-	100	-	-	~	
15.	J	-	1	4	•
T	10-12			v	۰

(Pages: 3)

					2.82													100				33				
-	-		7-0		•	١.						-		- "	14.					35				Se.		
ь		2	~		•	ю			4									24			1				,,	150
1	•	v	м			lc	4.0		98	48	30		25	44			100	1		30	100	1	Æ,		633	
-	-	1 :	•			7				100				1		- 1			100							
	1									7.4		100			3 4		800				3.9	17				
				(-)-				1	100												137			S.N		
72			1 2	35			100													3.75						
				343		20.4																				
м	ı	О.	*	10		9.50	100	0011	15			72.											-			

Fourth Semester M.Sc. Degree Examination, July 2024 Physics with specialization in space physics SPECIAL PAPER

PHSP 543 : INTRODUCTION TO ASTROPHYSICS (2020 Admission Onwards)

Time ; 3 Hours

SECTION - A

Answer any five questions. Each question carries 3 marks.

- What is the celestial coordinate system?
- 2. Why are the dish sizes of radio telescopes typically larger than optical telescope diameters for resolving similar astronomical sources?
- 3. Describe any method for measuring distance to astronomical sources.
- 4. The virial theorem for stars implies that gravitational potential energy is not the main source of energy generation in stars. Explain.
- 5. What is the Stromgren sphere? How does the stromgren radius change with the temperature of a star?
- 6. The wavelength of Lyman- α the line from a galaxy is received at 152nm. Compute the speed with which the galaxy moves away from our galaxy due to cosmic expansion. The laboratory frame Lyman α wavelength is 121.567nm.

P.T.O.

- 7. Discuss any observational evidence for the existence of a supermassive black hole at our galaxy center.
- 8. Write a short note on Hubble's classification scheme for galaxies.

 $(5 \times 3 = 15 \text{ Marks})$

SECTION - B

Answer any three questions. Each question carries 15 marks.

- (a) Discuss the evolution of stars using an HR diagram. Also mark the position of white dwarfs and giant stars on the HR diagram.
 - (b) Define the color index of a star. Can you infer the temperature of the star from its color.

OR

- 10. (a) Explain the Saha equation. Explain one of its applications in astrophysics. The dominant emission by class O stars is at much higher frequencies than that by class M stars in the Harvard spectral classification system. Why?
 - (b) Near-infrared radiation is absorbed by water in the atmosphere. How do astronomers do near-infrared observations in this context?
- 11. (a) Briefly describe the primary energy generating nuclear reactions in stars.
 - (b) Why is the PP cycle the dominant source of energy production in the sun rather than the CNO cycle?

OR

- 12. (a) Derive the conditions for hydrostatic equilibrium in stars.
 - (b) Discuss the conditions for forming white dwarfs and neutron stars.
- 13. (a) Starting from the Friedman equations, obtain the evolution of scate factor in flat and closed Universes.
 - (b) What are the key components of a Milky Way-like galaxy?

OR

- 14. (a) What are galaxy rotation curves? How would you measure the galaxy rotation curve?
 - (b) Describe how galaxy rotation curves can be used to infer the presence of dark matter.

 $(3 \times 15 = 45 \text{ Marks})$

2

T - 5735

SECTION - C

Answer any three questions. Each question carries 5 marks.

- 15. Find the effective temperature of a star with twice the radius of the sun and whose bolometric magnitude is the same as that of the sun. The effective temperature of the sun is 5780K.
- 16. A star is found to emit most light at a wavelength of about 500 nm. What is the surface temperature of the star? 2mT = b
- 17. Discuss the important energy transport mechanisms inside a star.
- 18. What is the condition for the formation of a black hole? The mass and angular momentum of a black hole is doubled. What happens to its Schwarzchild radius?
- 19. The value of the Hubble parameter at present is given by 70 km/s/Mpc. Assuming that the value of the Hubble parameter does not change with time, obtain an estimate of the age of the Universe, given 1 Mpc = 3.08×10^{22} m.
- 20. The velocity dispersion (root mean square velocity) of galaxies in a cluster of size 1.2 Mpc is 1500 kmS⁻¹. What is the approximate mass of the cluster in solar mass units? One solar mass is 2×10^{30} kg.

 $(3 \times 5 = 15 \text{ Marks})$

