(Pages:	3)
---------	----

Reg. N	10.	:	•••••	••••••	•••••
Name	:		•••••		

Third Semester M.Sc. Degree Examination, July 2023

Physics with Specialization in Nano Science / Physics with Specialization in Space Physics

PHSP 532/PHNS 532 : ATOMIC AND MOLECULAR SPECTROSCOPY

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

SECTION - A

Answer any five questions. Each question carries 3 marks

- 1. What is isomer shift?
- Explain the principle of NMR.
- 3. Explain the factors responsible for the hyperfine structure in ESR spectra.
- 4. Why homonuclear diatomic molecules do not show rotational spectra?
- 5. What is known as finger print region of IR?
- 6. Explain Stark effect.
- 7. What are the different ways in which the orbital and spin momentum can be coupled in a two electron system?
- 8. Explain Pauli's exclusion principle.

 $(5 \times 3 = 15 \text{ Marks})$

P.T.O.

SECTION - B

Answer any three questions. Each question carries 15 marks.

- 9. (a) Explain the principle of ESR.
 - (b) Outline the basic requirements of an ESR spectrometer.

OR

- 10. (a) Explain the theory of Raman scattering. Why anti-Stokes lines are less intense than Stokes lines?
 - (b) Write a brief note on Mossbauer sources and absorbers.
- 11. (a) Describe Paschen-Back effect.
 - (b) Explain anomalous Zeeman effect in detail.

OR

- 12. (a) Explain X-ray fluorescence spectroscopy.
 - (b) What is molecular point groups? Explain the characteristic table of C_{2v} and C_{3v} point groups.
- 13. (a) Deduce rotational energy levels of diatomic molecule by treating it as a rigid rotator.
 - (b) Obtain the frequency of rotational spectral lines.

OR

- 14. Discuss the influence of rotation on the spectra of :
 - (a) linear molecules.
 - (b) symmetric top molecules.

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three questions. Each question carries 5 marks

- 15. Calculate the recoil velocity of a free Mossbauer nucleus of mass 1.67×10^{-25} kg (equivalent at. Wt. 100) when emitting a γ -ray of wavelength 0.1 nm. What is the Doppler shift of the γ -ray frequency to an outside observer?
- 16. Electron spin resonance is observed for atomic hydrogen with an instrument operating at 9.5 GHz. If the g value for the electron in the hydrogen atom is 2.0026, what is the magnetic field applied? Bohr magnetron $\mu_B = 9.274 \times 10^{-24} JT^{-1}$.
- 17. Give an account on Fortrat parabola.
- 18. Explain FTIR Spectroscopy.
- 19. A state is denoted as ⁴D_{5/2}. What are its values of L, S and J? What is the minimum number of electrons which could give rise to this? Suggest a possible electronic configuration.
- 20. Illustrate, with an energy level diagram. Pachen Bach effect for the D2 line of sodium.

 $(3 \times 5 = 15 \text{ Marks})$

