R	_	6	7	3	0
_			-	_	_

(Pages:	3)
---------	----

Reg. No.	:	•••••	••••	••••	•••••	••••	•••	•••
Name:.								

Second Semester M.Sc. Degree Examination, April 2023.

Physics With Specialization In Nano Science/Physics With Specialization In Space Physics

PHNS 522/PHSP 522 : THERMODYNAMICS, STATISTICAL PHYSICS AND BASIC QUANTUM MECHANICS

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

SECTION - A

Answer any **five** questions. **Each** question carries **3** marks.

- 1. What are thermodynamic potentials? Express relations of any two of them to the thermodynamic variables.
- 2. Define and hence distinguish between the microcanonical, canonical and grand canonical ensembles.
- 3. Define density matrix. How is the principle of detailed balance reflected in the density matrix?
- 4. Distinguish between first and second order phase transitions. Give one example each.
- 5. State the basic postulates of quantum mechanics.
- 6. Bring out the qualitative difference between the Schrodinger, Heisenberg and interaction pictures.

P.T.O.

- 7. Comment on the wavefunction for a free particle in 3D and its normalization.
- 8. What is the simple schematic form suggested for the potential function for a deuteron. Write down the Schrodinger equation for the deuteron in its potential well.

 $(5 \times 3 = 15 \text{ Marks})$

SECTION - B

Answer all questions, Each question carries 15 marks.

- 9. (a) State Nernst heat theorem and briefly describe its consequences.
 - (b) Explain Gibb's phase rule. Give an example of its use.

OR

- 10. (a) State Liouville's theorem and briefly describe its consequences.
 - (b) Explain Gibb's paradox and also its resolution.
- 11. (a) Illustrate how quantum statistics was able to explain the behaviour of the electron gas in metals.
 - (b) Explain phase space.

OR

- 12. (a) Define the Ising model.
 - (b) Illustrate the usefulness of Ising model in analysing phase transitions.
- 13. (a) Derive the general uncertainty relation regarding measurements made on two variables.
 - (b) Hence obtain the position momentum uncertainty relation.

OR

- 14. (a) Solve the rigid rotator problem.
 - (b) What is its application in spectral studies?

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three questions. Each question carries 5 marks.

- 15. Assuming that the latent heat of sublimation of ice L = 2500 kJ/kg is independent of temperature and that the specific volume of the solid phase is negligible compared to the specific volume of the vapour phase, $v_{vapour} = \frac{kT}{P\sigma(T)}$, integrate the Clausius Clapeyron equation $\frac{dP\sigma}{dT} = \frac{L}{T\Delta v}$ to obtain the co-existence pressure as a function of temperature.
- 16. Obtain an expression for the Helmholtz free energy of a classical ideal gas in terms of its partition function.
- 17. Calculate the Fermi energy of sodium at 0 K if it has one free electron per atom and density 970 kg/m³ and atomic weight 23.
- 18. The Sun may be regarded as a black body at a temperature 5800 K. Its diameter is about 1.4×10^9 m while its distance from the earth is about 1.5×10^{11} m. Calculate the total radiant intensity in W/m² of sunlight at the surface of the earth.
- 19. Obtain the eigen value equation in matrix form. Delineate how eigen values and eigen functions are obtained.
- 20. Following the operator method show that the energy of the ground state of a simple harmonic oscillator is equal to $\frac{1}{2}\hbar\omega$.

 $(3 \times 5 = 15 \text{ Marks})$