P	a	a	e	9	:	4
	44	215	107	•	*	-

Reg.	No.	:	•••	 	••	٠.	٠.	٠.		 ٠,		٠.	٠.	
Name	:			 					 				 	

Third Semester B.Sc. Degree Examination, February 2024 First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1331.1 MATHEMATICS III — LINEAR ALGEBRA, SPECIAL FUNCTIONS AND CALCULUS

(2021 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

(All the first ten questions are compulsory. They carry 1 mark each).

- 1. Write the differential equation corresponding to $y = a \cos n x$.
- 2. State Cayley Hamilton theorem.
- 3. Find the rank of the matrix $\begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
- 4. Which one of the following matrices is in the reduced echelon form?

$$\begin{bmatrix} 1 & 2 & 3 & 7 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 5 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- 5. Verify that $y = e^{-2x}$ is a solution of y'' + y' 2y = 0
- 6. Find the particular integral of $y'' + 9y = e^{2x}$.
- Define an inverse square field.
- 8. Determine whether the force field F = 4y i + 4x j is a conservative or not.
- 9. If σ any closed surface enclosing a volume V and r=xi+yj+zk, prove that $\iint r \cdot n \, dS = 3V$.
- 10. Find $\beta(1,1)$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

- 11. Show that a square matrix A can be expressed as a sum of two matrices of which one is symmetric and the other is Skew symmetric.
- 12. Find A and B if $A+B=\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$ and $A-B=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$.
- 13. If C is the straight line path from (0, 0, 0) to (1,1, 1), then evaluate $\int_C dx + 2dy + 3dz$.
- 14. Show that $x = a \cos nt$ is a solution of the differential equation $\frac{d^2 x}{dt^2} + n^2 x = 0$.
- 15. State Greens theorem including all hypotheses.
- 16. Solve $\frac{dy}{dx} + y \tan x = \cos x$.
- 17. Solve $(y'' + y' + 1)^2 = 0$.
- 18. Find the work done in moving a particle in the force field $F = 3x^2i + (2xz-y)j zk$ from t = 0 to t = 1 along the curve $x = 2t^2$, y = t, $z = 4t^3$.
- 19. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, find A^2 .

- 20. Find the sum and product of eigen values of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
- 21. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, find its characteristic equation of A.
- 22. Find the outward flux of the vector field $F(x,y,z) = 2xi + 3yj + z^2k$ across the unit cube x = 0, y = 0, z = 0, x = 1, y = 1, z = 1.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 23. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 4 & -5 \\ 1 & -2 \end{bmatrix}$.
- 24. Using Cayley Hamilton theorem evaluate A^{-1} given $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$.
- 25. Find the orthogonal trajectories of the family of curves $x^2 y^2 = c^2$.
- 26. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.
- 27. Solve $(x+y)\frac{dy}{dx} = y x$.
- Find the number of solutions of the following system of equations 2x+6y+11=04x+14y-z-7=0

$$6y - 3z + 2 = 0$$

- 29. Evaluate by stokes theorem $\oint_C (e^x dx + 2ydy dz)$, where C is the curve $x^2 + y^2 = 4$, z = 2.
- 30. Using Gauss's divergence theorem evaluate $\iint_S F.n \, ds$ for $F = x^2 \, i + y^2 \, j + z^2 \, k$ taken over the region V of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 31. Show that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions. Each question carries 15 marks.

- 32. Diagonalize the symmetric matrix $A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$
- 33. (a) Find for what values of a and b, the equations

$$x + 2y + 3z = 6$$

$$3x + 3y + 5z = 9$$

$$2x + 5y + az = b$$

have

- (i) no solution
- (ii) a unique solution
- (iii) more than one solution?
- (b) Find the value of k for which the equations

$$2x+3y+4z=0$$

$$x+2y-5z=0$$

$$3x + 5y - kz = 0$$

have a non-trivial solution.

34. Verify Greens theorem for $\int_C (xy+y^2)dx + x^2 dy$ where C is the closed curve of the region bounded by y=x and $y=x^2$.

35. (a) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$$

(b) Solve
$$\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$$
.

 $(2 \times 15 = 30 \text{ Marks})$