V - 5442

(Pages: 3)

Reg.	No).	:	••	••	•	••	••	•	••	•	••	•	• •	•	• •	•	•	• 1	••	•	•
Namo	e :						2 2	201										_		_		_

Fourth Semester M.Sc. Degree Examination, June 2025

Physics/Physics with Specialization in Nano Science/ Physics with Specialization in Space Physics

PH 242/PHNS 541/PHSP 541 : NUCLEAR AND PARTICLE PHYSICS (2020 Admission Onwards)

Time: 3 Hours Max. Marks: 75

PART - A

Answer any five questions. Each question carries 3 marks.

- 1. Differentiate stripping and pick up reactions.
- 2. Briefly explain the collective model of nuclear structure.
- 3. Explain the Lawson criterion.
- 4. Explain the principle behind cyclotron accelerators.
- 5. What is the importance of the parameter called 'multiplication factor' in nuclear fission?
- 6. Explain the Breit Wigner resonance formula for nuclear reactions.
- 7. Explain quark confinement with the help of an elementary particle reaction.
- 8. What is meant by Quantum Chromo Dynamics?

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

Answer all the questions. Each question carries 15 marks.

- 9. (a) What is meant by reaction cross section?
 - (b) Explain the partial wave analysis of nuclear reaction cross section.

OR

- 10. (a) Explain the features of liquid drop model of nuclear structure.
 - (b) Explain the Bethe-Weizsacker empirical formula.
- 11. (a) Explain the classification of Nuclear reactors.
 - (b) Explain the structure of a nuclear fission reactor.

OR

- 12. (a) What is meant by nuclear fusion? Explain.
 - (b) Explain the nuclear reactions which are responsible for the energy production in stars.
- 13. Explain the principle and working of semiconductor detectors.

OR

14. Explain the conservation laws of elementary particles.

 $(3 \times 15 = 45 \text{ Marks})$

PART - C

Answer any three questions. Each question carries 5 marks.

- 15. Assume 1 amu = 1.66×10^{-27} kg, estimate the density of nuclear matter (A = 40).
- 16. Calculate the electrostatic potential energy between two equal nuclei produced by the fission of $_{92}U^{235}(_{92}U^{235}+_{0}n^{1})$ at the moment of separation.
- 17. Check whether the reaction is possible or not $p + p \rightarrow p + \wedge^0 + \Sigma^+$
- 18. A self-quenched G-M counter operates at 1000 volts and has a wire diameter of 0.2 mm. The radius of the cathode is 2 cm and the tube has a guaranteed lifetime of 109 Counts. What is the maximum radial electric field?
- 19. A reactor is developing energy at the rate of 3000 kW. How many atoms of U²³⁵ undergo fission per second? How many atoms of U²³⁵ would be used in 1000 hours of operation assuming that on an average energy of 200 MeV is released per fission?
- 20. Calculate the binding energy of an α -particle and express the result in MeV (m_p = 1.007276u and m_n =1.008665 u, m_{α} = 4.001506 u).

 $(3 \times 5 = 15 \text{ Marks})$