(Pages : 3)

Reg. N	10.	:	•••	•••	••	• •	••	••	••	•	•	••	•	• •	•	••	•	••
Name	:																	

First Semester M.Sc. Degree Examination, February 2025

Physics/Physics with Specialization in Nano Science/Physics with Specialization in Space Physics

PH 212/PHNS 512/PHSP 512 : MATHEMATICAL/PHYSICS

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

PART - A

Answer any five questions. Each question carries 3 marks.

- 1. Verify whether eigen values of the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ are in the $disc|\lambda 1| \le 2$.
- 2. When will the matrices $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ and $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ commutes under multiplication. Verify.
- 3. What is the projection of a vector $\vec{a} = 2\hat{x} 3\hat{y} + 6\hat{z}$ on vector $\vec{b} = \hat{x} 3\hat{y} + 5\hat{z}$?
- 4. If $f(z) = (x^2 + ay^2) + ibxy$ is a complex analytic function of z = x + iy, what are the values of a and b.
- 5. What is the Laplace transform $f(t) = t^2$?

- 6. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x}$.
- Why a set of matrices under multiplication do not make Abelian group.
- 8. Define contravariant and covariant tensors with examples.

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

Answer three questions each question carries 15 marks.

- 9. (a) Given the eigen values $\lambda_1=1, \ \lambda_2=-1$ and corresponding eigen values $f_1=\begin{pmatrix}1\\0\end{pmatrix}, \ g_1=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}, \ f_2=\begin{pmatrix}0\\1\end{pmatrix} \ \text{and} \ g_2=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$ Construct A and verify $Af_n=\lambda_ng_n$ and $Ag_n=\lambda_nf_n$.
 - (b) In the spherical polar coordinate system, $q_1 = r$, $q_2 = \theta$, $q_3 = \varphi$. The transformation equations are $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$. Calculate the spherical polar coordinate scale factors: $(h_r, h_\theta, h_\varphi)$.

OR

- 10. (a) Obtain the Fourier series of a triangular wave.
 - (b) Explain different distributions in probability.
- 11. (a) Find the Laplace transform of
 - (i) Dirac delta function.
 - (ii) $\sin(\omega_0 t)$
 - (iii) $\cos(\omega_0 t)$
 - (b) Consider the differential equation $x \frac{d^2y}{dx^2} + (1-2n)\frac{dy}{dx} + xy = 0$. Check whether $x''J_n(x)$ is a solution of the differential equation.

OR

- 12. (a) Show that $(1-2xt-t^2)^{-1/2}$ is a generating function of $P_n(x)$.
 - (b) Prove that following recurrence relation.
 - (i) $nP_n(x) = (2n-1)xP_n(x) (n-1)P_{n-1}(x)$
 - (ii) $nP_n(x) = xP_n(x) P_{n-1}(x)$
- 13. (a) In a 3D system, find values of
 - (i) δ_{ii}
 - (ii) $\delta_{ij} \varepsilon_{ijk}$
 - (b) What is C_{3v} , group? Obtain the group multiplication table for the same.

OR

- 14. (a) What do you mean by character table? Write down character table for $C_{4\nu}$ group.
 - (b) Define covariant tensor, if $dS^2 = g_{ij}dx^idx^j$ is invariant, show that g_{ij} is a symmetric covariant tensor of rank 2.

 $(3 \times 15 = 45 \text{ Marks})$

PART - C

Answer any three questions. Each question carries 5 marks.

- 15. With any vector \vec{A} $\vec{A}.\nabla \vec{r}=A$ verify the result in Cartesian and polar coordinates.
- 16. State and prove Cauchy's integral formula.
- 17. Fit a straight line using principle of least square.
- 18. Find the value of $J_{n-1}(x) + J_1(x)$.
- Define a group, Construct a group of order 4 and justify that the group satisfy all properties of a group.
- 20. Obtain the metric tensor for two dimensional plane in polar coordinates.

 $(3 \times 5 = 15 \text{ Marks})$