(Pages	:	3)
--------	---	----

Reg. N	lo),	:	•	•	••	•	• •	•	•	•	••	•	•	•	•	•	•	•	•	•			•	•	•	•
Name	:	••	••	•		•	• •	••	•			•			•	•	•	•	•	•	•	•	•	•	•	••	

Third Semester M.Sc. Degree Examination, March 2025

Physics with Specialization in Nano Science/Physics with Specialization in Space Physics

PHSP 533/PHNS 533 : CONDENSED MATTER PHYSICS (2020 Admission Onwards)

Time: 3 Hours

PART - A

Answer any five questions. Each question carries 3 marks.

- Explain Bravais lattices.
- Differentiate Phonons and Photons.
- What is Hall effect ? Explain.
- 4. What is Wiedmann Franz law?
- 5. Explain the mobility of charge carriers in semiconductors.
- 6. What is meant by ferroelectricity?
- Explain London penetration depth.
- 8. What are Carbon nano tubes?

 $(5 \times 3 = 15 \text{ Marks})$

PART-B

Answer three questions. Each question carries 15 marks.

- 9. (a) Discuss the vibrations of monoatomic linear lattice
 - (b) Explain the dispersion curve.

OR

- 10. (a) Explain Einstein's model of specific heat capacity
 - (b) Explain how Debye modified it.
- 11. (a) Explain the free carrier concentration in semiconductors.
 - (b) Derive the expressions for charge densities in n type and p type semi conductors.

OR

- 12. (a) What are paramagnetic substances?
 - (b) Explain the quantum theory of paramagnetism.
- 13. (a) What is superconductivity?
 - (b) Discuss BCS theory of Superconductivity.

OR

- 14. (a) Explain Transmission electron microscopy
 - (b) Compare it with scanning electron microscopy.

 $(3 \times 15 = 45 \text{ Marks})$

A 10

PART - C

Answer any three questions. Each question carries 5 marks.

- 15. The distance between consecutive (111) planes in a cubic crystal is 2Å. Determine the lattice parameter.
- 16. The Debye temperature for copper is 340 K. Calculate the molar heat capacity of diamond at 30 K.

Å uniform silver wire has a resistivity of $1.54 \times 10^{-8} \ \Omega m$ at room temperature. For an electric field along the wire of 1 Volt/cm, compute the average drift velocity of the electrons, assuming that there are 5.8×10^{28} conduction electrons/m³. Also calculate the mobility of electrons.

- 18. A uniform copper wire of length 0.5 m and diameter 0.3 mm has a resistance of 0.12 Ω at 293 K. If the thermal conductivity of the specimen at the same temperature is 390 Wm⁻¹K⁻¹. Calculate the Lorentz number.
- 19. The penetration depth of mercury at 3.5 K is about 750 Å. Estimate the penetration depth at 0 K.
- 20. Find the conductivity of an intrinsic germanium rod which is 1 cm long. The intrinsic carrier density at 300K is $2.5\times10^{19}~\text{m}^{-3}$ and the mobilities of electron and hole are 0.39 and 0.19 m $^2\text{V}^{-1}\text{s}^{-1}$ respectively.

 $(3 \times 5 = 15 \text{ Marks})$