# Third Semester B.Sc. Degree Examination, February 2024 First Degree Programme under CBCSS

#### **Statistics**

### **Complementary Course for Physics**

## ST 1331.2 : PROBABILITY DISTRIBUTIONS AND STOCHASTIC PROCESSES

(2022 Admission)

Time: 3 Hours

Max. Marks: 80

#### SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Define binomial distribution.
- 2. Comment on the statement: "For a Poisson distribution Mean=2 and variance=4".
- 3. Obtain the mean of geometric distribution.
- 4. State the conditions under which the Normal distribution as a limiting form of binomial distribution.
- 5. State the additive property of Gamma distribution.
- 6. Define standard error.
- Define ordered sample.

- Give the probability density function of Chi-square distribution with n degrees of freedom.
- Define transition probability matrix.
- 10. Define stochastic process.

 $(10 \times 1 = 10 \text{ Marks})$ 

#### SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Ten unbiased coins are tossed simultaneously. Find the probability of obtaining not more than three heads.
- 12. If a random variable X follows Poisson distribution such that P(X=1)=P(X=2), find the mean and variance.
- 13. Let  $X \sim \bigcup [a,b]$ , find the mean and variance.
- 14. Define beta distribution of first kind. Find its mean.
- 15. If X is a normal variate with mean 30 and standard deviation 5. Find P(|X-30|>5).
- 16. Obtain the sampling distribution of the mean of the samples from a normal distribution.
- 17. What is the relation between t and F.
- 18. Define Student's t distribution. Give any two applications.
- 19. Define F-distribution. Give one application.
- 20. Define Fermi-Dirac statistic.
- Define wide sense stationary stochastic process.
- 22. Define Brownian motion process.

 $(8 \times 2 = 16 \text{ Marks})$ 

#### SECTION - C

Answer any six questions. Each question carries 4 marks.

- State and prove the additive property of independent Poisson variates.
- State and prove the lack of memory property for the exponential distribution.
- 25. In a distribution exactly normal, 10.03% of the items are under 25-kilogram weight and 89.97% of the items are under 70-kilogram weight. What are the mean and standard deviation of the distribution?
- 26. Let  $X_i$  (i = 1,2,...,n) be i.i.d random variables. Then show that min  $(X_1, X_2,..., X_n)$  has a Weibull distribution if and only if the common distribution of  $X_i$ 's is Weibull distribution.
- 27. Obtain the relation between F and  $\chi^2$  distribution.
- 28. If X and Y are independent rectangular variates on [0,1], find the distribution of X/Y.
- 29. Distinguish between Bose-Einstein and Maxwell-Boltzman statistic.
- 30. Define Poisson process and explain its postulates.
- 31. Explain the different classifications of stochastic process with examples.

 $(6 \times 4 = 24 \text{ Marks})$ 

#### SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Determine the binomial distribution for which the mean is 4 and variance 3 and find its mode.
  - (b) Fit a Poisson distribution to the following data:

x 0 1 2 3 4 f 109 65 22 3 1

- 33. If X and Y are independent normal variates possessing a common mean  $\mu$ , such that  $P(2X+4Y \le 10) + P(3X+Y \le 9) = 1$  and  $P(2X-4Y \le 6) + P(Y-3X \ge 1) = 1$ , determine the values of  $\mu$ .
- 34. Define Chi-square distribution. If X and Y are two independent  $\chi^2$  variates with  $n_1$  and  $n_2$  degrees of freedom respectively, then find the distribution of  $\frac{X/n_1}{Y/n_2}$ .
- 35. (a) Explain Markov Process.
  - (b) Define random walk and write down the transition probability matrix of classical random walk.

 $(2 \times 15 = 30 \text{ Marks})$