1 = rk+1,k(fk), and associated homogra-
phies acting on gk. We can now define f globally by letting f = f0 in I0, then
r1,0(f) = f1 in I1, r2,1(r1,0(f)) = f2 in I2, etc., and similarly for I−1,. . . . This
function f takes its values in R∪{∞}, but its singularities can be removed
locally by a homographic transformation. Once this is done, there will be ho-
mographies rk such that fk = rk(f) in Ik. This completes the first part of the
proof.

Next, consider a given point where u is not regular. We may always assume
that f and g are regular near this point, because any pole singularity can be
removed as above. This means that one of the following happens: f ′(ξ) = 0,
g′(η) = 0, or f(ξ) + g(η) = 0. But the first two would generate a line of
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characteristic singularities. This line would have to cross the line (ξ + η = 0),
which contradicts the assumption that this line contains no singularity. Since
f ′g′ �= 0, we can solve the equation f + g = 0 using the implicit function
theorem to obtain a relation ξ = ψ(η). We therefore know that the singular
set is given by an equation ξ = ψ(η), where ψ is decreasing in every component
of its domain. On the other hand, ψ cannot admit two vertical asymptotes,
since it would have to decrease from +∞ to −∞ between them, and in the
process create a forbidden singularity when its graph crosses the line ξ+η = 0.
Therefore ψ is a decreasing function defined at most on two intervals of the
form (−∞, a) and (b,+∞). This means that the blowup set has at most two
components, which completes the proof.

10.11 Recall that characteristic singularities occur on lines parallel to the
ξ and η axes, and correspond to places where f ′ or g′ vanishes. We again
consider the singularities near ξ = η = 0. The situation that two characteristic
singularities cross, while the solution remains defined on both sides of the
singular lines, corresponds generically to the case in which f ′ and g′ vanish
up to second order, and f ′ and g′ remain nonnegative for ξ and η small.
Therefore, we may write

f(ξ) = a0 + a3ξ
3 + · · · ; g(η) = b0 + b3η

3 + · · · ,
with a3 and b3 positive. We now introduce a deformation parameter ε, and
consider the solution uε generated by the functions

fε(ξ) = a0 + εa1ξ + a3ξ
3 + · · · ; gε(η) = b0 + εb1η + b3η

3 + · · · ,
where a1b1 > 0. We are ready to describe the singular set of uε near the
origin. If a0 or b0 is nonzero, uε does not have any singularity at all near
the origin, since fε + gε �= 0. If a0 = b0 = 0, uε has a singularity on a
curve that is noncharacteristic near the origin (on it, ξ ∼ −(b1/a1)η). The
second of the singularity data becomes singular in the limit of small ε, since
{fε; ξ} = 6a3/a1ε when ξ = 0.

Chapter 11

11.1 Let us first identify the leading-order term. Let T = R − r and sub-
stitute u ∼ u0T

σ. At leading order, the terms of significance in (11.14) are
independent of n. Let us substitute into (11.14). We obtain

σ =
p

p− α − 1
(14.11)

and
up−1

0 σp−1(σ − 1)(p− 1) = 1.

We now introduce a renormalized unknown v by writing
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u = u0T
σ(1 + vT ε), (14.12)

where ε will be chosen small enough. Substitution of (14.12) into (11.14) leads,
after a lengthy calculation, to a Fuchsian equation of the form

(D + ε + 1)(D + ε + σ(α + 1))v = T εF (v,Dv, T ), (14.13)

where D = T∂T , provided that ε < 1
2 . For F ≡ 0, (14.13) has no solution that

remains bounded as T → 0, because (14.11) guarantees that σ > 1. It follows
that (14.13) has precisely one solution that remains bounded as T → 0.



