(Pages : 4)

٨	Reg.	No.	:	••	••	•••	•••	•••	•••	•••	•••	•••	••••	•••
	Name	:		•••			•••		•••					

Fourth Semester B.Sc. Degree Examination, July 2023 First Degree Programme under CBCSS

Statistics

Complementary Course for Physics

ST 1431.2 : STATISTICAL INFERENCE

(2017 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Define point estimation.
- 2. Explain unbiasedness.
- 3. What is confidence coefficient?
- 4. Describe parametric space.
- 5. Define type II error.
- 6. What is the role of P-value in testing of hypothesis?
- 7. Define experimental error.
- 8. Describe large sample tests.

9. What are the main assumptions used in ANOVA?

2

10. Give the test statistics used to test the significance of proportion.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each carries 2 marks.

- 11. Define consistency. Give one example of an estimator which is consistent.
- 12. Obtain an unbiased estimator of population mean.
- 13. State factorization theorem and mention one of its uses.
- 14. Give the $100(1-\alpha)\%$ confidence interval of population mean in $N(\mu, \sigma_0^2)$, σ_0^2 is a given value of σ^2 .
- 15. Describe the method of maximum likelihood.
- 16. Distinguish between most powerful and uniformly most powerful tests.
- 17. A random sample of 900 members has a mean 3.4 and standard deviation 2.61. Is this sample came from a population with mean 3.25.
- 18. Discuss large sample test for testing the significance of population proportion.
- 19. Explain the use of standard error in testing of hypothesis.
- 20. Discuss chi-square test for testing the significance of population variance.
- 21. What are the principles of experimentation?
- 22. Give the situations underwhich ANOVA is used.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each carries 4 marks.

23. Let (X_1, X_2, X_3) be a random sample of size 3 drawn from a $N(\mu, \sigma^2)$ population. Consider the following estimators

 $t_1=(X_1-X_2+X_3); t_2=\frac{(X_1+2X_2-X_3)}{2}; t_3=\frac{(X_1+X_2+X_3)}{3}.$ Are t_1,t_2 and t_3 unbiased estimators of μ . Which one is more efficient? Why?

- 24. Find the M.L.E. of the parameters of binomial distribution.
- 25. Describe the method of moment. Find the moment estimator of λ in $P(\lambda)$.
- 26. Obtain the confidence interval of σ^2 in $N(\mu, \sigma^2)$.
- 27. Explain large sample test for testing the equality of two population proportions.
- 28. Discuss chi-square test for homogenity.
- 29. Explain paired t-test.
- 30. Describe the technique of ANOVA. Also explain the meaning of F-coefficient used in this study.
- 31. State the mathematical model, hypothesis to be tested in one way ANOVA. Also prepare ANOVA table.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each carries 15 marks.

- 32. (a) Explain the properties of M.L.E. Find the M.L.E. of μ and σ^2 in $N(\mu, \sigma^2)$.
 - (b) Obtain the moment estimators of α and β in $f(x, \alpha, \beta) = \frac{\beta^{\alpha}}{\alpha} e^{-\beta x} x^{\alpha-1}$, $x \ge 0$.

- 33. Obtain the 100 $(1-\alpha)\%$ confidence interval of the difference of means of two independent normal populations with common unknown variance when
 - (a) Sample sizes are small
 - (b) Sample sizes are large.
- 34. (a) Explain chi-square test for goodness of fit.
 - (b) 200 digits are chosen at random from a random number table. Using chisquare test examine whether the digits are distributed equally frequently or not.

Digits: 0 1 2 3 4 5 6 7 8 9
Frequency: 18 19 23 21 16 25 22 20 21 15

- 35. (a) Explain two-way classified data
 - (b) Discuss the model, hypotheses to be tested, various sum of squares and ANOVA table in the case of two-way ANOVA.

 $(2 \times 15 = 30 \text{ Marks})$