S - 6525

(Pages: 3)

Reg. No.	:	
Name :		

Second Semester M.Sc. Degree Examination, January 2024

Physics with Specialization in Nano Science/Physics with Specialization in Space Physics

PHNS 522/PHSP 522 : THERMODYNAMICS, STATISTICAL PHYSICS AND BASIC QUANTUM MECHANICS

(2020 Admission Onwards)

Time 3 Hours

Max Marks 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

- What do you mean by partition function.
- Explain is Nernst's Theorem and explain its importance.
- 3 What is the role of chemical potential in chemical equilibrium?
- What is Gibbs function and prove that Gibbs function decrease during isothermal isobaric process and is equal to the network obtained.
- 5/ What is planks radiation law?
- 5./ Explain quantum mechanical tunneling.
- 7 / Distinguish first order and second order phase transitions.
 - Briefly explain Schrodinger representation or Schrodinger picture

 $(5 \times 3 = 15 \text{ Marks})$

P.T.O.

SECTION - B

Answer all questions. Each question carries 15 marks.

9. Derive Maxwell's thermodynamic relations and hence derive Clausius Clapeyton equation.

OR

- 10. What is Partition function and establish the relation between partition function and thermodynamical quantities.
- Explain Fermi dirac statistics and distribution law.

OR

- 12. State and derive Liouville's theorem.
- Solve linear harmonic oscillator problem using Schrodinger method.

20 - 1 New 3

14. Explain and compare the three evolution pictures in quantum mechanics.

SECTION - C

OR

 $(3 \times 15 = 45 \text{ Marks})$

Answer any three of the following questions. Each question carries 5 marks.

15 With the help of Maxwell's relations, show that

$$Tds = C_{\nu}dT + T\left(\frac{\partial P}{\partial T}\right)_{\nu}dV \text{ and } TdS = C_{\nu}dT - T\left(\frac{\partial V}{\partial T}\right)_{P}dP$$

رح کی

- 16. Derive the co-relation of partition function Z with entropy S for ideal gas obeying classical statistics.
- Derive Fermi Dirac distribution function and how it differs from that of Bose Einstein distribution.

- 18 Derive Richardson Dushman equation of thermionic emission.
- Show that the zero point energy of $\frac{1}{2} lim$ of a linear harmonic oscillator is a manifestation of the uncertainty principle.
- 20. Derive general uncertainty relation.

 $(3 \times 5 = 15 \text{ Marks})$