References

1. Ablowitz, MJ, Clarkson, PA (1991) Solitons, Nonlinear Evolution Equations,
and Inverse Scattering, Cambridge U Press.

2. Ablowitz, MJ, Ramani, A, Segur, H (1980) A connection between nonlinear
evolution equations and ordinary differential equations of Painlevé type, I &
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définies par des équations différentielles. J Ec Poly 21:133–197.
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(ZND), 199



Progress in Nonlinear Differential Equations
and Their Applications

Editor
Haim Brezis
Département de Mathématiques
Université P. et M. Curie
4, Place Jussieu
75252 Paris Cedex 05
France
and
Department of Mathematics
Rutgers University
Piscataway, NJ  08854-8019
U.S.A.
Progress in Nonlinear Differential Equations and Their Applications  is  a book series that
lies at the interface of pure and applied mathematics. Many differential equations are
motivated by problems arising in such diversified fields as Mechanics, Physics, Differential
Geometry, Engineering, Control Theory, Biology, and Economics.  This series is open to
both the theoretical and applied aspects, hopefully stimulating a fruitful interaction between
the two sides.  It will publish monographs, polished notes arising from lectures and seminars,
graduate level texts, and proceedings of focused and refereed conferences.

We encourage preparation of manuscripts in some form of TeX for delivery in camera-ready
copy, which leads to rapid publication, or in electronic form for interfacing with laser printers
or typesetters.

Proposals should be sent directly to the editor or to: Birkhäuser Boston, 675 Massachusetts
Avenue, Cambridge, MA 02139

PNLDE 30    Parametrized Measures and Variational Principles
                      Pablo Pedregal

PNLDE 31    Topics in Mathematical Modelling of Composite Materials
      Andrej Cherkaev and Robert Kohn, editors

PNLDE 32    Geometrical Optics and Related Topics
      Ferruccio Colombini and Nicolas Lerner, editors

PNLDE 33    Entire Solutions of Semilinear Elliptic Equations
      I. Kuzin and S. Pohozaev

PNLDE 34    Stability of Functional Equations in Several Variables
      Donald H. Hyers†, George Isac and Themistocles M. Rassias



PNLDE 35    Topics in Nonlinear Analysis: The Herbert Amann Anniversary Volume
      Joachim Escher and Gieri Simonett, editors

PNLDE 36    Variational Problems with Concentration
                      Martin Flucher

PNLDE 37    Implicit Partial Differential Equations
                      Bernard Dacorogna and Paolo Marcellini

PNLDE 38    Systems of Conservation Laws: Two-Dimensional Riemann Problems
      Yuxi Zheng

PNLDE 39    Linear and Nonlinear Aspects of Vortices: The Ginzburg–Landau Model
                      Frank Pacard and Tristan Rivière

PNLDE 40    Recent Trends in Nonlinear Analysis: Festschrift Dedicated to Alfonso
      Vignoli on the Occasion of his Sixtieth Birthday
      Jürgen Appell, editor

PNLDE 41    Quasi-hydrodynamic Semiconductor Equations
      Ansgar Jüngel

PNLDE 42    Semigroups of Operators: Theory and Applications
      A.V. Balakrishnan, editor

PNLDE 43    Nonlinear Analysis and its Applications to Differential Equations
      M.R. Grosshino, M. Ramos, C. Rebelo, and L. Sanchez, editors

PNLDE 44    The Monge–Ampère Equation
      Cristian E. Gutiérrez

PNLDE 45    Spatial Patterns: Higher Order Models in Physics and Mechanics
      L.A. Peletier and W.C. Troy

PNLDE 46    Carleman Estimates and Applications to Uniqueness and Control Theory
      Ferrucio Colombini and Claude Zuily, editors

PNLDE 47    Advances in the Theory of Shock Waves
      Heinrich Freistühler and Anders Szepessy, editors

PNLDE 48    Energy Methods for Free Boundary Problems: Applications to
      Nonlinear PDEs and Fluid Mechanics
      S.N. Antontsev, J.I. Díaz, and S. Shmarev

PNLDE 49    Variational and Topological Methods in the Study of Nonlinear Phenomena
      V. Benci, G. Cerami, M. Degiovanni, D. Fortunato, F. Giannoni, and
      A. M. Micheletti, editors



