P	ad	es	:	3)
	ay	-	•	-,

Reg. N	lo.	:	•••	•••	•••	•••	•••	•••	•••	••••	••	•••	•
Name	:		•••		• • •								

Third Semester M.Sc. Degree Examination, July 2023

Physics with Specialization in Nano Science / Physics with Specialization in Space Physics

PHSP 531/PHNS 531 : ADVANCED QUANTUM MECHANICS

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

SECTION - A

Answer any five questions. Each question carries 3 marks

- 1. Explain variational principle.
- 2. Write the connection formula and explain why the WKB method is valid for system in which the potential is slowly varying.
- 3. Explain Fermi Golden rule.
- 4. Prove that the total energy of the system is conserved if the system is invariant under translation in time.
- 5. Explain partial waves.
- 6. Explain symmetric and antisymmetric wavefunctions.

- 7. Discuss the interpretation of Klein Gordon equation.
- 8. What do you meant by Lamb shift?

 $(5 \times 3 = 15 \text{ Marks})$

SECTION - B

Answer all questions. Each question carries 15 marks

9. Explain WKB approximation and discuss barrier penetration by particle using WKB method.

OR

- 10. Discuss time dependent perturbation theory and prove that the transition probability oscillates sinusoidal as a function of time.
- 11. Derive Hartree equation for an electron move in a spherical symmetric potential.

OR

- 12. Using partial wave analysis explain scattering by central potential. Obtain the expression for scattering amplitude, scattering cross section.
- 13. Discuss the quantization of electromagnetic field.

OR

- 14. Explain
 - (a) Addition of angular momenta and
 - (b) Clebsh Gordan coefficients.

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three of the following questions. Each question carries 5 marks.

- 15. Derive Hellmann-Feyman theorem.
- 16. Obtain the energy values of harmonic oscillator using WKB method.
- 17. Establish the expansion of plane wave in terms of an infinite number of spherical waves.
- 18. What is time reversed wane function and prove that the Schrodinger equation satisfied by the time reversed function has also the same form as the original one.
- 19. Derive the angular momentum matrices for j^2 and j_z and also for j = 3/2.
- 20. Derive the covariant form of dirac equation.

 $(3 \times 5 = 15 \text{ Marks})$