(Pages : 3)

Reg. No.	
Name :	***************************************

Second Semester M.Sc. Degree Examination, April 2023

Physics with Specialization in Nano Science/Physics with Specialization in Space Physics

PHNS 521/PHSP 521 : MODERN OPTICS AND ELECTROMAGNETIC THEORY

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

PART - A

Answer any five questions. Each carries 3 marks.

- Give Kirchhoff integral theorem. What is its significance?
- 2. Discuss the fundamental harmonic of polarization.
- 3. What is multi quantum photoelectric effect?
- 4. "Electromagnetic waves not only carry energy; they also carry momentum". Substantiate the statement.
- 5. What is Lorentz gauge?
- 6. How will you demonstrate magnetism as a relativistic phenomenon?
- 7. What are the applications of transmission lines?
- Write a note on the significance of Frii's equation in telecommunication.

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

Answer all questions. Each carries 15 marks.

9. What is interference? Derive the equation for maximum and minimum transmittance of interference with multiple beams.

OR

- 10. (a) What is non-linear optics? Briefly explain second harmonic generation.
 - (b) Discuss phase matching in a negative uniaxial crystal.
- 11. (a) Discuss reflection and transmission at oblique incidence.
 - (b) Explain vector and scalar potentials.

OR

- 12. (a) What is magnetic dipole radiation?
 - (b) Derive the expression for total power radiated.
- 13. (a) Contrast the propagation of TM and TE waves in a rectangular wave guide.
 - (b) Explain power transmission and attenuation.

OR

- 14. (a) Explain antenna characteristics.
 - (b) Write a note on antenna arrays.

 $(3 \times 15 = 45 \text{ Marks})$

PART - C

Answer any three questions. Each carries 5 marks.

- 15. Explain Fresnel diffraction patterns.
- 16. Discuss multiphoton process. How does a virtual level differ from a real level?

R – 6729

- 17. Explain electric field of a uniformly moving point charge.
- 18. Briefly represent electrodynamics in tensor notation.
- 19. A band transmitter operating at 27 MHz with 4 W output is connected via 10 m of RG-8A/U cable to an antenna that has an output resistance of 300 ohm. Calculate:
 - (a) The reflection coefficient
 - (b) The electrical length of cable in wavelengths
 - (c) The VSWR

(Hint : Given $Z_0 = 50$ ohm)

20. Determine the distance from a $\lambda/2$ dipole to the boundary of the far field region. if the $\lambda/2$ dipole is used in a 300 MHz communication systems.

 $(3 \times 5 = 15 \text{ Marks})$