PNLDE 50    Topics in Parabolic Differential Equations
      A. Lorenzi and B. Ruf

PNLDE 51    Variational Methods for Discontinuous Structures
      G. del Maso and F. Tomarelli, editors

PNLDE 52    Partial Differential Equations and Mathematical Physics:
      In Memory of Jean Leray
      K. Kajitani and J. Vaillant, editors

PNLDE 53    Flow Lines and Algebraic Invariants in Contact Form Geometry
      A. Bahri

PNDLE 54    Nonlinear Models and Methods
      D. Lupo, C. Pagani, and B. Ruff

PNLDE 55    Evolution Equations: Applications to Physics, Industry,
      Life Science and Economics
      G. Lumer and M. Iannelli

PNLDE 56    A Stability Technique for Evolution Partial Differential Equations:
      A Dynamical Systems Approach
     Victor A. Galaktionov and Juan Luis Vázquez

PNLDE 57    Regularity Theory for Mean Curvature Flow
      Klaus Ecker

PNLDE 58    Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control
      Piermarco Cannarsa and Carlo Sinestrari

PNLDE 59    Variational Problems in Riemannian Geometry: Bubbles Scans, and
      Geometric Flows
      P. Baird, A. El Soufi, A. Fardoun, and R. Regbaoui, editors

PNLDE 60    Travelling Waves in Nonlinear Diffusion–Convection Reaction
      B.H. Gilding and R. Kersner

PNLDE 61    Trends in Partial Differential Equations of Mathematical Physics
      J.F. Rodrigues, G. Seregin, and J.M. Urbano, editors

PNLDE 62    Free Energy and Self-Interacting Particles
      Takashi Suzuki

PNLDE 63    Elliptic and Parabolic Problems: A Special Tribute to the Work of H. Brezis
                      C. Bandle and H. Berestycki, editors

PNLDE 64    Nonlinear Elliptic and Parabolic Problems: The Herbert Amann
      Anniversary Volume

                      M. Chipot and J. Escher



PNLDE 65    Variational Methods in Shape Optimization Problems
Dorin Bucur and Giuseppe Buttazzo

PNLDE 66   Contributions to Nonlinear Analysis: A Tribute to
D.G. de Figueiredo on the Occasion of his 70th Birthday
T. Cazenave, D. Costa, O. Lopes, R. Manásevich, P. Rabinowitz,
B. Ruf, and C. Tomei, editors

PNLDE 67   Vortices in Bose-Einstein Condensates
A. Aftalion

PNLDE 68   Variational Problems in Materials Science
G. Dal Maso, A. DeSimone, and F. Tomarelli, editors

PNLDE 69    Phase Space Analysis of Partial Differential Equations
A. Bove, F. Colombini, and D. DelSanto, editors

PNLDE 70   Vortices in the Magnetic Ginzburg–Landau Model
E. Sandier and S. Serfaty

PNLDE 71   Fuchsian Reduction: Applications to Geometry, Cosmology and
Mathematical Physics
S. Kichenassamy

PNDLE 72   Self-Dual Gauge Field Vortices: An Analytical Approach
G. Tarantello

PNLDE 73   The Maximum Principle
P. Pucci and J. Serrin

PNLDE 74   Nonlinear Oscillations of Hamiltonian PDEs
M. Berti


	front-matter.pdf
	fulltext.pdf
	front-matter(3).pdf
	fulltext(2).pdf
	fulltext(3).pdf
	front-matter(4).pdf
	fulltext(4).pdf
	fulltext(5).pdf
	fulltext(6).pdf
	front-matter(5).pdf
	fulltext(7).pdf
	fulltext(8).pdf
	fulltext(9).pdf
	fulltext(10).pdf
	fulltext(11).pdf
	front-matter(6).pdf
	fulltext(12).pdf
	fulltext(13).pdf
	back-matter.pdf

