R	_	67	'31

(Pages : 3)

Reg. N	o. :	
Name :		

Second Semester M.Sc. Degree Examination, April 2023

Physics with Specialization in Nano Science/Physics with Specialization in Space Physics

PHNS 523/PHSP 523 : COMPUTER SCIENCE AND NUMERICAL TECHNIQUES

(2020 Admission onwards)

Time: 3 Hours

Max. Marks: 75

PART - A

Answer any five questions. Each question carries 3 marks.

- 1. What is meant by system bus?
- 2. What are the categories of instruction sets available in 8085?
- 3. How is microcontrollers different from microprocessors?
- 4. What is the difference between structure and class in C++?
- 5. Explain how two-dimensional arrays are created in C++.
- 6. Derive central difference formula for the second order derivative.
- 7. Derive Simpson's 1/3 rule.
- 8. Explain Euler's method for solving a differential equation.

 $(5 \times 3 = 15 \text{ Marks})$

P.T.O.

PART - B

Answer three questions. Each question carries 15 marks.

- 9. (a) Explain the machine cycle and bus timings of 8085 microprocessor.
 - (b) Discuss briefly the registers in 8085.

OR

- 10. (a) Discuss important computer network topologies.
 - (b) Distinguish between RAM, ROM and Cache memory.
- 11. (a) Discuss the definition of classes and objects in C++. How functions are declared in class?
 - (b) Explain switch statements in C++. Give an example.

OR

- 12. (a) Explain how files are created and accessed in C++.
 - (b) Explain the concept of pointers and any two applications with illustrative C++ statements.
- 13. (a) Write a note on Lagrange's interpolation.
 - (b) Derive Newton's forward difference interpolation formula.

OR

- 14. (a) Explain Runge-Kutta method of second order for solving ordinary differential equations.
 - (b) Explain modified Euler's method.

 $(3 \times 15 = 45 \text{ Marks})$

PART - C

Answer any three questions. Each question carries 5 marks.

- 15. Write a Python code for displaying all the prime numbers within an interval.
- 16. Write 8085 assembly program to add two 8 bit numbers stored in memory locations and to store the result in another location.
- 17. Explain finite difference operators.
- 18. Write a C++ program with a class for complex numbers and functions to add, multiply and display complex numbers, and to illustrate their use by creating and initialising objects.
- 19. Find Newton's interpolation polynomial for the following data points (x,y):

(1,1)(2,5)(3,2)(3.2,7) and (3.9,4).

20. Explain Gauss elimination method for solving a system of linear algebraic equations.

 $(3 \times 5 = 15 \text{ Marks})$