Reg. N	lo.	

Third Semester M.Sc. Degree Examination, February 2024

Physics with Specialization in Space Physics

PHSP 534: PHYSICS OF THE ATMOSPHERE

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

- Explain LIDAR.
- 2. An air mass has a temperature of 30 °C. pressure of 1000 hPa and a relative humidity of 20 %, find the dew point temperature given the saturation vapor pressure at 30 °C is 43.67 hpa.
- 3. Obtain an expression for thermal wind balance.
- 4. Discuss the term convective available potential energy.
- 5. Define radiative-convective equilibrium.
- 6. Define a atmospheric boundary layer.
- 7. Calculate the Coriolis force per unit mass on a fluid parcel moving at 10 m/s northward at 45°N latitude (Ω = 7.2921 × 10 ⁻⁵ S^{-1}).
- 8. Explain thermally-direct circulation.

 $(5 \times 3 = 15 \text{ Marks})$

SECTION - B

Answer all questions. Each question carries 15 marks.

- (a) Derive the expression for Lapse rate and discuss the atmospheric stability categories interns of potential temperature.
 - (b) Analyse the moisture dependence on vertical stability of the atmosphere.

OR

- 10. (a) Discuss the role of aerosols in atmospheric thermal structure.
 - (b) Distinguish between homogeneous and heterogeneous nucleation processes.
- (a) Derive horizontal equation of motion and continuity equation in spherical coordinates.
 - (b) Reduce the obtained equations using the tangent plane approximations.

OR

- 12. (a) Discuss the fundamental wave propagation in the atmosphere.
 - (b) Derive the dispersion relation for Kelvin waves and prove that the waves propagate eastward and also prove that zonal wind component is in geostrophic equilibrium with the pressure field.
- 13. (a) What are the remote sensing methods adopted for atmospheric parameters?
 - (b) Discuss how satellites are used in atmospheric parameters sensing?

OR

- 14. (a) Discuss the characteristics of Quasi-Biennial oscillation.
 - (b) Distinguish between regional and global climate models in terms of their spatial coverage, resolution and applications

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three questions. Each question carries 5 marks.

- 15. Starting with the horizontal equation of motion in a cartesian form and ignoring the friction force, derive a conservation law for vorticity (ζ) in horizontal flow on a rotating planet.
- 16. Derive expression for equivalent potential temperate.
- 17. (a) Define Russby number.
 - (b) For a characteristic velocity scale of 20 m/s at what horizontal scale does the Earths rotation become significant?
- 18. Derive an expression for cloud droplet growing by condensation and explain graphically its behaviour with time.
- 19. Show that in the absence of scattering, the monochromatic absorptivity approaches unity exponentially with increasing optical depth.
- 20. Explain cumulus convection and its necessity in general circulation models.

 $(3 \times 5 = 15 \text{ Marks})$